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Problem area
Massively separated flows play an
important role in topics such as the
design of silent landing gear, the
study of stability and control prop-
erties of fighter aircraft in relation
to vortex breakdown, and the study
of aerodynamic loads on structural
aircraft components due to buf-
fetting. These flows are strongly
turbulent, involving a large range of
spatial and temporal scales, which
makes it difficult to model their dy-
namics with high physical accuracy
and reliability. Flow computations
based on the Reynold-averaged
Navier–Stokes (RANS) equations
are not able to capture the smaller
turbulent scales. Large-eddy sim-
ulations (LES), on the other hand,
do capture a signifcant range of
scales, but are computationally too
demanding for complex geometries.

In recent years, therefore, research
has focussed on hybrid RANS–LES
methods, improving the physical
accuracy compared to RANS, but
without the cost of a full LES. In
particular, NLR has developed the
eXtra-Large Eddy Simulation (X-
LES) method.

Description of work
The accuracy of a flow computa-
tion depends not only on the em-
ployed physical model, but also on
the numerical method. In order to
compute the massively separated
flows with sufficient accuracy, a
high-order numerical method is
presented in this report. This high-
order method prevents unphysical
dissipation of the smaller turbu-
lent structures inside the massively
separated flows. Furthermore, the
method preserves essential conser-
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vation and symmetry properties of
the equations that are solved. Fi-
nally, the method is unique in that
its high accuracy is maintained on
smooth, non-uniform, curvilinear
grids.

Results and conclusions
The high-order numerical method is
applied to two basic test cases: the
convection of an isentropic vortex
and the decay of isotropic, homo-
geneous turbulence. These cases
clearly show the improved accuracy
of the method compared to a stan-

dard second-order method, in par-
ticular on non-uniform, curvilinear
grids. Furthermore, the numerical
stability has been enhanced by the
symmetry properties of the method.

Applicability
X-LES computations of massively
separated flows will be performed
with the high-order numerical
method. This means that for the
same computational cost, a numer-
ically more reliable result can be
obtained, compared to the standard
second-order method.
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Summary

A new high-order finite-volume method is presented that preserves the skew symmetry of con-

vection for the compressible flow equations. The method is intended for large-eddy simulations

(LES) of compressible turbulent flows, in particular in the context of hybrid RANS–LES compu-

tations. The method is fourth-order accurate and has low numerical dissipation and dispersion.

Due to the finite-volume approach, mass, momentum, and total energy are locally conserved.

Furthermore, the skew-symmetry preservation implies that kinetic energy, sound velocity, and

internal energy are all locally conserved by convection as well. The method is unique in that all

these properties hold on non-uniform, curvilinear, structured grids. Due to the conservation of

kinetic energy, there is no spurious production or dissipation of kinetic energy stemming from

the discretization of convection. This enhances the numerical stability and reduces the possi-

ble interference of numerical errors with the subgrid-scale model. By minimizing the numerical

dispersion, the numerical errors are reduced by an order of magnitude compared to a standard

fourth-order finite-volume method.
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1 Introduction

The last decade has seen the advance of hybrid computational methods for turbulent flows that

combine Large-Eddy Simulations (LES) in separated flow regions with the solution of the Reyn-

olds-Averaged Navier–Stokes (RANS) equations for the attached boundary layers and other near-

wall regions. This development was started by Spalart et al. (Ref. 34) with the presentation of the

Detached Eddy Simulation approach. Commonly, these hybrid RANS–LES methods are intro-

duced in existing CFD solvers that are based on second-order finite-volume methods, in particu-

lar for compressible flows. It can be argued, however, that second-order accuracy is not sufficient

for LES (Refs. 9, 18, 45). Numerical errors introduced by the discretization of the convection

terms can be of the same order of magnitude as the subgrid-scale (SGS) stresses (Ref. 18), in

particular if a filter width equal to the mesh width is used. In that case, the computational results

are determined as much by the numerical errors as by the SGS model. Although in some cases,

these numerical errors and SGS modelling errors may partly cancel (Ref. 22), thus improving the

total accuracy of the computational result, this is not something that can be relied on in general.

The possibly strong effect of the numerical errors on the results should somehow be taken into

account. This paper aims at minimizing the interference of numerical errors with the SGS model.

Thus, an opposite approach is followed compared to methods like MILES (Ref. 7), in which one

relies on the numerical dissipation to do the work of an SGS model.

A new high-order cell-centred finite-volume method for the compressible flow equations is pre-

sented that has the following key properties; it is the combination of these key properties that

makes the method unique:

• Mass, momentum, and total energy are locally conserved.

• Kinetic energy, sound velocity, and internal energy are locally conserved by convection.

• The inviscid terms are discretized with fourth-order accuracy in space.

• The method has low numerical dispersion.

• The method has no numerical dissipation (unless explicitly added).

• The first five properties are all maintained on smooth, non-uniform, curvilinear grids.

Sufficient grid smoothness is required for formal fourth-order accuracy. The conservation proper-

ties, however, are independent of the grid smoothness.

These key properties are important for reducing the interference of numerical errors with the

SGS model. In particular, local conservation of kinetic energy by convection implies that the dis-

cretized convection terms do not introduce spurious production or dissipation of kinetic energy,
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so that kinetic energy is only dissipated by the SGS (or viscous) stresses. Furthermore, minimiz-

ing numerical dispersion is equivalent to minimizing the implicit filter introduced by discretizing

the convection terms, as will be shown below.

In this paper, the new high-order finite-volume method is derived in detail. Its basic ideas have

been presented before (Ref. 14). Results are presented here for two basic test cases that will

demonstrate the key properties of the method: the convection of an isentropic vortex and de-

caying isotropic homogeneous turbulence. The method already has been applied successfully

to hybrid RANS–LES computations using the eXtra-Large Eddy Simulation (X-LES) method

(Ref. 15). In particular, the improvement of the numerical accuracy over a standard second-order

method has been shown for the turbulent flow over a rounded bump in a square duct (Ref. 16).

1.1 Local conservation and high-order schemes
Numerical methods that preserve the global conservation of momentum and kinetic energy by

convection for incompressible flow are common in the literature. Global conservation of kinetic

energy ensures numerical stability because the total kinetic energy is an energy norm that cannot

increase (but only decrease due to viscous dissipation). Thus, no numerical dissipation is needed

to stabilize the method, which would otherwise reduce the numerical accuracy (and could in-

terfere with the SGS model). As discussed by Kravchenko & Moin (Ref. 18), such methods are

based on the so-called skew-symmetric form of convection, which is defined as the average of

the divergence and advective forms. Global conservation can then be derived if the discretization

scheme satisfies a summation–by–parts rule, which is the case for central differences and spectral

methods, at least on uniform Cartesian grids (Ref. 21). Additionally, the skew-symmetric form

reduces the aliasing errors compared to the divergence and advective forms (Refs. 1, 18). Gener-

ally, however, these schemes do not conserve momentum (or kinetic energy) locally. This would

require the discretized skew-symmetric form to be equivalent to a discrete divergence form. This

depends on the discretization scheme satisfying a discrete product rule of differentiation, which

is not the case for standard finite differences (and for spectral schemes only if de-aliased).

The staggered second-order finite-difference method of Harlow & Welch (Ref. 10) does con-

serve both momentum and kinetic energy locally for incompressible flow. It is based on a dis-

crete divergence form of convection that can be shown to be equivalent to the skew-symmetric

form by using a special product rule (Ref. 23). Morinishi et al. (Ref. 23) have extended this

method to fourth-order accuracy for both regular and staggered approaches on uniform grids.

They also consider non-uniform grids, but state that one must choose between strict conserva-

tion or strict fourth-order accuracy. Vasilyev (Ref. 37) has improved the method of Morinishi
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et al. for non-uniform grids, combining the fourth-order accuracy with the conservation of ei-

ther momentum or kinetic energy, but not both. The staggered method of Verstappen & Veldman

(Refs. 39, 41, 42), on the other hand, maintains both fourth-order accuracy and full conservation

on non-uniform Cartesian grids. The essential point is that they use Richardson extrapolation

to derive the high-order scheme and that they do not change the coefficients of the stencil when

applying the scheme to non-uniform grids. This means that the equations are discretized in com-

putational space rather than physical space and that a smooth mapping between the two spaces

is assumed (where the smooth mapping is only necessary for strict fourth-order accuracy and

not for strict conservation). Attempts to minimize the local truncation errors in physical space

on non-uniform grids by modifying the coefficients of the scheme will lead to loss of conserva-

tion of kinetic energy. It can even have a strongly adverse effect on the global discretization error

(Refs. 38, 40). Thus far, no one has presented an extension of these methods to curvilinear grids

while maintaining both accuracy and conservation.

For compressible flow, a skew-symmetric form has been defined by Feiereisen et al. (Ref. 6) that

also leads to global conservation of momentum and kinetic energy by convection for standard

central finite-difference and spectral methods, in the same manner as for incompressible flow.

Formally, numerical stability is not ensured, however, since compression or expansion of the

fluid results in an isentropic exchange of kinetic and internal energy (through work done by the

pressure), allowing for an increase (as well as decrease) of total kinetic energy. Nevertheless,

spurious production or dissipation of kinetic energy due to discretization of the convective terms

is avoided. Based on the skew-symmetric form of Feiereisen, Honein & Moin (Ref. 11) have

developed a sixth-order compact finite-difference scheme that locally conserves mass and glob-

ally conserves momentum and kinetic energy (by convection) as well as entropy and its square.

Their method is stable without any artificial dissipation or filtering for the computation of decay-

ing isotropic homogeneous turbulence at high Reynolds numbers. Momentum and total energy,

however, are not locally conserved. Furthermore, non-uniform or curvilinear grids are not con-

sidered.

Local conservation of mass, momentum, and total energy is an essential property of numeri-

cal methods for compressible flows if one wants to capture weak solutions accurately. In other

words, there must be a unique flux between two (adjacent) grid cells, sometimes also called the

telescopic property. Ducros et al. (Ref. 5) have developed high-order finite-difference and finite-

volume methods that have this property and that are equivalent to a discrete skew-symmetric

or skew-symmetric-like form, respectively (based on a discrete product rule). They do not try

to conserve kinetic energy, however, but use the skew-symmetric(-like) forms because they re-
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duce aliasing errors. Possibly, their finite-difference method locally conserves kinetic energy

(although they do not show this and it is also not clear whether they use the form of Feiereisen),

but their finite-volume method certainly does not. On non-uniform grids, they only consider the

finite-volume method (as they could not obtain a conservative finite-difference method in that

case). They extend the stencil of the fluxes only in one direction, however, so that the method is

formally not fourth-order accurate in multiple dimensions. Furthermore, the truncation error in

physical space is minimized by a mesh-size dependent interpolation that would also lead to the

loss of kinetic-energy conservation (if it had been the case on a uniform grid in the first place).

Others have used skew-symmetric forms for compressible flows also with the aim of reduced

aliasing errors rather than conserving kinetic energy (Refs. 13, 24, 26, 32).

In deriving the present high-order finite-volume method, the following two essential points will

be shown:

1. Discrete local conservation of both momentum and kinetic energy by convection is possi-

ble for compressible flow, even on non-uniform curvilinear grids.

2. Strict fourth-order accuracy can be obtained on non-uniform curvilinear grids without

sacrificing full conservation.

For the first point, an alternative definition of the compressible skew-symmetric form of con-

vection is given that is in-line with the incompressible definition. A discrete product rule is de-

rived for finite-volume methods on curvilinear grids. Using this product rule, the discrete skew-

symmetric form is shown to be equivalent to a discrete divergence form. This discrete form is

used in the momentum equation and in the sound-velocity equation. Thus, mass, momentum,

total energy, kinetic energy, sound velocity, and internal energy are all locally conserved by con-

vection. For the second point, the Richardson extrapolation approach of Verstappen & Veldman

(Ref. 42) is extended from staggered, Cartesian grids to cell-centred, curvilinear grids. Although

this approach combines multiple control volumes, it will be shown that the method can be writ-

ten in a form with unique fluxes between adjacent grid cells (telescopic property).

1.2 Numerical dissipation and dispersion
The aim of the high-order finite-volume method is to minimize the interference of numerical er-

rors, stemming from the inviscid terms, with the SGS model. The SGS stresses are essentially

responsible for dissipating the turbulent structures at small wave lengths close to the filter width.

Reducing the interference of numerical errors with the SGS model therefore requires a numeri-

cal method with low numerical dispersion and dissipation at large wave numbers. Using a cen-

tral stencil ensures that the scheme has no numerical dissipation for linear terms; for the non-

linear convection term, numerical dissipation of kinetic energy is prevented by using the skew-

symmetric form, as discussed above.
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The numerical dispersion at large wave numbers can be minimized by using appropriate cen-

tral finite-differencing schemes such as, in particular, the dispersion-relation preserving (DRP)

scheme of Tam & Webb (Ref. 36) and the compact schemes of Lele (Ref. 20). Tam & Webb

create the freedom to minimize the dispersion by using a larger stencil than necessary to obtain

fourth-order accuracy (seven instead of five points). Lele uses implicit differences to increase the

order of accuracy and lower the dispersion without increasing the stencil of the scheme (but at

the expense of solving an implicit system in each direction). Compact finite-difference schemes

have been used frequently for LES (Refs. 11, 24, 44); this does not seem to be the case for the

DRP scheme.

Compact finite-difference schemes have been extended to non-uniform, curvilinear grids (Refs.

2, 43). To maintain (local) conservation of mass, momentum, and total energy on such grids,

the finite-differencing must be applied to the equations written in strong conservation form in

curvilinear coordinates. Visbal & Gaitonde (Refs. 43, 44) have done this successfully for a high-

order compact scheme. Their scheme does not conserve kinetic energy, however, and it requires

filtering to damp numerical instabilities introduced by grid non-uniformity, boundary conditions,

and the non-linear terms. Similarly, compact schemes have been developed for finite-volume

methods (Refs. 19, 27, 28, 29, 33), again ensuring local conservation of mass, momentum, and

total energy, but not of kinetic energy. These methods also typically require filtering to maintain

numerical stability.

The DRP approach of Tam & Webb has been applied to finite-volume methods in the context of

computational aeroacoustics. Nance et al. (Ref. 25) did this by extending the stencil of the fluxes

in one direction. This means that the fourth-order accuracy is lost on non-uniform grids in multi-

ple dimensions. Furthermore, an upwind instead of a central stencil is used, introducing numeri-

cal dissipation. Popescu et al. (Ref. 29) also apply the DRP approach to a finite-volume method

such that the finite-volume method is equivalent to the DRP scheme on a uniform Cartesian grid.

It has the same limitation as the method of Nance in multiple dimensions.

In the finite-volume method presented here, the DRP approach is applied to reduce the numerical

dispersion. The freedom to minimize the dispersion is obtained by using a larger stencil in the

Richardson extrapolation rather than using a larger stencil in the fluxes. On a uniform Cartesian

grid, the method is essentially equivalent to the DRP scheme. For non-uniform, curvilinear grids,

the following (third) essential point will be shown:

(3) Low dispersion (in the DRP sense) can be obtained on non-uniform curvilinear grids while

maintaining full local conservation and high-order accuracy.
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2 Symmetry and conservation for compressible flow

2.1 The skew-symmetric form of the convective operator
In section 3, a high-order finite-volume method for the compressible flow equations will be pre-

sented that preserves not only the local conservation of mass, momentum, and total energy, but

also the local conservation by convection of kinetic energy, sound velocity, and internal energy.

For this purpose, the skew-symmetric form of the convective operator is defined in this section.

In particular, a definition is given for compressible flow that is in-line with the incompressible

definition. This form is essential in deriving the high-order finite-volume method with the de-

sired conservation properties.

Convection of a physical quantity, like mass, momentum, and energy, can be described by several

forms of the convective operator. The divergence form of the operator, expressing conservation,

is given by

Dφ ≡ ∂ρφ

∂t
+∇ · (ρuφ) (= 0 ) , (1)

with φ(t,x) the convected physical quantity per unit mass, ρ the density and u the fluid velocity

(and where Dφ = 0 holds if φ is only convected). The advective form,

Aφ ≡ ρ
∂φ

∂t
+ ρu · ∇φ ( = 0 ) , (2)

gives the time derivative of φ while moving along with a fluid particle (multiplied by density).

The two forms are easily shown to be analytically equivalent using the continuity equation for a

compressible flow,

∂ρ

∂t
+∇ · (ρu) = 0 , (3)

which expresses mass conservation (and is obtained by setting φ = 1 in Dφ = 0).

Convection of a physical quantity implies conservation not only of the quantity itself, but also of

its quadratic form (φ2), since

D
(

1
2φ2
)

= 1
2φDφ + 1

2φAφ = φKφ ( = 0 ) , (4)

where, in-line with the incompressible definition, the skew-symmetric form of the convective

operator is defined as K = 1
2(D + A). Thus, conservation of the quadratic form (D(1

2φ2) = 0)

follows immediately if the skew-symmetric form is used to express convection (Kφ = 0). If

the divergence form (Dφ = 0) or the advective form (Aφ = 0) is used, then also the continuity
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equation is needed to derive the conservation of the quadratic form. The fact that K is a skew-

symmetric operator follows from the more general relation

D(φθ) = φDθ + θAφ = φKθ + θKφ , (5)

which also shows that D and −A are adjoint operators (Ref. 4). Besides the skew-symmetric

form also a symmetric operator is defined naturally as S = 1
2(D − A), so that D = K + S

and A = K − S. Substituting the definitions of D and A, the skew-symmetric and symmetric

operators are found to be

Kφ ≡ 1
2

∂ρφ

∂t
+ 1

2ρ
∂φ

∂t
+ 1

2∇ · (ρuφ) + 1
2ρu · ∇φ , (6a)

Sφ ≡ 1
2

(
∂ρ

∂t
+∇ · (ρu)

)
φ . (6b)

Note that it follows from the continuity equation that the symmetric operator S is identical to

zero, and that therefore the divergence form D, the advective form A, and the skew-symmetric

form K of the convective operator are all equivalent.

The present definition of the skew-symmetric form, equation (6a), is suitable for deriving a fi-

nite-volume method with the desired local conservation properties. The skew-symmetric form

introduced by Feiereisen et al. (Ref. 6), given by

KF φ ≡ ∂ρφ

∂t
+ 1

2∇ · (ρuφ) + 1
2ρu · ∇φ + 1

2φ∇ · (ρu) , (7)

has been used for deriving finite-difference and spectral methods with global kinetic-energy con-

servation (Refs. 6, 11). The difference between the skew-symmetric form of Feiereisen KF and

the present definition K is the symmetric operator S, i.e., KF = K + S.

Note that in both definitions of the skew-symmetric form, the density ρ goes together with the

velocity u and not with φ. Sometimes the reverse is done (Refs. 24, 35). It is essential, however,

to keep the density with the velocity in order to obtain discrete kinetic-energy conservation, as

will be seen below, and as was also pointed out by Honein & Moin (Ref. 11). This may seem

counter-intuitive, as one could think that ρφ is the conserved quantity that is convected by the

velocity u. Convection, however, conserves the physical quantities of a fluid particle. As a fluid

particle has a constant mass, and not a constant volume, the quantities per unit mass are con-

served (φ) and not the quantities per unit volume (ρφ).

2.2 The compressible flow equations
Now, the compressible flow equations can be written using the skew-symmetric form. Only the

convective terms need to be considered. Therefore, we may limit ourselves to the compressible
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Euler equations. The equations for momentum and sound velocity are given by

Du +∇p = 0 or Ku +∇p = 0 , (8a)

Dc + γ−1
2 ρc∇ · u = 0 or Kc + γ−1

2 ρc∇ · u = 0 , (8b)

using either the divergence or skew-symmetric form, with p the pressure, c the sound velocity,

and γ the ratio of specific heats. Both analytic formulations will ultimately result in the same

discrete formulation, as will be shown below. The kinetic energy is the quadratic form of the ve-

locity vector, Ek = 1
2u · u, while the internal energy e can be interpreted as the quadratic form

of the sound velocity, since for a perfect gas c2 = γp/ρ = γ(γ − 1)e. Equations for the kinetic

and internal energy with convection in divergence form are obtained directly from the momen-

tum and sound-velocity equations using the skew-symmetric form. Multiplying equations (8a)

and (8b) by u and c, respectively, and using equation (4), leads to

DEk +∇ · (pu) = p∇ · u , (9a)

De = −p∇ · u . (9b)

Thus, due to the skew symmetry of the convection operator in the momentum and sound-velocity

equations, the left-hand sides of equation (9) obtain a divergence form, hence kinetic and internal

energy are conserved by convection. The term on the right-hand sides of equation (9) represents

the work done by the pressure as a consequence of compression or expansion of the fluid, lead-

ing to an (isentropic) exchange of kinetic and internal energy. Adding the equations for kinetic

and internal energy shows that the total energy E = e + Ek is conserved,

DE +∇ · (pu) = 0 . (10)

For a numerical method that preserves the skew symmetry of convection in a discrete sense, the

total energy will be globally conserved. In other words, the integral of total energy over the flow

domain D, given by∫
D

ρE dV =
∫
D

ρ

(
1
2u · u +

c2

γ(γ − 1)

)
dV , (11)

is conserved. For incompressible flows, the density is constant and therefore this integral is an

energy norm of the velocity fields that cannot increase, proving the stability of such a symmetry-

preserving method. For compressible flow, however, this integral is not strictly an energy norm

and unbounded growth of the velocity fields is not excluded, because the density may approach

zero. Nevertheless, the results below will show that such a symmetry-preserving method en-

hances the numerical stability for compressible flows. Additionally, in such a numerical method
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kinetic energy is locally conserved by convection, so that there are is no spurious production or

dissipation of kinetic energy stemming from the discretized convective operator, which could

otherwise pollute the physical dissipation due to viscosity and the subgrid-scale model.

3 High-order finite-volume scheme

3.1 Conservative discretization preserving skew symmetry
A high-order finite-volume method for the compressible flow equations will be developed that

preserves the local conservation by convection of momentum, kinetic energy, sound velocity,

and internal energy. The local conservation of momentum, as well as mass and total energy, is

simply ensured by applying a finite-volume discretization to the flow equations in divergence

form. On the other hand, local conservation of kinetic and internal energy by convection is en-

sured if the skew symmetry of convection is preserved. This requires that the skew-symmetric

form, rather than the divergence form, is used in the momentum and sound-velocity equations.

Furthermore, the skew-symmetric form must be discretized such that equation (4) also holds in a

discrete sense, where the left-hand side of this equation should be a finite-volume discretization

of the divergence form. Finally, the two discretizations, one based on the divergence form and

the other based on the skew-symmetric form, should be shown to be exactly equivalent, which

involves the discretized continuity equation and a discrete product rule of differentiation, as will

be shown below.

Starting point for deriving a high-order finite-volume scheme is a standard second-order scheme.

Let the flow domain be discretized by a smooth, single-block, structured grid. A structured grid

in 3D consists of an ordered set of hexahedral cells Ωi, numbered by the triple index i = (i, j, k).

Essentially, a cell-centred, finite-volume discretization of the gradient operator ∇F is obtained

by integrating the gradient over the grid cell Ωi and applying Gauss’ divergence theorem. This

leads to

∇iF =
1
Vi

∑
f

FfAf , (12)

with Vi the volume of the grid cell, Ff the flux at cell face f , and Af the area vector of cell face

f . The summation takes place over all faces f of the considered grid cell. Local conservation

requires that the fluxes at the cell faces are unique. Uniform-flow consistency requires that the

area vectors satisfy the geometric conservation law∑
f

Af = 0 . (13)
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The cell volume and the area vectors, satisfying the geometric conservation law, are computed

from the cell-vertex coordinates by defining the edges of the grid cell as straight lines and by

representing the cell by a trilinear interpolation function.

For a second-order central scheme, the fluxes are obtained by averaging the variables from the

adjacent cells. When a flux consists of the product of several variables, one has to choose which

variables are averaged. For this purpose, define the following averages

ūf = 1
2(ui,j,k + ui+1,j,k) , (14a)

ũvf = 1
2(ui,j,kvi+1,j,k + ui+1,j,kvi,j,k) , (14b)

where, without loss of generality, the face f between cells Ωi,j,k and Ωi+1,j,k is considered. Us-

ing the geometric conservation law (equation (13)), the following rules can be derived for the

averages and for the discrete gradient operator,

(̃uv)vf = ūf ṽvf , (15a)

∇iūv̄ = 1
2∇iuv + 1

2∇iũv , (15b)

∇iũv = ui∇iv̄ + vi∇iū , (15c)

where, for example, ∇iūv̄ means that at each cell face f the flux is computed as Ff = ūf v̄f and

where the variables between brackets (uv) are averaged as one. The third rule is a discrete equiv-

alent of the product rule of differentiation, which is essential in maintaining full conservation.

Equations (14) and (15) can be seen as an extension of the definitions and rules of Morinishi et

al. (Ref. 23) for finite-differencing methods on uniform grids to finite-volume methods on non-

uniform grids. Considering non-uniform grids, Morinishi states that one needs to include the

mesh size in the differencing and averaging operators such as equation (14) in order to maintain

the numerical accuracy (in particular for high-order schemes). As a consequence, however, the

discrete product rule no longer holds and full conservation cannot be maintained. Here, the dis-

crete product rule does hold, because the grid metrics are not included in equation (14), but the

averaging weights are kept constant (equal to 1
2 ), following Verstappen & Veldman (Ref. 42).

The metrics of non-uniform grids are only included through the cell volumes and area vectors in

equation (12). How high-order accuracy can be obtained despite the grid-independent averaging

weights will be shown in section 3.3.

Local conservation is preserved if a finite-volume discretization of the divergence form D (equa-

tion (1)) is used, as given by

Diφ ≡
dρiφi

dt
+∇i · F , (16)
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with the discrete flux vector F equal to ρuφ obtained by some average of the variables from the

adjacent cells. The discretization is locally conservative in the sense that there is a unique flux

vector F at the face between two cells (telescopic property). The precise definition of the flux

vector F is still open.

In order to preserve the skew symmetry (i.e., the local conservation by convection of the qua-

dratic form φ2), discretize the skew-symmetric form K (equation (6a)) as

Kiφ ≡ 1
2

dρiφi

dt
+ 1

2ρi
dφi

dt
+ 1

2∇i · ρuφ + 1
2ρiui · ∇iφ̄ . (17)

Because the averaging weights in equation (14) have been chosen independent of the grid met-

rics and therefore the discrete product rule of differentiation (equation (15c)) holds, it follows

that

φiKiφ =
d
dt

(ρi
1
2φ2

i ) +∇i · (ρu1
2 φ̃φ) , (18)

using also relation (15a). Thus, equation (4) is preserved in a discrete sense, where the right-

hand side of equation (18) is a finite-volume discretization of the divergence form applied to φ2,

ensuring local conservation of φ2.

Apparently, we now have two different discretizations of convection, one based on the diver-

gence form (equation (16)), with local conservation of φ, and one based on the skew-symmetric

form (equation (17)), with local conservation of φ2. For a particular definition of the flux vec-

tor F , however, the two forms are exactly equivalent, ensuring conservation of both φ and φ2.

Remember that the analytic divergence form D and skew-symmetric form K are related to each

other by D = K + S with S the symmetric form (equation (6b)). Require that the discrete di-

vergence form Di satisfies the relation Di = Ki + Si with the symmetric operator S, i.e., the

continuity equation, discretized as

Siφ ≡ 1
2

(
dρi

dt
+∇i · ρu

)
φi . (19)

Using the rules of equation (15), one then finds that

Diφ ≡
dρiφi

dt
+∇i · ρuφ̄ , (20)

which is indeed a finite-volume discretization of the divergence form in the form of equation

(16). Thus, if the discrete continuity equation is satisfied (Si ≡ 0), then the discrete divergence

and skew-symmetric forms are equivalent. Equation (20) shows that the flux vector F should

be computed as ρuφ̄. In other words, when computing the averages at the cell faces, ρ goes to-

gether with u and not with φ. This is essential in order to preserve the skew symmetry, as was
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also remarked at the end of section 2.1. Note that this scheme differs only slightly from one of

the variants of the Jameson scheme (Ref. 12) in which the flux is computed by averaging the flow

variables per unit volume F = ρuρφ/ρ̄. In fact, for incompressible flow, this Jameson-type

averaging is equivalent to the skew-symmetric form.

3.2 The compressible flow equations
A second-order finite-volume discretization of the compressible Euler equations, in which mo-

mentum, kinetic energy, sound velocity, and internal energy are all locally conserved by convec-

tion, can now be derived by applying the discrete skew-symmetric, symmetric, and divergence

forms as defined above (equations (17), (19), and (20)). The continuity equation is discretized as

in equation (19),

dρi

dt
+∇i · ρu = 0 . (21)

This implies that Si ≡ 0, so that the discrete divergence and skew-symmetric forms are equiv-

alent (Di ≡ Ki). The momentum and sound-velocity equations are discretized using either of

these forms as

Diu +∇ip̄ ≡ Kiu +∇ip̄ = 0 , (22a)

Dic + γ−1
2 ρici∇i · ū ≡ Kic + γ−1

2 ρici∇i · ū = 0 . (22b)

Multiplying these equations with the velocity ui and the sound velocity ci, respectively, and us-

ing equation (18) gives the discretized equations for the kinetic and internal energy,

dρi(Ek)i

dt
+∇i · (ρuẼk) +∇i · ũp = pi∇i · ū , (23a)

dρiei

dt
+∇i · (ρuẽ) = −pi∇i · ū , (23b)

with Ẽk = 1
2 ũ · u and γ(γ − 1)ẽ = c̃c, and with the left-hand sides in conservative form.

Finally, adding the discrete equations for kinetic and internal energy gives the equation for the

total energy E in conservative form,

dρiEi

dt
+∇i · (ρuẼ) +∇i · ũp = 0 , (24)

with Ẽ = Ẽk + ẽ.

When solving the semi-discrete equations, one has to choose which equations are integrated in

time. For the momentum equation, one can choose either the divergence or the skew-symmetric

form. For the energy equation, one can choose between the sound-velocity equation (in diver-

gence or skew-symmetric form), the internal-energy equation, or the total-energy equation. If the
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time integration is exact, all these different forms are exactly equivalent. Consistent with stan-

dard finite-volume methods for compressible flow, here the divergence forms of the momentum

and total-energy equations are solved.

An alternative choice for the energy equation is presented by Honein & Moin (Ref. 11). They

discretize the entropy equation using the skew-symmetric form, resulting in the conservation of

entropy and its square, but at the loss of the conservation of internal and total energy. Although

the present scheme does not conserve the entropy exactly, the results below will show that the

entropy errors are small.

So far, only the spatial discretization has been considered. For the time integration, one could

also require that the skew symmetry is preserved, i.e., that equation (18) also holds with a dis-

cretized time derivative. This issue is considered in appendix A. No suitable time-integration

method has yet been found, however, that exactly maintains skew symmetry and conservation

of kinetic energy for the compressible convection operator. Therefore, standard, accurate time-

integration schemes are used. For the results presented below, either the explicit four-stage

Runge–Kutta scheme or the implicit second-order backward scheme have been employed.

3.3 Basic fourth-order finite-volume scheme
A fourth-order finite-volume scheme on non-uniform curvilinear grids is derived by applying

Richardson extrapolation (Ref. 42) to the second-order discretization, while preserving the skew

symmetry as in the previous sections. Consider again the second-order, cell-centred scheme for

the gradient operator in Rd (with the spatial dimension d = 1, 2, or 3), written as

V h
i ∇h

iF = Bh
i , (25)

with the flux balance Bh
i given by

Bh
i = F h

i+1/2,j,k − F h
i−1/2,j,k + F h

i,j+1/2,k − F h
i,j−1/2,k + F h

i,j,k+1/2 − F h
i,j,k−1/2 , (26)

and with F h = FhAh the flux through a cell face. The superscript h indicates the mesh size in

the computational domain.

The idea of Richardson extrapolation is to increase the order of accuracy by cancelling the lead-

ing-order errors of the discretization. To determine the leading-order errors, the equations are

considered in the computational domain. A smooth, non-uniform grid can be interpreted as the

image of a uniform grid with mesh size h in the computational domain ξ ∈ [0, 1]d by the con-

tinuously differentiable mapping x(ξ). A finite-volume discretization can be interpreted as a

19



NLR-TP-2008-775

η + h

+ hξ

η

ξ

Ah η

Ah ξ

∇

∇

h J

h J

≈

≈
h ≈V      h  J2

Fig. 1 Metric terms of a grid cell in a curvilinear coordinate system in 2D

discretization of the conservative form of the gradient operator in the curvilinear coordinate sys-

tem ξ,

J∇F =
d∑

j=1

∂

∂ξj
(FJ∇ξj) , (27)

with J = det(dx/dξ) the determinant of the Jacobian of the transformation x(ξ). In particu-

lar, the cell volume V h
i /hd can be interpreted as a discretization of the Jacobian J and the area

vectors Ah/hd−1 as discretizations of the metric terms J∇ξi (see figure 1), and finally the flux

balance Bh
i /hd as a discretization of the right-hand side of equation (27) (which is also a flux

balance). Because symmetric stencils are employed, the discretization errors contain only terms

of even order in h. Hence, equation (25) divided by hd can be interpreted as a second-order ap-

proximation to equation (27). This can be written as

1
hd

V h
i = Ji + Cih

2 +O(h4) , (28a)

1
hd

Bh
i =

 d∑
j=1

∂

∂ξj
(FJ∇ξj)


i

+ Dih
2 +O(h4) , (28b)

with the coefficients C and D both functions of ξ. Note that on non-uniform grids, Vasilyev

(Ref. 37) also discretizes the gradient in computational space, but does not base it on the con-

servative form of equation (27) and as a consequence is not able to maintain full conservation.

To obtain a fourth-order scheme, the leading-order discretization errors of the second-order

scheme should be annihilated. Following Verstappen and Veldman (Ref. 42), this can be done
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i
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3hΩ

Fig. 2 Control volumes Ωh
i and Ω3h

i around the same cell centre with corresponding discretiza-

tion stencils (2D).

by applying, at each cell centre, the same discretization stencil on a second, larger control vol-

ume and subsequently combining the two discretization stencils through Richardson extrapola-

tion. Verstappen and Veldman used a staggered scheme, for which a control volume with a three

times larger mesh size in the computational domain was the smallest control volume allowing

the same discretization stencil. For a cell-centred scheme, a control volume with twice the mesh

size could be used, but its vertices would not coincide with grid points. Therefore, for the current

cell-centred scheme, also a control volume with a three times larger mesh size in the computa-

tional domain is used initially.

Define for each cell centre a control volume Ω3h
i by joining the 3d surrounding grid cells, as il-

lustrated in figure 2. This control volume has a mesh size 3h in the computational domain. The

volume V 3h and the area vectors A3h of this control volume are defined in exactly the same

manner as for the grid cell itself in terms of the vertices of the control volume Ω3h
i . The same

discretization stencil is applied to this control volume, which means that the stencil must now

have a spacing of three mesh sizes (see again figure 2). This leads to

V 3h
i ∇3h

i F = B3h
i , (29)

with the flux balance given by

B3h
i = F 3h

i+3/2,j,k − F 3h
i−3/2,j,k + F 3h

i,j+3/2,k − F 3h
i,j−3/2,k + F 3h

i,j,k+3/2 − F 3h
i,j,k−3/2 . (30)

The flux F 3h = F3hA3h at the face f between control volumes Ω3h
i,j,k and Ω3h

i+3,j,k is computed

in exactly the same manner as the fluxes of the original control volume, averaging the variables
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located at the centres of the two control volumes. Thus, the following averages are used:

ū3h
f = 1

2(ui,j,k + ui+3,j,k) , (31a)

ũv3h
f = 1

2(ui,j,kvi+3,j,k + ui+3,j,kvi,j,k) . (31b)

Again the averaging weights (equal to 1
2 ) are independent of the grid metrics, so that, for this

second discrete gradient operator, the rules of equation (15) also apply.

The discretization stencil that is employed to define the cell volume and flux balance on the new

control volume is exactly the same as on the original control volume, but using a three times

larger mesh size. Therefore, the discretization errors for the new control volume are also given

by equation (28), with the same values of the coefficients C and D for the leading-order dis-

cretization errors, but with the mesh size h replaced with 3h. Thus, the leading-order errors

are a factor 32 larger for the new control volume. Cancelling these leading-order errors through

Richardson extrapolation results in a fourth-order accurate finite-volume discretization of the

gradient operator, given by

V ∗i ∇∗iF = B∗i , (32)

with

V ∗i =
hd

32 − 1

(
32 1

hd
V h

i − 1
(3h)d

V 3h
i

)
=

9
8
V h

i − 1
8 · 3d

V 3h
i , (33a)

B∗i =
hd

32 − 1

(
32 1

hd
Bh

i −
1

(3h)d
B3h

i

)
=

9
8
Bh

i −
1

8 · 3d
B3h

i , (33b)

where superscript ∗ indicates the fourth-order discretization. The fourth-order discrete gradient

operator can be written as a linear combination of the two second-order operators,

∇∗iF = ai∇h
iF + bi∇3h

i F , (34)

with the coefficients ai = 9
8V h

i /V ∗i and bi = −1
8V 3h

i /(3dV ∗i ). For each grid cell, this scheme

has a seven-point stencil in each computational direction (from i− 3 to i + 3, although cells i− 2

and i + 2 are not used).

To show that the scheme is locally conservative, the flux balance can be written as

B∗i = F ∗i+1/2,j,k − F ∗i−1/2,j,k + F ∗i,j+1/2,k − F ∗i,j−1/2,k + F ∗i,j,k+1/2 − F ∗i,j,k−1/2 , (35)

with the fluxes defined uniquely at each cell face by

F ∗i+1/2,j,k =
9
8
F h

i+1/2,j,k −
1

8 · 3d

(
F 3h

i−1/2,j,k + F 3h
i+1/2,j,k + F 3h

i+3/2,j,k

)
. (36)
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A fourth-order discretization of the convective operator is obtained by using the fourth-order dis-

crete gradient operator ∇∗i , as defined above, in the definitions of the discrete skew-symmetric,

symmetric, and divergence forms as given by equations (17), (19), and (20). A fourth-order

finite-volume scheme for the compressible Euler equations is obtained by applying these fourth-

order operators in equations (21)–(24).

The question now remains whether, for this fourth-order scheme, the conservation of both mo-

mentum and kinetic energy (as well as both sound velocity and internal energy) can be proven.

In other words, using the fourth-order gradient operator in the skew-symmetric and divergence

forms (equations (17) and (20)), can it still be proven that these two forms are equivalent and that

equation (18) holds. The proofs given for the second-order scheme depend solely on the rules

of equation (15). Thus, if these rules hold for the fourth-order scheme, then the conservation of

both momentum and kinetic energy follows. Because the fourth-order discrete gradient operator

is a linear combination of the two second-order operators and because the rules of equation (15)

are linear in terms of the gradient, it follows that they also hold for the fourth-order gradient. For

example, the discrete product rule of differentiation holds for both second-order gradients, i.e.,

∇h
i ũv = ui∇h

i v̄ + vi∇h
i ū , (37a)

∇3h
i ũv = ui∇3h

i v̄ + vi∇3h
i ū , (37b)

so that indeed

∇∗i ũv
(34)= ai∇h

i ũv + bi∇3h
i ũv

(37)= ui(ai∇h
i v̄ + bi∇3h

i v̄) + vi(ai∇h
i ū + bi∇3h

i ū)
(34)= ui∇∗i v̄ + vi∇∗i ū . (38)

4 Numerical dispersion and dissipation

4.1 Low-dispersion high-order finite-volume scheme
As stated in the introduction, reducing the interference of numerical errors with the SGS model

requires a numerical method with low numerical dispersion and dissipation at large wave num-

bers. Dissipation is minimized by using a central stencil and the skew-symmetric form for con-

vection. To minimize dispersion, the ideas of Tam & Webb (Ref. 36) are followed. Their disper-

sion-relation preserving (DRP) scheme uses finite differencing to discretize the gradient operator.

A symmetric, seven-point stencil is used. The coefficients of the stencil have three degrees of
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iΩ 2h

Fig. 3 Control volume Ω2h
i around the same cell centre as in figure 2 with corresponding dis-

cretization stencil (2D).

freedom of which two are used to make the scheme fourth-order accurate and the remaining one

is used to minimize the dispersion.

Thus, in order to minimize the numerical dispersion of the fourth-order finite-volume scheme as

presented in the previous section, an additional degree of freedom is needed. The size of the dis-

cretization stencil should be increased while preserving the skew symmetry of the method. As

seen in the previous section, the skew symmetry is preserved if a high-order scheme is defined as

a linear combination of second-order discretizations using Richardson extrapolation. Therefore,

an additional degree of freedom is created by introducing, at each cell centre, a third control vol-

ume Ω2h
i with a mesh size of 2h in the computational domain (see figure 3). This control volume

has its vertices located at the centres of the grid cells. The discretization of the gradient operator

on this control volume can be written as

V 2h
i ∇2h

i F = B2h
i , (39)

with V 2h
i the volume of the control volume Ω2h

i and with the flux balance B2h
i given by

B2h
i = F 2h

i+1,j,k − F 2h
i−1,j,k + F 2h

i,j+1,k − F 2h
i,j−1,k + F 2h

i,j,k+1 − F 2h
i,j,k−1 . (40)

Again, the flux F 2h = F2hA2h at the face f between control volumes Ω2h
i,j,k and Ω2h

i+2,j,k is

computed in the exact same manner as the fluxes of the original control volume, averaging the

variables located at the centres of the two control volumes. Combining all three discretization

24



NLR-TP-2008-775

stencils through Richardson extrapolation to cancel the leading-order error in the computational

domain, the following fourth-order finite-volume discretization of the gradient operator is found:

V β
i ∇β

iF = Bβ
i , (41)

with

V β
i = β

(
4
3
V h

i − 1
3 · 2d

V 2h
i

)
+ (1−β)

(
9
8
V h

i − 1
8 · 3d

V 3h
i

)
, (42a)

Bβ
i = β

(
4
3
Bh

i −
1

3 · 2d
B2h

i

)
+ (1−β)

(
9
8
Bh

i −
1

8 · 3d
B3h

i

)
, (42b)

where the basic fourth-order discretization is recovered for β = 0. The parameter β can now be

tuned to minimize the dispersion of the scheme. Considering a set of linear equations, a suitable

value of β is obtained by requiring that the scheme reduces to the DRP scheme of Tam and Webb

on a uniform Cartesian grid. For linear equations, averaging flow states to compute fluxes at cell

faces is equivalent to averaging the fluxes themselves. On a uniform Cartesian grid, the flux bal-

ance then reduces to the following stencil for each computational direction separately:

Bβ
i = a1(Fi+1 − Fi−1) + a2(Fi+2 − Fi−2) + a3(Fi+3 − Fi−3) , (43)

with the coefficients given by

a1 =
27 + 5β

48
, a2 = − β

12
, a3 =

β − 1
48

. (44)

In the DRP scheme, the same stencil is used for the flux balance, with the coefficients given by

a1 = 0.770882380518 , a2 = −0.166705904415 , a3 = 0.0208431427703 . (45)

Both sets of coefficients define a fourth-order scheme and the two sets are identical for

β = −12a2 = 2.00047085298. (46)

Thus, this value of β is used in equation (42b) for the flux balance. The results presented in sec-

tion 5.1 will show that this value of β is also suitable for the non-linear Euler equations using the

skew-symmetric discretization (rather than flux averaging). In practice, the high-order cell vol-

ume has been computed as in the basic high-order finite-volume scheme (equation (33a)) instead

of using equation (42a). This practice maintains the fourth-order accuracy as well as the disper-

sion level of the scheme.

As the vertices of the control volume Ω2h do not lie at grid points but at cell centres (see fig-

ure 3), the coordinates of the cell centres are required to compute the area vectors of this control

volume. To maintain the fourth-order accuracy of the scheme, these coordinates must be com-

puted with fourth-order accuracy as well.
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4.2 Numerical dispersion and implicit filtering
How relevant is it for LES to use a numerical scheme with low dispersion? As the subgrid-scale

stresses are responsible for dissipating the structures with wave lengths close to the filter width,

one would say that in the first place a numerical scheme should have low numerical dissipation.

An alternative way of looking at the SGS stresses and the numerical errors is in terms of filtering.

The SGS stresses are the result of applying a filter to the flow equations. The discretization of a

spatial derivative can be written as the continuous derivative of a filtered variable (Refs. 8, 31);

in other words, discretization introduces an implicit filter and discretization errors can be seen

as the effect of this implicit numerical filter. Minimizing the discretization errors relative to the

SGS stresses therefore implies minimizing this implicit numerical filter relative to the explicit

filter. This section will show that minimizing the implicit filter is equivalent to minimizing the

numerical dispersion.

Following a recent analysis by Geurts (Ref. 8), the second-order central discretization of the first

derivative can be written as

δ
(2)
h u =

u(x + h)− u(x− h)
2h

=
∂

∂x

∫ x+h

x−h

u(s)
2h

ds =
∂

∂x

∫ ∞

−∞
G2h(s)u(x− s)ds , (47)

with G∆ the kernel function of the top-hat filter with filter width ∆. A central discretization

based on Richardson extrapolation, such as the DRP scheme, consists of a combination of sec-

ond-order central stencils,

δhu = 2a1δ
(2)
h u + 4a2δ

(2)
2h u + 6a3δ

(2)
3h u , (48)

so that it can also be written in terms of the top-hat filter as

δhu =
∂

∂x

∫ ∞

−∞
G(s)u(x− s)ds , (49)

with the kernel function

G = 2a1G
2h + 4a2G

4h + 6a3G
6h . (50)

Taking the Fourier transform Fk of equation (49), with ûk = Fk(u) and k the wave number (or

substituting a mode u = ûkeikx), turns the convolution into a product, so that

Fk(δhu) = ikĜkûk = ĜkFk

(
∂u

∂x

)
, (51)

with the transfer function of the implicit filter Ĝk given by

Ĝk = 2a1Ĝ
2h
k + 4a2Ĝ

4h
k + 6a3Ĝ

6h
k . (52)

where Ĝ∆
k = (2/k∆) sin(k∆/2) is the transfer function of the top-hat filter.
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Fig. 4 Transfer functions of the implicit filters of the DRP scheme and standard central differ-

encing schemes

In the DRP scheme, the coefficients ai have been optimized such that the Fourier symbol of

the discrete derivative resembles as closely as possible the Fourier symbol of the continuous

derivative over a wide range of wave numbers kh in the computational space. In this way, the

dispersion relation is preserved or, in other words, the numerical dispersion is minimized. Equa-

tion (51) shows that the transfer function Ĝk is the ratio of the Fourier symbols of the discrete

and continuous derivatives. It follows that, for the DRP scheme, this transfer function must be

close to one over a wide range of wave numbers, which means that the implicit filter has been

minimized. Thus, minimizing dispersion is equivalent to minimizing the implicit filter.

The implicit filter of the DRP scheme is compared to the standard second, fourth, and sixth order

schemes in figure 4a. Clearly, the DRP scheme has the weakest implicit filter, with the trans-

fer function staying close to one up to kh ≈ 1, i.e., with only about six grid cells per wave

length. Figure 4b compares the implicit filters of the DRP scheme and the standard second-order

scheme to a reference top-hat filter with filter width ∆, varying the mesh size h relative to this

filter width. For h ≥ ∆/2, the implicit filter of the second-order scheme is at least as strong as

the reference filter. In contrast, for the DRP scheme, the implicit filter is already weaker than the

reference filter with h = ∆ for wave numbers up to kh ≈ 2, i.e., with only about three grid

cells (or filter widths) per wave length. Reducing the mesh size, the transfer function of the DRP

scheme rapidly approaches the identity.
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Comparing the implicit filters of the numerical schemes to a reference top-hat filter only serves

as an illustration. For most hybrid RANS–LES models, the SGS model does not involve a fil-

ter explicitly. The SGS model is only assumed to model the SGS stresses obtained by applying

some filter to the flow equations. It can be shown, however, that eddy-viscosity models, which

are used almost exclusively in hybrid RANS–LES models, are only consistent with second-order

filters (Ref. 30). Thus, comparing to a top-hat filter is more relevant than comparing to, for ex-

ample, a cut-off filter.

4.3 Artificial diffusion
The high-order scheme defined so far has no numerical dissipation, due to the central, symmet-

ric stencil and the skew-symmetric discretization. Nonetheless, this scheme is found to be stable

for elementary test cases, typically using periodic boundary conditions, such as the convection

of an isentropic vortex in a uniform flow, even on non-uniform grids (see section 5.1). This can

be attributed to the skew-symmetric discretization leading to the conservation by convection of

kinetic (and internal) energy. For compressible flow, however, stability of the numerical scheme

cannot be strictly proven (contrary to incompressible flow), as discussed at the end of section 2.2.

Therefore, a small amount of sixth-order artificial diffusion is added, as an option, to the dis-

cretized equations in conservative form. When the second-order backward scheme is used for the

time integration, some numerical dissipation is also needed to obtain convergence for the multi-

grid scheme used to solve the implicit system of equations per time step, in particular in inviscid

regions of the flow. The impact of the artificial diffusion is assessed in section 5.2. The artificial-

diffusive flux balance is given by

Ba
i = F a

i+1/2,j,k − F a
i−1/2,j,k + F a

i,j+1/2,k − F a
i,j−1/2,k + F a

i,j,k+1/2 − F a
i,j,k−1/2 . (53)

In each of the discretized flow equations in divergence form (equations (21), (22a), and (24)),

this flux balance is subtracted from the flux balance Bβ
i (equation (42b)) used for the convective

terms in the flow equations. The fluxes consist of fifth-order differences of the flow variables:

F a
i+1/2,j,k =

k(6)

256
λi+1/2,j,k (Ui+3,j,k − 5Ui+2,j,k + 10Ui+1,j,k − 10Ui,j,k

+ 5Ui−1,j,k − Ui−2,j,k) , (54)

with U the relevant flow variable (ρ, ρu, or ρE), and are scaled by the spectral radius of the flux

Jacobian λ,

λ = |u ·Ah|+ c‖Ah‖2 . (55)

with ‖.‖2 the Euclidean norm. This form of artificial diffusion introduces a discretization error of

fifth order, leaving the fourth-order accuracy of the scheme intact. The parameter k(6) is typically
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taken equal to k(6) = 2 when using second-order backward time integration. Note that the seven-

point stencil of the total scheme is maintained.

5 Results

5.1 Convection of an isentropic vortex
In order to test the capability of the high-order finite-volume scheme to accurately capture vor-

tices without significant dissipation or dispersion, the convection of a 2D isentropic vortex in a

uniform flow is considered. The uniform flow is in the positive x direction at a Mach number

M∞ = 0.5. The initial solution is given by

u =

(
u∞

0

)
+ uAe(1−(r/b)2)/2

(
(y − y0)/b

−(x− x0)/b

)
, (56)

and

T

T∞
=
(

p

p∞

)(γ−1)/γ

=
(

ρ

ρ∞

)γ−1

= 1− γ − 1
2

u2
A

c2
∞

e1−(r/b)2 , (57)

with T the temperature, with r2 = (x − x0)2 + (y − y0)2 the distance from the vortex cen-

tre (x0, y0), and with b the radius where the velocity induced by the vortex reaches its maximum

value uA. The exact solution of the compressible Euler equations simply consists of a translation

of the vortex by a distance equal to the mean-flow velocity times the time interval. The flow do-

main is defined as x ∈ [−25L, 25L]2 with periodic boundary conditions, where L =
√

ln 2 b is a

representative length scale of the vortex (with e−(r/b)2 = 1
2 at r = L).

A strong vortex is considered with uA/u∞ = 0.8. It is initially located at (x0, y0) = (−18.75L, 0)

and convected for a time period u∞t/L = 37.5 to end up at the location (x, y) = (18.75L, 0).

Computations are performed on a strongly non-uniform grid, with strong stretching and skew-

ness, as illustrated in figure 5. The grid has been obtained by smoothly mapping a uniform grid

from the computational domain to the physical domain. The number of cells is varied from 100×
100 to 400 × 400. The equations are integrated in time by a low-storage 4-stage Runge–Kutta

scheme.

The second-order scheme, the basic fourth-order scheme, and the low-dispersion fourth-order

scheme are used. For all three schemes, computations using the particular divergence form of the

convective operator (equation (20)) that is equivalent to the skew-symmetric form (equation (17))

are compared to computations based on a standard divergence form that is not equivalent to the
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Fig. 5 Strongly non-uniform grid (200× 200 cells) used for convection of strong isentropic vortex

(detail around location (18.75L, 0))

skew-symmetric form. Thus, in total six different schemes are considered. For this case, the

skew-symmetric form is stable without artificial diffusion even on this non-uniform grid. For

the non-symmetric divergence form, standard flux averaging (using F = ρuφ in equation (16))

turned out to be unstable. Therefore, in the non-symmetric divergence form, the fluxes at the

cell faces are computed by averaging the flow variables per unit volume as in the Jameson-type

scheme (F = ρuρφ/ρ̄), which differs only slightly from the skew-symmetric form (see the end

of section 3.1).

Figure 6 shows the temperature distributions on the medium grid (200 × 200 cells) computed

with all six schemes. For the non-symmetric second-order scheme, the vortex has clearly lost its

shape, while also the centre of the vortex has drifted to a positive y position (of approximately

y = L). Using the skew-symmetric form, the shape of the vortex is better preserved than using

the non-symmetric divergence form (in particular visible for the second-order and basic fourth-

order schemes). The low-dispersion fourth-order scheme is the most successful in maintaining

the shape and position of the vortex. Note that the vortex consists of a collection of waves with

different wave lengths. Loss of shape and position can be interpreted as the result of these waves

travelling at different speeds, i.e., the result of numerical dispersion. Thus, these results show

that the low-dispersion finite-volume method defined here truly has low dispersion for non-linear

flow equations on a strongly non-uniform grid.

Figure 7 gives the difference of the numerical solution with the analytical solution as a function

of the grid resolution for all six schemes (with h the mesh size in the computational domain).

This shows that the fourth-order schemes are indeed fourth-order accurate on this strongly non-

uniform, curvilinear grid. For the low-dispersion scheme, the error is reduced by an order of

magnitude compared to the basic fourth-order scheme.
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(a) Second-order scheme, non-symmetric diver-
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(b) Second-order scheme, skew-symmetric form
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(c) Basic fourth-order scheme, non-symmetric di-

vergence form
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(d) Basic fourth-order scheme, skew-symmetric

form
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(e) Low-dispersion fourth-order scheme, non-

symmetric divergence form
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(f) Low-dispersion fourth-order scheme, skew-

symmetric form

Fig. 6 Convection of strong isentropic vortex on strongly non-uniform grid: temperature field at

time u∞t/L = 37.5 (centre should be located at (x, y) = (18.75L, 0)) on medium grid

(200× 200 cells)
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Fig. 7 Convection of strong isentropic vortex on strongly non-uniform grid: Grid dependence of

root-mean-square value of difference with analytical solution at time u∞t/L = 37.5
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As the chosen approach for the non-symmetric divergence form differs only slightly from the

skew-symmetric form, one would not expect large differences in the error levels. Indeed, the

error levels for the velocity components are indiscernible. For the entropy, however, a clear re-

duction of the error by almost an order of magnitude is seen for the skew-symmetric form (fig-

ure 7d). Essentially, there is less entropy production using the skew-symmetric form, because it

ensures that there is no dissipation (or creation) of kinetic energy stemming from the discretized

convective operator. Larger differences may be expected if the non-symmetric divergence form

would be based on averaging the fluxes, since it requires artificial diffusion to maintain stability.

For the present inviscid computations, the computational costs of the different schemes are as

follows. Using the skew-symmetric form instead of a standard divergence form increases the

costs by a factor 1.3, using the basic fourth-order instead of second-order scheme by a factor 1.8,

and using the low-dispersion instead of the basic fourth-order scheme by a factor 1.2. Thus, in

total, the low-dispersion fourth-order skew-symmetric scheme is a factor 2.8 more expensive

than the basic second-order scheme using a standard divergence form. For the fourth-order and

low-dispersion schemes, the increased numerical accuracy clearly outweighs the increased com-

putational costs. To obtain the same accuracy as the second-order scheme on the finest grid level,

the fourth-order scheme allows the mesh size to be at least twice as large and the low-dispersion

fourth-order scheme three to four times as large. In 3D, this means that the low-dispersion fourth-

order skew-symmetric scheme is a factor 10 to 20 cheaper than the basic second-order scheme

(keeping the same size for the time step). Whether one considers the (small) increase of compu-

tational cost for the skew-symmetric form worthwhile, depends on the relevance of the reduced

entropy error and the improved numerical stability.

5.2 Decaying isotropic homogeneous turbulence
The high-order finite-volume scheme is intended to be used for the LES regions of hybrid

RANS–LES computations. To assess the numerical scheme in pure LES mode, the decay of

isotropic homogeneous turbulence is considered. The results are compared to the experiment

of Comte-Bellot and Corrsin (Ref. 3). In this experiment, the turbulence was generated by a

grid with mesh size Mg = 5.08 cm and with an onset velocity of U0 = 10 m/s. The Reynolds

number based on these scales is Re0 = U0Mg/ν = 34 000. In the computations, a cubic box

of thickness L = 10Mg is used with periodic boundary conditions. The initial solution con-

sists of a random velocity field generated from the filtered experimental energy spectrum at time

t+ = tU0/Mg = 42.

X-LES computations with the second-order scheme have been presented before (Ref. 15). The

same computational procedure is followed here. To study the grid dependence of the numerical
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Fig. 8 Compressible isotropic homogeneous turbulence: time dependence of total kinetic en-

ergy for inviscid computations with low-dispersion fourth-order schemes without artificial

diffusion using skew-symmetric and standard divergence forms

scheme, a fixed filter width ∆ = L/32 is employed, while the mesh size is varied from h = ∆ to

h = ∆/4. Because LES computes a filtered velocity field, the experimental data is filtered with

the top-hat filter to allow a proper comparison (see reference 15 for details).

For X-LES computations with the high-order scheme, only the inviscid terms of the basic flow

equations are discretized with high order. The viscous terms and the Reynolds and SGS stresses

are discretized with a standard second-order central scheme. Also, the k and ω equations are

discretized with a second-order scheme (Ref. 17).

For compressible flow, the skew-symmetric form ensures that the kinetic energy is conserved

by the convective operator. This is illustrated by first performing inviscid computations of ho-

mogeneous turbulence at compressible flow conditions (Mach number M1 = 0.2 based on the

initial turbulence intensity u1 = 0.222 m/s). Without viscous dissipation, the total kinetic en-

ergy in the box can only change due to the work done by the pressure. Figure 8 gives the time

dependence of the total kinetic energy for computations on the coarse grid (h = ∆) with the

low-dispersion fourth-order scheme without artificial diffusion. Both the skew-symmetric form

and the non-symmetric divergence form (using flux averaging) are considered. The low-storage

4-stage Runge–Kutta scheme has been used with a small time step (∆t+ = 0.873 or u1∆t/h =

0.062). The computation with the non-symmetric divergence form shows a rapid increase of the

total kinetic energy and breaks down within a short time period. Clearly, due to the lack of en-

ergy conservation, this method is unstable. For the computation with the skew-symmetric form,

the stability is strongly enhanced and the total kinetic energy is practically constant on the time

scale shown, because there is no numerical production or dissipation of kinetic energy origi-

nating from the discretized convective terms in the momentum equation. Therefore, for X-LES
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Fig. 9 Incompressible isotropic homogeneous turbulence: grid dependence of energy spectra

for second-order and low-dispersion fourth-order schemes

computations, the decay of the total kinetic energy will be determined by the SGS model and not

by numerical dissipation.

Next, the grid convergence is considered for X-LES computations in pure LES mode, i.e., us-

ing a k-equation SGS model, at incompressible flow conditions. The equations are integrated in

time by a second-order implicit scheme with time step ∆t+ = 3.49. Figure 9 shows the grid

dependence of the energy spectra at times t+ = 98 and t+ = 171 for the second-order scheme

with fourth-order artificial diffusion and the skew-symmetric low-dispersion fourth-order scheme

with sixth-order artificial diffusion. The level of artificial diffusion is such that the damping at

the highest wave numbers (point-to-point oscillations) is the same for both schemes (k(6) = 2 for

the sixth-order artificial diffusion). This ensures that the multi-grid scheme used to solve the im-

plicit system of equations per time step shows the same convergence rate for both schemes. The

fourth-order scheme has clearly improved the grid convergence over the second-order scheme.

For sufficient accuracy, the second-order scheme requires at least a mesh size of h = ∆/4, i.e.,

four cells per filter width, while the fourth-order scheme obtains the same level of accuracy with

a mesh size of h = ∆/2, i.e., two cells per filter width.

For the present computations, artificial diffusion is not needed to maintain stability. As explained

in section 4.3, however, there may be practical reasons to include some artificial diffusion. There-

fore, the effect of artificial diffusion on the numerical accuracy is considered. Figure 10 shows

the decay of the total kinetic energy for the fourth-order low-dispersion skew-symmetric scheme

with and without sixth-order artificial diffusion. Figure 11 shows the grid dependence of the en-

ergy spectra with and without artificial diffusion. The decay of kinetic energy is virtually grid
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Fig. 10 Incompressible isotropic homogeneous turbulence: decay of total kinetic energy for

low-dispersion fourth-order scheme with and without sixth-order artificial diffusion

κ+

E+

5 10 15 20 25 3010-4

10-3

10-2

10-1

Experiment
No artificial diffusion h = ∆
No artificial diffusion h = ∆/2
No artificial diffusion h = ∆/4
6th-order artificial diffusion h = ∆
6th-order artificial diffusion h = ∆/2
6th-order artificial diffusion h = ∆/4

(a) Time t+ = 98

κ+

E+

5 10 15 20 25 3010-4

10-3

10-2

10-1

Experiment
No artificial diffusion h = ∆
No artificial diffusion h = ∆/2
No artificial diffusion h = ∆/4
6th-order artificial diffusion h = ∆
6th-order artificial diffusion h = ∆/2
6th-order artificial diffusion h = ∆/4

(b) Time t+ = 171

Fig. 11 Incompressible isotropic homogeneous turbulence: grid dependence of energy spectra

for low-dispersion fourth-order scheme with and without sixth-order artificial diffusion
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independent at a mesh size h = ∆/2. The grid-converged solution is purely determined by the

SGS model, not by numerical errors. The computations with and without artificial diffusion con-

verge towards this solution from opposite sides, but with similar convergence rates. Thus, at least

for this case, the numerical errors introduced by a limited amount of sixth-order artificial diffu-

sion are of the same order as the other numerical errors. Artificial diffusion is not needed, how-

ever, to obtain a grid-converged solution purely determined by the SGS model.

For these LES computations, the increase in computational cost for the high-order scheme is

only a factor 1.4. The viscous and SGS terms as well as the k and ω equations make the compu-

tations more expensive than inviscid computations, thus reducing the relative cost of the high-

order scheme. The additional cost of the skew-symmetric form is now effectively negligible.

6 Conclusion

A high-order finite-volume method with low numerical dissipation and dispersion has been de-

veloped for the compressible flow equations such that the mathematical skew symmetry of con-

vection is preserved. It has been shown that both momentum and kinetic energy, as well as sound

velocity and internal energy, are locally conserved by convection, in a discrete sense, even on

non-uniform, curvilinear grids. Furthermore, the method is strictly fourth-order accurate on such

grids, while maintaining the conservation properties. The skew symmetry prevents spurious pro-

duction or dissipation of kinetic energy, which could interfere with a subgrid-scale model. The

skew symmetry has been preserved by combining second-order methods using Richardson ex-

trapolation and by using constant coefficients for the discretization stencil, even on non-uniform

grids. By using three instead of two control volumes in the Richardson extrapolation, an addi-

tional degree of freedom is introduced that allows the minimization of numerical dispersion.

A grid convergence study for the convection of an isentropic vortex has confirmed that the meth-

od is fourth-order accurate on smooth, strongly non-uniform, curvilinear grids. For this study,

the low-dispersion approach reduces the errors in all variables by an order of magnitude and the

skew-symmetry preservation reduces the entropy error by an additional order of magnitude, com-

pared to a basic fourth-order method.

Finally, the decay of homogeneous isotropic turbulence has been computed. In the compressible,

inviscid case, using the discrete skew-symmetric form enhances the numerical stability in the

sense that the total kinetic energy has only a very weak growth rate compared to a computation

using a standard discrete divergence form of convection. For large-eddy simulations, a grid con-

vergence study has shown that the fourth-order solution with a mesh size equal to half the filter
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width is comparable to the second-order solution with a mesh size equal to a quarter of the fil-

ter width. In other words, the mesh size can be twice as large for the new fourth-order method to

obtain the same numerical accuracy, reducing the computational effort by a factor eight in 3D.
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Appendix A Time integration preserving skew symmetry

In this appendix, a time-integration method is sought that preserves the skew symmetry of the

compressible convection operator. For incompressible flow, two approaches have been con-

sidered by Verstappen & Veldman (Ref. 42): the midpoint rule and the leapfrog method. Both

schemes are also considered here for compressible flows. For incompressible flows, preservation

of skew symmetry results, for both schemes, in a conservative discretization of the kinetic en-

ergy equation. Only for the midpoint rule, however, does this imply that a discrete energy norm

cannot increase.

To preserve skew symmetry for a time-integration method, equation (18) should also hold with a

discretized time derivative. One approach consists of discretizing the time derivative in the same

manner as the spatial gradient,

dn
t φ =

φn+1/2 − φn−1/2

∆t
(58)

with superscript n indicating the time level and with ∆t the time-step size. Averaging towards

time level n + 1/2 is defined analogous to equation (14) and equivalents of relations (15) also

hold for the discrete time derivative. Discretizing the skew-symmetric form both in space and

time as

Kn
i φ = 1

2dn
t ρiφi + 1

2ρn
i dn

t φi + 1
2∇i · ρnunφn + 1

2ρn
i un

i · ∇iφ̄n , (59)

one finds the following conservative discretization for the divergence form applied to φ2,

φn
i Kn

i φ = dn
t (ρi

1
2 φ̃iφi) +∇i · (ρnun 1

2 φ̃nφn) , (60)

with φ̃iφi = φn
i φn+1

i . The time derivative, however, contains a term which is not strictly qua-

dratic. Integrating this equation over the flow domain leads to conservation of φnφn+1 rather

than φ2, and the integral of this product is not strictly an energy norm. Furthermore, this time

discretization is essentially the leapfrog method, which requires further modifications to be stable

when including diffusion (Ref. 46).

An alternative approach for the time integration is the midpoint rule, which does lead to a conser-

vative discretization involving a true energy norm for incompressible flow (Ref. 42). Discretize

the time derivative at time level n + 1/2 as

dn+1/2
t φ =

φn+1 − φn

∆t
. (61)
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The following discrete product rule can be derived,

dn+1/2
t (uv) = un+1/2dn+1/2

t v + vn+1/2dn+1/2
t u , (62)

with un+1/2 = 1
2(un+1 + un). If the skew-symmetric form is now discretized both in space and

time as

K
n+1/2
i φ = 1

2dn+1/2
t (ρiφi) + 1

2ρ
n+1/2
i dn+1/2

t φi

+ 1
2∇i · (ρu)n+1/2φn+1/2 + 1

2(ρu)n+1/2
i · ∇iφn+1/2 , (63)

then the following discretization for the divergence form applied to φ2 is found,

φ
n+1/2
i K

n+1/2
i φ = dn+1/2

t (ρi
1
2φ2

i ) +∇i · ((ρu)n+1/2 1
2

˜φn+1/2φn+1/2)

+ 1
2(ρn+1/2

i φ
n+1/2
i − (ρφ)n+1/2

i )dn+1/2
t φi . (64)

Although now the equation includes the time derivative of a truly quadratic form, there is an ad-

ditional non-conservative term that only disappears if the density is constant. Thus, this approach

also does not lead to a suitable symmetry-preserving time-integration method for compressible

flow.
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