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Problem area 
Engineering structures in general 
should exhibit a small probability of 
failure, like in the nuclear or aircraft 
industry. Computation of the 
probability of failure requires the 
solution of a probabilistic problem, 
in which uncertainty in the model 
parameters is taken into account by 
means of their distribution 
functions. Well known and often 
applied methods are the Monte-
Carlo simulation and first-order 
reliability method. The first is very 
robust but inefficient and the latter 
is very efficient but not robust. 
 
Description of work 
In this paper a highly efficient, 
accurate and robust probabilistic 
method called adaptive directional 
importance sampling (ADIS) is 
presented. The algorithm is based 
on a directional simulation scheme 
in which the most important 
directions are sampled exact and the 
others by means of a response 
surface approach. These most 
important directions are determined 
by a -sphere enclosing the most 
important part(s) of the limit state. 
The -sphere and response surface 
are constantly updated during 
sampling with information that  

becomes available from the exact 
evaluations making the scheme 
adaptive.  
The method has been implemented 
in the NLR in-house general 
purpose reliability analysis program 
RAP++. 
 
Results and conclusions 
Various widely used test problems, 
representing a broad range of 
complex limit states that can occur 
in practice, of which several that 
pose potential problems to 
stochastic methods in general, 
demonstrate the high efficiency, 
accuracy and robustness of the 
method. As such, the ADIS method 
is of particular interest in 
applications with a low probability 
of failure and medium number (up 
to about 40) of stochastic variables, 
for instance in aircraft and nuclear 
industry. 
 
 
Applicability 
Due to its high efficiency, accuracy 
and robustness, the ADIS method is 
particularly suited to design 
structural components with a low 
probability of failure, like required 
in the nuclear, aircraft and space 
industry. 
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Summary 

In this paper an adaptive directional importance sampling (ADIS) method is presented. The 

algorithm is based on a directional simulation scheme in which the most important directions 

are sampled exact and the others by means of a response surface approach. These most 

important directions are determined by a -sphere enclosing the most important part(s) of the 

limit state. The -sphere and response surface are constantly updated during sampling with 

information that becomes available from the exact evaluations making the scheme adaptive.  

Various widely used test problems, representing a broad range of complex limit states that can 

occur in practice, of which several that pose potential problems to stochastic methods in general, 

demonstrate the high efficiency, accuracy and robustness of the method. As such, the ADIS 

method is of particular interest in applications with a low probability of failure and medium 

number (up to about 40) of stochastic variables, for instance in aircraft and nuclear industry. 
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Abbreviations 

ADIS   Adaptive directional importance sampling 

ARBIS   Adaptive radial-based importance sampling 

COV  Coefficient of variation 

DS  Directional simulation 

FORM   First-order reliability method 

JPDF  Joint probability density function 

MCS   Monte Carlo simulation 

MPP   Most probable points 

OALSF  Overall limit-state function 

RS   Response surface 

SORM   Second-order reliability method 
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1 Introduction 

Methods to compute the failure probability is a basic research area in structural reliability 

analyses. The failure probability can be formulated as: 

  

   



0

0
)x(G

f xd)x(fxGPp  
(1)

 

where x represents the vector of stochastic variables of the reliability problem and f(x) the joint 

probability density function (JPDF) in X-space. G(x) is the failure or limit-state function, 

defining a safe state when G > 0 and a failure state when G < 0. The hyper-surface separating 

the safe from the failure domain G = 0 is called the limit state. The integral represents the 

volume of the joint probability density function located in the failure domain. Solution of the 

integral equation is not straightforward, due to the unknown JPDF and location of the limit 

state, which is only known implicitly in practical cases (contrary to the example problems of 

section 3), and the higher dimensionality for practical problems. Moreover, a single evaluation 

of the limit-state function G already can be computationally expensive, for instance solution of a 

finite element problem. For practical application the efficiency of the solution method, that is 

the number of deterministic analyses (G-function evaluations) required to arrive at a sufficiently 

accurate solution, is very important. In addition, ideally the method should be capable to solve 

the integral equation accurately for a broad range of problems, i.e. robustness. 

In the past decades many methods have been presented to solve the integral equation, such as 

sampling methods based on Monte Carlo simulation (MCS) and directional simulation (DS) [1-

2] and methods based on an analytical solution of the integral equation: first-order reliability 

method (FORM) and second-order reliability method (SORM) [3].   

FORM and SORM approximate the limit state with, respectively, a first-order or an incomplete 

second-order function. Furthermore, the underlying solution method requires the solution of an 

optimization problem to find the smallest distance to the limit state. FORM, and to a lesser 

extent SORM, are often very efficient making these methods widely applied. In general, the 

accuracy of the solution is unknown, because either narrow confidence bounds cannot be 

obtained or they require an extra computational effort (e.g. importance sampling). Furthermore, 

neither method is robust in the case of a complex limit state, such as a highly nonlinear failure 

function, multiple design points (failure points or most probable points MPP) or a combination 

of failure functions (serial and parallel systems). An example of a series system having multiple 

design points is given in Figure 2. 

On the other hand, MCS and DS are very inefficient compared with FORM and SORM, 

especially for small probability values. Nevertheless, convergence to the exact solution is 

guaranteed for an increasing number of simulations, and confidence bounds on the solution are 
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available in the case of a finite number of simulations. Furthermore, these methods are very 

robust in the sense that they can handle complex limit states.  

Various methods have been presented to improve the efficiency of the two basic sampling 

methods (MCS and DS), for example [4-8], referred to as importance sampling techniques. The 

basic idea is to concentrate sampling near the most important part(s) of the limit state(s), that is 

points on G(x) = 0 located closest to the origin in standard normal space (U-space). A widely 

applied approach is to shift the sampling centre from the origin to the design point. Frequently, 

a FORM analysis, having the mentioned disadvantages, is applied first to obtain knowledge 

about the design point. An alternative strategy is to gather knowledge about the failure domain, 

and thus location of the limit state(s), during sampling and use this knowledge to guide the 

sample domain towards the most important regions, e.g. [9]. This strategy is called an adaptive 

method.  

Another strategy that drastically improves the efficiency is to first construct a response surface 

(RS) as a substitution of the real limit-state function [10-12]. With the RS the solution of the 

integral equation requires only very simple cheap function evaluations. The effort is shifted to 

the construction of the RS. The accuracy is completely determined by the accuracy of the RS, 

because even a crude MCS with many simulations can be applied. Ideally, the RS should 

provide a good approximation of all most important parts of the limit state. In [9] and [11] an 

adaptive scheme is applied that directs the RS towards a design point, which can give rise to 

inaccurate results in the case of multiple design points. 

In [13] an adaptive radial-based importance sampling (ARBIS) method was presented by the 

author based on Monte Carlo simulations, in which an efficient adaptive DS scheme was 

presented to determine the optimal -sphere that is excluded form the sampling domain, 

drastically reducing the required number of simulations compared to the Monte Carlo method. 

The method was demonstrated to be accurate and robust and can therefore be applied as a black 

box. The method lacked overall efficiency to be generally applicable, because many sample 

points are still located outside the failure domain.  

The efficiency of the ARBIS method can be improved by application of a DS scheme instead of 

the MCS scheme. Beside this, the adaptive scheme to determine the optimal -sphere can be 

used to distinguish between the most important parts of the limit state and the remainder of the 

domain. Application of a response surface for the latter domain, having a minor contribution to 

the probability of failure for which an approximate solution suffices, drastically increases the 

efficiency while maintaining accuracy. The method, being the subject of this paper, is called 

adaptive directional importance sampling ADIS and is very efficient, accurate and robust, 

demonstrated in section 3 on a broad range of problems collected from the literature, amongst 

them several that pose problems to stochastic methods in general. These characteristics make 

the method suitable to be applied in structural reliability, especially in the case of a low 

probability of failure.  
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2 Adaptive Directional Importance Sampling (ADIS) 

A set of dependent non-normal stochastic variables x can always be transformed in to a set of 

independent standard normal variables u, called the U-space, by applying appropriate 

transformations [14-16]. The remainder of the paper is therefore restricted to the U-space. 

Before presenting the ADIS method first the DS method, being the basis on which the ADIS 

method is founded, and related line-search method are briefly presented.  

 

2.1 Directional Simulation 

Besides Monte Carlo sampling also the directional simulation method [1-2] is frequently used. 

Instead of sampling random points x in the whole stochastic domain and determining whether 

these points lie in the failure domain or not, now random directions  are generated and the 

probability content in these directions is determined. For this purpose, the vector of random 

variables x is expressed in polar coordinates: 

  

Rx   (2)

 

in which R is the radius and  is a unit direction vector. 

An unbiased estimator of the probability of failure is given by: 

 

  



N

i
inf N

p̂
1

221
1   (3)

 

With this equation an estimate for the mean of the probability of failure can be obtained, by 

performing N simulations of the vector  and determining the distance to the limit state i in 

these directions. n
2( 2) is the cumulative chi-square distribution with n degrees of freedom. 

This distance is determined by means of a line-search algorithm, briefly presented in section 

2.2. 

An estimate of the variance on the estimator Pf is given by: 

 

   






N

i
fiP p̂p

NN
ˆ

f

1

22

1

1  (4)

 

yielding a confidence interval for pf of: 

 

ff P/ffP/f ˆzp̂Pˆzp̂   22   (5)

 

with z/2 the standard normal variate for degree of confidence 1-. 
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2.2 Line-search scheme 

For each simulated direction a line-search is performed to locate the possible point on the limit 

state, i.e. distance . The procedure is one-dimensional and schematically depicted in Figure 1. 

The G-value at the origin is determined once at the start of ADIS (point 0 in Figure 1) and is 

used as a scaling value as well. A linear function is fitted through this point and a first estimate 

(point 1) at a radius of U=4, thereby determining a second estimate of the limit-state point (point 

2). Next, the G-function value is determined in this point and a quadratic fit is made resulting in 

an improved estimate. This procedure is repeated until the limit-state point is found having a 

pre-defined absolute limit-state function error tolerance. Usually the process converges in two-

to-three iterations, because an approximate location is already obtained from the response 

surface.  

 

 

Figure 1   Line-search procedure. 

 

2.3 Outline of the ADIS method 

In order to reduce the number of simulations (improve efficiency) required for a MCS or DS 

more efficient simulation methods have been developed. They all are based on the fact that 

simulations are not performed throughout the whole stochastic domain, but only around the 

most important part(s) of the limit state. Generally, DS is more efficient than MCS and will 

therefore form the basis of the ADIS method. Only for a large number of random variables 

MCS requires less function evaluations than DS to converge to a solution of similar accuracy.  

A very important characteristic of MCS is that the solution of the integral equation converges to 

the exact solution as the number of simulations is increased. In general, also DS shows this 

behaviour. However, if part of the limit state is shielded by another part seen from the origin in 

U-space, for example the upper tail of problem 6 in Figure 4, then the safe area behind it will go 

unnoticed causing an overestimation of the failure probability (conservative). This error is 
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small, because these parts of the limit state are away from the most important parts and thus 

have only a limited contribution to the failure probability. Hence, this error is negligible 

certainly compared to other errors, such as a finite number of simulations (discussed in section 

3) and especially compared to FORM in which the complete limit state is approximated by a 

first-order function.  

The strategy is to gather knowledge about the failure domain and location of the limit state(s) 

during sampling and use this knowledge to guide the sample domain towards the most 

important part(s). At start no information about the limit state and its most important part(s) is 

available. Therefore, the method starts with the standard DS scheme performing a number of 

directional simulations (pre-sampling). When enough points have been sampled the obtained 

limit-state function information is used to construct a response surface (RS), see section 2.5 for 

more details. This response surface, being an approximation of the real limit-state function, is 

then used in the DS scheme. In addition, the obtained limit-state function information is used to 

determine a threshold -sphere th , depicted in Figure 2 for the final optimal situation, 

enclosing the most important parts of the limit state. 

The response surface is computationally very efficient, since no more expensive exact G-

function evaluations are required. The downside is that the accuracy is not guaranteed by the 

approximate nature of the RS. Therefore, if an important direction is sampled having an 

(approximated) distance to the limit state  lying within the threshold -sphere, the grey area in 

Figure 2 for the final optimum situation, then this direction is re-evaluated using exact G-

function evaluations. The extra limit-state function information is subsequently used to improve 

the accuracy of the response surface and to improve the current estimate of -sphere, making 

the scheme adaptive. In other words, for the most important part(s) of the limit state the 

probability content is determined by expensive but exact G-function evaluations and for the 

remainder part of the domain cheap response surface evaluations are used to approximate the 

corresponding small amount of probability content. In this way the method is very efficient, 

using only expensive G-function evaluations in the most important regions, and accurate, using 

exact limit state evaluations in the most important directions. The scheme is also robust since 

the DS method is inherently robust and because it can handle complex limit states such as a 

noisy failure function, highly nonlinear failure function, multiple design points and/or multiple 

failure functions. This robustness will be demonstrated by the numerical examples in section 3. 

These criteria are satisfied as long as a response surface can be found that approximates the 

most important part(s) of the limit state well. Finally, as a result of the exact directional 

simulations in these directions the resulting response surface will be a very good approximation 

of these areas. Even better still, most of these points will be located close to the limit state since 

an estimate of the limit-state point location is already available from the preceding response 

surface evaluation. The resulting response surface is much more accurate than by applying other 
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point sampling methods such as random sampling or factorial designs, which aim at a more 

global G-function approximation. However, away from the limit state a less accurate 

approximation of the limit-state function suffices, since only the sign of the gradient is 

important here, i.e. increasing or decreasing limit-state function in a specific direction.  

In the next section, the algorithm behind ADIS will be discussed in more detail assuming that 

the problem is already formulated in U-space. The basic steps of the ADIS algorithm are 

depicted in the flow diagram of Figure 3. These steps are discussed next in more detail. Details 

with respect to the response surface are discussed in section 2.5. 

 

 
 

Figure 2   Schematized ADIS method. 
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Figure 3   Basic steps of ADIS scheme. 

 

2.4 Algorithmic details 

At the start of the algorithm, initial values are set for the parameters min, , Pratio, related to 

the optimal -sphere discussed below. Next, the DS method is initialised, for example 

initialisation of the random number generator. The directional simulation is (re)started and for 

each sampled direction it is checked whether an exact simulation was already performed in a 

previous loop, in which case the next direction will be simulated. When available, the response 

surface will be used in a line-search to determine the approximate distance  to the limit state, 

otherwise, an exact line-search will be performed. The -value is a measure for the probability 

content in that direction. If the approximate -value is less than a threshold value th, then the 

point lies on an important part of the limit state, visualised in Figure 2 by the grey areas for the 
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final situation. In that case an exact line-search is performed in the same direction to determine 

the exact distance to the limit state. In general, only a few G-function evaluations are required to 

converge, because an estimate of the limit-state point is available from the approximate line-

search. The corresponding points therefore all lie close to the limit state. This extra G-function 

information is subsequently used to improve the response surface and the threshold -value. 

Due to the location of the extra points close to the limit state the resulting response surface will 

approximate this part of the limit state best, which is exactly the region where it should be most 

accurate. In all, apart from the directions sampled to generate the initial response surface, the 

sampling process performs almost only exact G-function evaluations in those regions that 

matter making the method very efficient and accurate.  

After each directional simulation, convergence is checked according to the criterion discussed in 

section 3. At convergence, it is checked whether new exact G-function evaluations have been 

performed resulting in an update of the response surface and threshold -sphere. In that case, all 

the approximated directions are re-evaluated against the new response surface and -sphere. To 

this end, the DS algorithm is re-initialised and the whole algorithm is redone, evaluating only 

those directions for which no exact solution is available. Re-evaluation is only done after a 

converged solution has been obtained to limit the number of such restarts. If none of the 

approximate line-searches of a full loop is followed by an exact line-search, no improvements 

can be made and the algorithm ends.  

The -sphere with radius th, the dotted blue-line in Figure 2, is constructed from the current 

minimum distance to the limit state min with an added offset  enclosing the most important 

part(s). Initially, the value of min is set to a very high value, but is updated after each exact line-

search, being an adaptive process. This value converges to the real minimum -value (see [13]). 

Normally, a limited number of exact line-searches suffice to confine the most important part(s) 

of the limit state. For the offset  a small initial value of 0.1 is selected based on a large 

number of test cases. To guarantee accuracy, a new offset  value is determined at 

convergence based on the maximum probability content within the approximate failure domain. 

To this, the ratio of the part of the failure probability determined by the approximate directions 

Pf
approx to the total failure probability Pf is defined: 

  

f

approx
f

P

P
ratioP   (6)

 

When the solution is converged the probability content for all evaluated directions is available 

in a p-vector together with information whether an exact or approximate line-search was 

applied. The ratio can be easily computed using equation (3) and should be less than a specified 
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value. For the test cases a value of 0.4 resulted in accurate solutions. After sorting of the p-

vector, a new offset  value is determined that satisfies this criterion.  

 

2.5 Response surface 

The initial response surface is a linear or in incomplete second-order approximation of the limit-

state function: 

  

  



n

i
ii

n

i
ii ucubauG

1

2

1

 (7)

 

in which a, bi, ci are the unknown constants that have to be determined and n is the number of 

random variables. The minimum number of G-function evaluations required to make an initial 

fit therefore is 2n+1. This initial response surface not necessarily is a very good approximation 

of the real response. At this stage, it suffices to only capture part of the global behaviour of the 

real response at first. This response surface is improved adaptively with extra information that 

comes available from additional exact directional simulations during the sampling scheme, as 

explained in the previous section. Hence, the response surface will converge to the one best 

describing the problem. 

The incomplete function neglecting the cross-terms, which is frequently used by others, can lead 

to severe errors. Therefore, active cross-terms (cij0) are added when more G-function values 

become available during the sample process, eventually yielding a full second-order fit: 

 

  
 


n

i

i

j
jiij

n

i
ii uucubauG

1 11

 (8)

 

The number of limit-state function points required to obtain a full fit is at most: 

 
 

2

1
1




nn
nNmax  (9)

 

In general, the number of random variables will be limited, since in most structural analyses the 

number of model parameters is limited. A problem with 25 random variables requires at 

maximum 351 G-function evaluations to obtain a full second-order approximation. For most 

problems, the number of G-function evaluations will be large enough to fit the full quadratic 

function, especially since many cross-terms will be zero in general. 

For the RS, all limit-state function points found during exact line-searches are used. Many of 

these points are located near and on the limit state in the most important regions. The response 

surface thus approximates the global limit-state function and is best at the most important 
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regions in the neighbourhood of the limit state. In this way all the (expensively determined) 

information is located in the areas of highest interest that determine the accuracy.  

Often more points are available than strictly necessary for fitting the full second-order 

polynomial. Therefore, the fit is obtained by a regression analysis, including all points, which 

improves accuracy. 

For cases with multiple limit-state functions (series systems, parallel systems or combinations), 

such as the ones depicted in Figure 2 and Figure 4, separate response surfaces are constructed 

for each of them, instead of one response surface approximating the overall limit-state function 

(OALSF). The latter would be much less accurate, because of the non-smoothness and high 

nonlinearity of this function in general, which can be seen in example problems 12 and 13 of 

Figure 4 that have a complex limit state. At any point in the stochastic domain, the OALSF 

equals the minimum or maximum of the separate limit-state functions at this point for a series, 

respectively, parallel system (or a combination for more complex systems) and is represented by 

the individual response surfaces for each failure function. The OALSF value is used in the line-

search to determine the location of a possible limit-state point. 

 Generating a response surface for each failure function does not require any extra 

computational effort, because at each exact G-function evaluation, blue points in Figure 4, 

information about each individual failure function can be obtained. 

The algorithm is demonstrated for a second-order response surface, but it is stressed here that 

any other type of meta-model can be used as well, such as a Kriging meta-model or component 

meta-model [12], which may even further improve accuracy. 

 

 

3 Numerical Examples  

The ADIS method is applied to a set of widely used test problems obtained from the literature, 

representing a broad range of possible limit states that can occur in practice of which several 

pose potential problems to stochastic methods in general. The problems are summarized in 

Table 1, in which the last column gives the corresponding reference. Since these problems are 

used by various authors, the reference is not necessarily the first one. Because of the simple 

nature of the limit-state functions they can be evaluated many times, making a near exact 

evaluation possible by crude Monte Carlo or Directional Simulation. This near exact value is 

given in column 5 of Table 2. The presented ADIS methodology, however, is developed for 

implicit limit-state functions and therefore makes no use whatsoever of any explicit limit-state 

information available in the provided test problems!  
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Table 1   Limit-state function descriptions. 

Case Limit-state function(s) 
Stochastic 

variables Description 
Pf 

Pf
ADIS 

(Error) 
Ref.

1 

 





6

1
6

54321

100sin001.05

522

i
ixx

xxxxxg

 

x14: LN(120,12) 

x5: LN(50,15) 

x6: LN(40,12) 

Linear LS with noise term 1.22e-02 1.19e-02 

(-2.4 %) 

[4] 

2 14.14621  xxg  x1: N(78064.4, 

11709.7) 

x2: N(0.0104, 

0.00156) 

Multiple design points 1.46e-07 1.61e-07 

(10.8 %) 

[4] 

3 

10

9

1

2015.02 xxg
i

i  


 
x110: N(0, 1) Quadratic LS 10 terms 5.34e-03 5.25e-03 

(-1.7 %) 

[3] 

4 
   

5.2
2

1.0 212
21 




xx
xxg

x1: N(0, 1) 

x2: N(0, 1) 

Quadratic LS with mixed 

term, convex LS 

4.16e-03 3.69e-03 

(-11.3 %) 

[17]

5 
   

3
2

5.0 212
21 




xx
xxg

x1: N(0, 1) 

x2: N(0, 1) 

Concave LS 1.05e-01 1.02e-01 

(-2.1 %) 

[17]

6 3
1

2
12 06.01.02 xxxg   x1: N(0, 1) 

x2: N(0, 1) 

Nonlinear LS with saddle 

point 

3.47e-02 3.04e-02 

(-12.4 %) 

[3] 

7  
 421

21

2000463.0

2357.05.2





xx

xxg
 

x1: N(10, 3) 

x2: N(10, 3) 

Highly nonlinear LS 2.86e-03 3.10e-03 

(8.4 %) 

[18]

8  412 43 xxg   x1: N(0, 1) 

x2: N(0, 1) 

Highly nonlinear LS 1.80e-04 1.91e-04 

(6.0 %) 

[19]

9 

 4321

544

433

322

211

,,,max

250.2

323.2

500.2

677.2

ggggg

xxg

xxg

xxg

xxg







 

x15: N(0, 1) Parallel system 2.11e-04 2.02e-04 

(-4.4 %) 

[19]

10 

 21

32

3211

,min

3

33

gg

xg

xxxg




 

x1: N(0, 1) 

x2: N(0, 1) 

x3: N(0, 1) 

Series system 2.57e-03 2.72e-03 

(6.0 %) 

[2] 

11 

 21

32

3211

,max

3

33

gg

xg

xxxg




 

x1: N(0, 1) 

x2: N(0, 1) 

x3: N(0, 1) 

Parallel system 1.23e-04 1.15e-04 

(-6.3 %) 

[2] 

12  
 

 21

212

4
1

2
121

,min

5.4

2.0

1.0exp2

gg

xxg

x

xxg





 

x1: N(0, 1) 

x2: N(0, 1) 

Series system 

Multiple design points 

3.54e-03 3.90e-03 

(10.1 %) 

[19]
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Case Limit-state function(s) 
Stochastic 

variables Description 
Pf 

Pf
ADIS 

(Error) 
Ref.

13  
 

 21

212

4
1

2
121

,max

5.4

2.0

1.0exp2

gg

xxg

x

xxg





 

x1: N(0, 1) 

x2: N(0, 1) 

Parallel  system 2.50e-04 2.11e-04 

(-15.6 %) 

[19]

14 
   

   

 4321

214

213

212
212

212
211

23

23

3
2

10

3
2

10

g,g,g,gming

xxg

xxg

xx
xx.g

xx
xx.g















x1: N(0, 1) 

x2: N(0, 1) 

Series system 

Multiple design points 

4.492e-03 

 

4.850e-03 

(8.0 %) 

[17]

 

The ADIS method is examined on 

 Efficiency. This is reflected by the number of G-function evaluations necessary to 

obtain a converged solution. This number is compared with MCS and DS. 

 Robustness. This reflects how the method performs in the case of a complex limit-state 

function: noisy failure function, highly nonlinear failure function, multiple design 

points and/or multiple failure functions. 

 Accuracy. Does the method converge to the exact solution, provided that enough 

samples are taken into account. 

 

Sampling is ended when the maximum relative error in the probability value is below a 

threshold value. Hence an equal accuracy level is obtained with all three sampling methods and 

therefore their efficiencies can be compared. The maximum relative error is given by: 

  

ff Pp/
rel
max COVCOVzE 






 

 

2

11
2

  (10)

 

where  is the confidence level and  the cumulative standard normal distribution. For each 

design point, the current value of the COVPf is checked against a threshold value, where COVPf 

is given by: 

  

fsim

f
Pf PN

P
COV




1

 
(11)
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For all problems the threshold coefficient of variation for the probability of failure COVPf was 

set to 0.1, which means that with 95 % confidence the relative error in the estimate of the 

probability of failure Pf is less than:  

 

%COV.E
f

f
P

p
max 20961   (12)

 

This accuracy is acceptable for most engineering applications. In general, the real error will be 

less than 10 %, which is often better than the errors produced in other parts of the analysis (e.g. 

accuracy of the underlying deterministic and/or numerical model). Reducing the COV value 

reduces the error at the expense of more simulation.  

 

Table 2   Number of deterministic analyses required by the different stochastic methods. 

Case MCS DS ADIS 
1 7655 2680 136 
2 > 109 107 57 
3 17830 11216 116 
4 27096 999 65 
5 942 190 32 
6 2734 307 81 
7 36835 1502 71 
8 354130 4039 148 
9 361701 19688 91 

10 37659 859 51 
11 563723 2504 63 
12 24902 212 32 
13 351660 1573 65 
14 41220 448 28 

 

3.1 Discussion 

The various problems serve to demonstrate the accuracy, efficiency and robustness of the ADIS 

method. In all problems the same default settings for =0.1 and Pratio=0.4, presented in 

section 2, have been used. As previously stated, all results have a similar accuracy level by 

selecting a fixed value for the coefficients of variation of Pf.  

The value obtained for the probability of failure with the ADIS method, given the above 

accuracy level, is presented in column 6 of Table 1 together with the relative error in Pf between 

parentheses. This error was (well) below the maximum expected error of 20% for all problems. 

The ADIS method therefore produced accurate results. 

The required number of simulations is presented in Table 2, columns 2 to 4, for respectively, 

MCS, DS and ADIS. For all problems ADIS proves to be very efficient, requiring (much) less 
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than 200 simulations to determine the failure probability for specified accuracy level. Problem 3 

reflects the efficiency in the case of a larger number of variables. 

 
problem 2 problem 4 problem 5 

 

problem 6 problem 7 problem 8 

 

problem 12 problem 13 problem 14 

 

Figure 4   Sample plots for two-dimensional test problems. 

 

Robustness is demonstrated by the noisy limit state of problem 1, multiple design points of 

problem 2, highly nonlinear limit states of problems 6 to 8; multiple failure functions of 

problems 9 to 14, in which multiple design points are present for problems 12 and 14 as well.  

Problem 14 has been slightly modified compared to the original problem, in order to obtain a 
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more complex situation with four equally significant design points. For all problems the ADIS 

method proved to be robust. 

Figure 4 shows sample plots obtained with ADIS for the two-dimensional problems, clearly 

demonstrating the approach. The sample points that lie on a sphere, see for example problems 4, 

7, 8 and 13, relate to the exact line-search at start of the DS method before a response surface 

could be fit. In addition, all problems show a clustering of points around the most important 

parts of the limit state.  

Because of the above characteristics, ADIS is of particular interest in applications with a low 

probability of failure and medium number (up to about 40) of stochastic variables, such as in 

structural reliability analyses of aircraft structure.  

 

3.2 Dimensionality test problem 

To demonstrate the efficiency of the ADIS method for higher dimensional problems, the 

following test problem was evaluated:  

 





n

i
ixng

1

3  (13)

 

where n is the number of dimensions and xi are standard normal variables N(0,1). 

The limit state is a linear hyper-plane at a fixed distance  = 3 from the origin, yielding a fixed 

-sphere radius and corresponding probability of failure Pf  = (-) = 0.00135. For various 

number of dimensions up to 50, the probability of failure has been computed with the ADIS 

method and compared with the solution obtained with FORM which provides an exact solution 

for this problem. The obtained efficiency, number of required G-function evaluations 

(deterministic analyses), is depicted in Figure 5 for both ADIS (filled-circle symbol) and FORM 

(open-circle symbol). In this case, both methods prove to be efficient even for high dimensions 

and ADIS is even somewhat more efficient than FORM. The number of G-function evaluations 

to build the initial response surface is depicted by the line with triangles resulting in a linear 

response surface which suffices for this problem. The number of additional G-function 

evaluations needed by ADIS to arrive at a converged solution (here COV = 0.01) is given by 

the difference between this line and the line with circles and shows a linear behaviour for 

increasing dimensions as well. These additional G-function evaluations represent the exact line-

searches in the most important directions, to improve the accuracy of the failure probability and 

is used to update the response surface as well. The latter is not of importance in this particular 

example due to the linearity of the problem, but is important in general.  

The required number of G-function evaluations to arrive at an incomplete (diamond symbol) 

and full quadratic (square symbol) response surface is depicted in the figure as well. For the 
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latter, the number of function evaluations increases considerably demonstrating the curse of 

dimensionality. As such, the ADIS method is of particular interest in applications with a low 

probability of failure and medium number (up to about 40) of stochastic variables. For many 

real applications (for instance in aircraft industry) the number of most important random 

variables (e.g. material properties and loading) will be (much) less than 40. Furthermore, the 

characterisation of this number of distribution functions already poses a difficult task.  

 

 

Figure 5   Number of samples (efficiency) versus the number of problem dimensions. 

 

 
4 Conclusion 

Importance sampling methods are more efficient than Monte Carlo Simulation and Directional 

Simulation, but require information about the location of the limit state(s), especially the part 

closest to the origin in U-space. Gathering this information can be expensive and can fail to 

locate all the important parts. In this paper, a new importance sampling method ADIS has been 

presented combining directional simulation and a response surface approach in an efficient 

adaptive scheme. The method has been demonstrated on a broad range of complex limit states 

that can occur in practice, of which several that pose potential problems to stochastic methods in 

general, and proved to be very efficient, accurate and robust. For this reason the method is of 

particular interest in applications with a low probability of failure and medium number (up to 

about 40) of stochastic variables, such as structural reliability in aircraft industry. 
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