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Summary 

The design and analysis methods applied in multidisciplinary design and optimization of aircraft 

are continuously being improved in accuracy and reliability. The related computational 

complexity easily leads to high costs in terms of time, effort and money, needed for these 

analyses. In order to limit these costs, meta-models on the basis of fitting methods can be used. 

This paper presents a study in which various advanced interpolation and approximation 

techniques and optimization algorithms are applied in a response surface optimization approach 

for aircraft design problems. The results demonstrate the flexibility and the potential of this 

approach by tackling various complex design optimization problems at relatively low 

computational cost. 
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Abbreviations 

MDO multidisciplinary design and optimization 

DOE Design Of Experiments 

RMSE Root Mean Squared Error 

Kriging-qc kriging-quadratic-cubic fit 

poly5 5th order polynomial fit 

poly4 4th order polynomial fit 

poly2 2nd order polynomial fit 

GA Genetic algorithm 

MNSGA Non Dominated Sorting Genetic algorithm in Matlab 

CD drag coefficient increment 

MX2 bending moment increment 

PSD Turbulence loads? tbd 

Kriging-lc kriging-linear-cubic fit 

 



  

NLR-TP-2006-430 

 

  6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank. 

 



  

NLR-TP-2006-430 

 

  7 

1 Introduction 

The continuous development of the methodologies for aircraft design and analysis is aimed at 

achieving higher levels of detail in shorter analysis turn around cycles. Moreover, driven by 

ever increasing technical and commercial requirements due to global competition, more detailed 

design analyses are being required and applied in earlier phases of the aircraft design where 

there are still very many degrees of freedom and few restrictions on the design space [1]. The 

analyses traditionally used in the early phases of the aircraft design are mostly based on semi-

empirical rules [2]. Although computationally efficient, these analyses often have a limited 

range of validity, accuracy and flexibility. Therefore these methods are gradually being replaced 

by the more generic ‘geometry and physics based’ detailed design analysis methods that are 

generally applicable and potentially highly accurate [3]. However, these methods are mostly 

computationally expensive. Also, the required design analyses in aircraft multidisciplinary 

design and optimization (MDO) are various and may be difficult to combine into an integrated 

aircraft design system. Therefore such integrated aircraft design system is usually developed for 

a specific range of design problems, like optimization of blended-wing-body [4], [5] or 

transonic transport aircraft planform [6]. Moreover, such integrated aircraft design system often 

requires specific software (e.g. particular analysis tools) and hardware (e.g. dedicated compute 

servers), and is therefore prone to operational issues such as temporal unavailability of servers 

or licenses. The computational cost of (some of) the analyses in the integrated aircraft design 

system is another issue to be handled, especially when used within automated search or 

optimization loops that typically may require many design analysis evaluations (e.g. thousands). 

Approximation and interpolation methods (also known as meta-modeling or data fitting) have 

been proposed and have shown to effectively deal with such issues [7], [8], [9] by providing 

compact, accurate and computationally efficient representations of the considered properties of 

the underlying aircraft design (in optimization context also termed as design objectives or 

fitnesses). The key of this approach lies in the de-coupling of, on the one hand the 

computationally expensive integrated aircraft design analyses, and on the other hand the search 

process by automated optimization algorithms. The search process now makes use of the 

compact and computationally efficient meta-model and allows for high flexibility for further 

investigations. For the creation of the meta-model many different fitting methods are available 

(e.g. [7]), each with different advantages for different types of problems. 

In the present study a number of different fitting methods are applied to aircraft design 

problems. For effective sampling of the multi-dimensional design domain, use is made of 

Design Of Experiments (DOE) methods. In the selected sample points the design objectives and 

constraints are evaluated by parallel computations with integrated aircraft design analysis 

systems. NLR’s multi-dimensional and multi-method data fitting tool MultiFit [10] is used to 

statistically analyze the data sets that result from the design evaluations and to generate meta-
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models using different fitting methods. The representativeness of the meta-models is 

investigated and the most suitable meta-models are applied in the aircraft design process where 

several optimization algorithms are used to find the most promising aircraft designs. 

In this paper the methodology for obtaining and assessing the meta-models is described. For 

illustration of the approach and its benefits, two complementary aircraft design cases will be 

described, in which the meta-modeling approach is applied in the multi-disciplinary design and 

optimization of aircraft wings. The first one concerns a wing planform design study for single 

objective optimization of mission range, which is part of an MDO case study of a generalized 

transonic wing design that is currently ongoing in the European project Vivace [11]. The second 

one concerns a generalized transport aircraft winglet design study by multi-objective 

optimization of wing drag and bending moment. 

 

 
2 The MultiFit response surface approach 

In aircraft design problems the aim is to improve or optimize the characteristics (design 

objectives such as performance, behavior, etc.) of the product by variation of its properties 

(design parameters such as shape, material, etc.). In general the product’s properties (x) and 

characteristics (y) are expressed as real-valued (continuous) quantities and their inter-

dependency (f) is non-linear (y=f(x)). Evaluation of the function f is often costly (in terms of 

time and computer resources) and may involve (iterative) computational analyses (e.g. finite 

element or computational fluid dynamics). Because of these computational complications it is 

desirable to retrieve efficiently, i.e. using as few as possible function evaluations, the desired 

product’s characteristics (y) in the considered design domain (i.e. for the set of allowable values 

of the product’s properties x). This may be achieved, for example, by direct optimization of y 

for x using efficient gradient based optimization algorithms (e.g., [12]). However, lack of 

accurate gradient information (dy/dx), limited robustness and reliability of the computational 

analyses, or convergence into local sub-optima, may hamper the effectiveness of this approach. 

It is therefore beneficial to also apply ‘gradient-free’ global search methods, such as genetic 

algorithms and pattern search (e.g., [13]), besides the gradient based optimization algorithms. 

The large number of evaluations of the objective function (y=f(x)) that are typically needed by 

these search methods do not allow for a high computational cost per evaluation. An efficient 

approximate representation (y*=f*(x)), or meta-model, of the design problem is therefore 

required. A variety of fitting methods, such as polynomial regression, neural networks, and 

kriging models, are available for creating such meta-models [7] from sampled data sets (xi, yi) of 

the design problem. In order to achieve an optimal meta-model the most suitable fitting method 

for the considered design problem should be applied. There exist various statistical verification 

and cross validation methods [14], [15] by which the quality (or ‘representativeness’) of the 
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different meta-models can be assessed and the most suitable method can be identified. These 

methods consider a (small) subset of the data set as so-called verification points, in which the 

error of the prediction (y-y*) is evaluated for a fit that is made for the data set without the 

verification points. The NLR fitting tool MultiFit supports user-friendly creation, assessment 

and comparison of fits with a wide range of multi-dimensional interpolation and approximation 

methods [10]. Suitable meta-models can be easily created and can be conveniently used in the 

further evaluation and optimization of the considered design problem. 

 

 
3 The aircraft wing design case studies 

3.1 Transonic wing MDO 

The wing design process is part of the Vivace wing MDO case study, which is based on a 

parametric aircraft wing model (Fig. 1). 

 
Fig. 1: The top level design parameters used in the Vivace transonic wing MDO case study. 

 

The wing design process comprises the following consistently coupled computational analyses: 

geometry- and multi-model-generation, low-speed aerodynamics, engine sizing, weight book-

keeping, structural optimization, transonic aerodynamics and mission evaluation, see Fig. 2. 
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Fig. 2: Transonic wing multi-disciplinary design analysis process as used in Vivace [6]. 

 

Because the wing behavior can only be properly evaluated when taking into account the aircraft 

that it is part of, these wing design analyses do include other parts of the aircraft if relevant (e.g. 

besides the wing, also the fuselage is part of the model for the CFD cruise performance 

evaluation). Further details of these analyses are presented elsewhere [6] and are beyond the 

scope of this paper. 

These analyses lead to a collection of results that represent the performance of the considered 

wing. One of these results, the maximum mission range for fixed take-off weight, is selected in 

this study as the objective for the design process. This design objective can be improved or 

optimized in a global optimization loop, as also is indicated in Fig. 2. However, in this study the 

objective is not applied directly in the optimization loop. Instead, first a set of analysis results is 
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generated in a number of design points that were selected according to a full-factorial DOE 

sampling of the considered design space. For simplicity, only two of the top-level wing 

planform design parameters (Fig. 1) are considered in this study: wing semi-span and outer-

wing leading-edge sweep angle. From the resulting data set of analyses results, i.e. range versus 

semi-span and sweep, a series of meta-models (or: response surface fits) are generated with the 

MultiFit tool. The ‘best fits’ are selected on the basis of detailed assessment and comparison of 

the fits in MultiFit. Local predictive quality of the fits in the most promising region of the 

design domain is assessed by evaluation of the fit errors (or residuals) in subsequently two sets 

of verification points, i.e., in the one single data point and in the five data points with the best 

range values, respectively. Global predictive quality of the fits is assessed by a so-called leave-

one-out cross-validation assessment, where a fit is made on the whole data set except one 

verification point in which the residual is evaluated, which is repeated for each of the data 

points. The Root Mean Squared Error (RMSE) of each of these residuals (fit errors) is 

considered as the global inaccuracy measure for the fit of the whole data set. The results of these 

assessments are shown in Table 1. 
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Table 1: The MultiFit assessment results: RMSE comparison for each of the methods for the 

three verification procedures: in the left and middle columns: RMSEs of the residual in the one 

and five verification points, respectively; right column: averaged RMSEs of the leave-one-out 

cross-validation assessment. 

   
 

 

The MultiFit assessment indicates that locally, in the most promising region of the design 

domain, the kriging-quadratic-cubic [16] fit (Kriging-qc) has the best predictive quality. The 

best global fit quality in the complete design domain, as evaluated by the leave-one-out 

assessment, is found with the 5th order polynomial fit (poly5). However, the MultiFit assessment 

also gave warnings that 5th and 6th order polynomial fits are unreliable due to the ill-conditioned 

least-squares matrix equation from which the polynomial coefficients were resolved. Therefore 

the 4th order polynomial fit (poly4) was selected as the most suitable fit for the design 

optimization analysis, as well as the kriging-qc fit. For reference, also the commonly used 2nd 

order polynomial fit (poly2) was applied in the optimization analysis in order to assess the 
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benefits of the different fitting methods. The surfaces of these three fits are shown in Fig. 3. 

Note that the Poly2 fit is quite similar to the Kriging-qc fit and therefore not separately visible. 

The optimum value for the range was then determined for each of the three fit functions, in the 

bounded design domain as indicated in the plot of Fig. 3 (28 m < span < 32 m; 20 deg < sweep 

< 40 deg). These optimizations are carried out using several optimization algorithms: Matlab's 

constrained single-objective optimization algorithms FMINCON (Optimization Toolbox) [12] 

and GA (GADS Toolbox) [13], and MNSGA, an in-house developed Matlab implementation of 

a constrained multi-objective non-dominated sorting algorithm [17]. The gradient-based search 

algorithm FMINCON has a risk of converging into local optimum design points, depending on 

the starting point used in the optimization. Therefore this optimization is run several times, each 

time starting from one of the 35 design points of the data set. The GA and MNSGA algorithms 

are both run with these 35 design points as initial population, and with a maximum of 100 

generations. Each of these three optimization algorithms finds the same optimum range value 

for each of the fit functions; see Fig. 3. These three optima found are slightly different from 

each other, indicating that in this region of the design domain the local behavior of the three fit 

functions is different. Also the three optimum design points have been evaluated by the multi-

disciplinary design analysis (Fig. 2), yielding the accurate range values (verification results) in 

these design points. These verification results are also compared to the predictions of the each of 

the fit functions for additional verification. The results are summarized in Table 2. 

 

Table 2: Results of the design optimization. 

 

Design 

point 

Range-Analysis- 

verification 

Range-poly2-

prediction 

Range-poly4-

prediction 

Range-krigqc-

prediction 

Poly2 optimum: 

Span: 30.5855   

Sweep: 23.0082 

6015.2 nm 5969.2 nm 

(=46.0 nm) 

6018.8 nm 

(=-3.6 nm) 

6005.9 nm 

(=9.3 nm) 

Poly4 optimum: 

Span: 30.6848   

Sweep: 23.2703    

6022.5 nm 5968.2 nm 

(=54.3 nm) 

6023.2 nm 

(=-0.7 nm) 

6000.3 nm 

(=22.2 nm) 

Kriqc  optimum: 

Span: 30.5266 

Sweep: 23.6278 

6008.8 nm 5967.5 nm 

(=41.3 nm) 

6015.1 nm 

(=-6.3 nm) 

6009.2 nm 

(=-0.4 nm) 

RMSE:  47.5 nm 4.2 nm 13.9 nm 
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Fig. 3: The three selected response surfaces of range versus wing span and sweep angle; the 
color of the surface corresponds to the range value, which is also represented by the vertical 
axis. The black dots represent the 35 points of the data set on which the fit functions are based. 
The optimum range values that were found for these three response surfaces are indicated. 

 

From these results it can be concluded that the Poly4 response surface provides the best results 

for this design case: the optimal design point with the best range value (6023.2 nm) is found 

with this fit, and was quite well confirmed (6022.5 nm) by the verification analysis performed in 

that design point. Also the average accuracy of this fit in the three verification points (Table 2) 

is the highest (for the residuals in these points: RMSE=4.2 nm). The kriging-qc fit is slightly 

less accurate in these verification points (RMSE=13.9 nm), and the poly2 fit is relatively in-

accurate (RMSE=47.5 nm). Because of this relatively large local fitting error of the poly2 

response surface, the high range value (6015.2 nm) in the optimum design point found with this 

fit should be considered as a coincidence. 

The multi-disciplinary design analysis computations (Fig. 2) were performed with dedicated 

simulation tools on specific computer architectures (i86 processor running Linux 2.6.9, and 

MIPS R14000 500MHz processor running SGI-Irix 6.5), and required about 1500 seconds 

computation time for a complete evaluation of one design point. Moreover, because of the 

different computers involved in the sequence of analyses, the proper data management and 

scheduling of the computation jobs is somewhat intricate. In contrast, the evaluation of the 
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response surface prediction of the range value is merely a push-button operation in the Matlab 

environment that can be conveniently called from other programs such as optimization 

functions, takes only sub-second computation time and is efficiently vectorized such that even 

thousands of evaluations can be easily evaluated within one second on a standard PC (Pentium-

4 - 2 GHz, WinXP). 

 

3.2 Multi-objective optimization of winglets 

To demonstrate both the power and the flexibility of the response surface approach presented in 

this paper, this section deals with a more extensive design problem in a similar way as the 

previous transonic wing design problem. While, for the sake of simplicity, the previous case 

was limited to only two design parameters and one objective, this second design case concerns a 

generalized transport aircraft winglet design study, involving 9 geometric design parameters 

(Fig. 4) and 3 separate objective functions that should be minimized simultaneously. These 

objectives are based on the difference between the behavior of the aircraft with - and without 

winglets. The objective functions represent the drag coefficient increments (CD1 and CD2 

respectively) due to the winglets for two different points in the flight envelope, and the bending 

moment increment (MX2) due to the winglets in the second aforementioned flight envelope 

point. For efficiency of representation, in the following text the 3 objectives CD1, CD2 and 

MX2 will be denoted as y1, y2, y3, respectively, and the 9 design parameters as given in Fig. 4 

will be denoted as x1 to x9. 
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Fig. 4: The 9 geometric winglet design parameters. 

 

Just like in the previous wing design case, the approach is to sample the considered design space 

of the winglet, which is spanned by the 9 design variables. An important difference here, 

however, is the high dimension of this design space. A full-factorial sampling in this case would 

lead to a prohibitively large number of design points. For example 3 values for each parameter 

would result in 39 = 19683 design points. Considering that each design analysis would take 

about 10000 seconds, and a maximum of 4 analyses could be run in parallel (due to hardware, 

software and license limitations) it would require at least 49 million seconds (nearly 14000 

hours) of throughput time. Therefore a much coarser sampling is applied, using a ‘space-filling’ 

latin-hypercube method (Matlab’s LHSDESIGN function). A first set of 126 design points was 

created, which was aimed at having ample data points available for creating at least the (9 

dimensional) 2nd order polynomial fit (having 55 coefficients). These design points were 

submitted to the design analysis process, which consists of geometry generation, static 

aerodynamic loads, aero-elastic analysis and atmospheric turbulence loads (PSD) (Fig. 5). 
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Fig. 5: The aerodynamic and aero-elastic analysis process for the winglet design study. 
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Fig. 6: The 104 design points and their analysis results as contained in the data set. The upper 
9 graphs give the 9 design parameter values for each of these 104 design points. The lower two 
graphs give the two drag objective functions (CD1 and CD2) on the vertical axis. The third 
objective (MX2) is used as horizontal axis in each of the 11 graphs. Note that each design point 
is represented in each of the graphs by the same marker symbol. 

 

From the analyses results the objective function values were derived for each of the design 

points, where it should be noted that 22 out of the 126 analysis runs failed due to numerical 

simulation problems, resulting in 104 successfully evaluated design points. These 104 design 

points are shown in Fig. 6. 

Just like in the previous wing MDO study, also this data set of 104 design results was further 

processed with the MultiFit tool into the ‘best-fit’ meta-models (or: response surface fits) for 

each of the three design objectives. From extensive cross-validation assessments, like the ones 
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described for the previous design study, it appeared that the kriging-linear-cubic (Kriging-lc) 

method provides the most suitable fits for each of the three objectives. These three fits were 

then applied in several optimization analyses using the same optimization algorithms as in the 

previous study. 

Firstly, a straight-forward multi-objective optimization of the three objectives with the MNSGA 

program was performed with a population of 1000 individuals and 1000 generations, where the 

initial population was randomly created. The search domain was bounded to the central 70% of 

the 9 dimensional design space hypercube that was used for the sampling of the 126 design 

points. The edges of these two concentric hypercubes have lengths xi
search-space = 0.7 xi

design-

space. This is illustrated for the two dimensional case in Fig. 7 below. 

 
Fig. 7: Illustration in two dimensions of the definition of the 70%, 80%, 90% and 100% search 
spaces. 

 

 

The rather restrictive 70% search space was used to avoid extrapolation outside the 9D ‘convex 

hull’ (or ‘cloud’) of the 104 design points, in order to keep a reasonable accuracy of the fit 

functions. In the larger search space, there will be lower probability of having sampled design 

points near the boundaries, i.e. higher probability of fit extrapolation. 
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Fig. 8: Resulting set of non-dominated design points of the three-objective MNSGA optimization 
in the 70% search space of the winglet design. Note that these results are presented in 
objective space. Each point in objective space corresponds to a point in the 9D design space 
according to the transformation of the (fitted) objective functions (y*=f*(x)). The upper graph 
shows the 3D plot of these results. The lower graph shows the 2D projections of these results. 
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The multi-objective search algorithm in MNSGA looks for design points for which each of the 

objectives have minimal values according to the Pareto optimal definition [17]. This leads to a 

set of so-called non-dominated design points, i.e. design points for which each of the objectives 

could not be further improved without worsening of the other objectives. This set of non-

dominated design points is shown in Fig. 8. 

Besides this straight-forward three-objective optimization, also more specific search runs were 

performed with MNSGA where one or two of the objective functions were transformed into 

constraint functions. In these runs the objective(s) yi were minimized and inequality constraint 

function(s) yj < λj_k were applied (i,j,k{1,2,3} ; i≠j). Separate runs with three different 

constraint values λj_k for each yj were performed, resulting in 37 MNSGA runs in total (i.e., one 

run with no constraints, 3x3=9 runs with one constraint, and 3x3x3=27 runs with two 

constraints). The constraint values λj_k used in these runs are given in the first column of Table 3 

below. These constrained runs searched more specifically for those design points that just 

fulfilled the considered constraints, and the corresponding sets of non-dominated design points 

were found. The 27 runs with two constraints (i.e., constrained-single-objective optimizations) 

were also done with the two single-objective optimization algorithms GA and FMINCON. The 

GA runs were performed with a population of 104 individuals, and 100 generations, using the 

points in the data set as initial population. Starting point for the FMINCON runs was always the 

optimum point found in the GA run. The results of all these 3x27=81 single objective runs are 

given in Table 3. It should be noted that these single objective runs were rather computationally 

expensive, in particular the FMINCON runs of which some took up to about 30 minutes 

(Pentium-4 - 2 GHz, WinXP). 

 

Table 3: Results of the 27 constrained-single-objective optimization runs with each of the 3 

optimizers. 

 

SOO case (objective and 

constraints) 

MNSGA result GA result FMINCON result 

Min(y1);y2<1.5;y3<15 y1 = -9.236 y1 = -8.0900 y1 = -9.2579 

Min(y1);y2<0.5;y3<15 y1 = -8.879 y1 = -7.9062 y1 = -8.9102 

Min(y1);y2<0;y3<15 y1 = -7.980 y1 = -6.2619 y1 = -7.3622 

Min(y1);y2<1.5;y3<10 y1 = -7.145 y1 = -6.1327 y1 = -6.5086 

Min(y1);y2<0.5;y3<10 y1 = -7.061 y1 = -6.4018 y1 = -7.1193 

Min(y1);y2<0;y3<10 y1 = -7.015 y1 = -6.2620 y1 = -7.0914 

Min(y1);y2<1.5;y3<5 y1 = -4.617 y1 = -4.0052 y1 = -4.4829 

Min(y1);y2<0.5;y3<5 y1 = -4.629 y1 = -4.2378 y1 = -4.6670 

Min(y1);y2<0;y3<5 y1 = -4.205 y1 = -4.0531 y1 = -4.1000 
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SOO case (objective and 

constraints) 

MNSGA result GA result FMINCON result 

Min(y2);y1<-8;y3<15 y2 = 0.030 y2 = 0.6500 y2 = 0.0317 

Min(y2);y1<-5;y3<15 y2 = -0.784 y2 = 0.6500 y2 = -0.3638 

Min(y2);y1<-3;y3<15 y2 = -0.784 y2 = 0.6500 y2 = -0.3701 

Min(y2);y1<-8;y3<10 y2 = 0.401 y2 = 0.6500 y2 = 0.5275 

Min(y2);y1<-5;y3<10 y2 = -0.462 y2 = 2.1387 y2 = -0.3690 

Min(y2);y1<-3;y3<10 y2 = -0.473 y2 = 2.5328 y2 = -0.2318 

Min(y2);y1<-8;y3<5 y2 = 0.154 y2 = 0.6500 y2 = 0.2111 

Min(y2);y1<-5;y3<5 y2 = 0.139 y2 = 0.9609 y2 = 0.2921 

Min(y2);y1<-3;y3<5 y2 = -0.319 y2 = 1.6885 y2 = -0.0287 

Min(y3);y1<-8;y2<1.5 y3 = 11.976 y3 = 14.9810 y3 = 11.8913 

Min(y3);y1<-5;y2<1.5 y3 = 5.671 y3 = 11.8238 y3 = 5.8026 

Min(y3);y1<-3;y2<1.5 y3 = 2.870 y3 = 14.2869 y3 = 2.8642 

Min(y3);y1<-8;y2<0.5 y3 = 12.339 y3 = 14.3771 y3 = 12.0676 

Min(y3);y1<-5;y2<0.5 y3 = 5.720 y3 = 13.9039 y3 = 5.6304 

Min(y3);y1<-3;y2<0.5 y3 = 3.040 y3 = 13.9039 y3 = 3.0344 

Min(y3);y1<-8;y2<0 y3 = 15.324 y3 = 16.1005 y3 = 14.6918 

Min(y3);y1<-5;y2<0 y3 = 6.579 y3 = 10.0450 y3 = 5.8316 

Min(y3);y1<-3;y2<0 y3 = 3.485 y3 = 10.0450 y3 = 3.8906 

 

 

All solutions (i.e., sets of non-dominated design points) of each of the 91 (37+27+27) 

optimization runs were now put together in one large set of more than 10000 different design 

points. For this set the so-called Pareto ranking (i.e., the order in which the design points are 

dominated) was determined, and the best (Pareto rank 1, or non-dominated) design points were 

selected. It appeared that many of these non-dominated designs were found on the boundaries of 

the 70% search space. Therefore it was decided to perform additional MNSGA search runs in 

increased search domains of 80%, 90% and 100% of the design space, respectively. Again 1000 

individuals and 1000 generations were used in these runs. The sets of non-dominated design 

points resulting from these runs were added to all the non-dominated designs points of the 70% 

search space, resulting in a total set of nearly 16000 points. For this set again the non-dominated 

design points were determined. Still very many (thousands) rank 1 points remained, and a 

further selection (‘filtering’) of interesting design points was applied. Firstly, the points that 

originated from the 70% search runs were selected because these are likely to have the smallest 

fitting error. This resulted in 161 selected points. From the other points, which originated from 

the 80%, 90% and 100% runs, first a selection was made on the basis of the distance of a point 
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to its neighboring points in objective space. 89 points with the largest distances were selected, 

such that together with the 70% points, there remained 250 best points. From these points, the 

points with very high values for one or two of the objectives were removed. Subsequently the 

points that were likely to have large fitting errors were removed, i.e. the points closest to the 

design domain boundaries. Finally the 7 most suitable Pareto design points remained, as shown 

in Fig. 9 below. 

 

 
Fig. 9: The objective values for the 7 best design points from the Pareto set and the 5 best 
design points from the data set, and for the final point found with FMINCON and its verification 
results. 

 

The design point around y3 (i.e., MX2) ≈ 12.5% was then further improved by using it as 

starting point in 3 additional FMINCON runs, in which subsequently each of the 3 objectives 

was further minimized constraining the other objectives to their value in the starting point. One 

final best design point was then selected, which is given in the table 4 below. 

 

Table 4: Resulting optimum design points. 

 

Closest data set point (y1,y2,y3) (-6.76 , -0.13 , 13.25) 

Final best point (y1,y2,y3) (-7.00 , -0.78 , 12.5) 

Verification of final best point (y1,y2,y3) (-6.30 ,  0.02 ,  12.5) 
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For verification, the final best design point was also evaluated by the design analysis. The 

objective values as predicted by the meta-models (Kriging-lc fits) showed quite good 

correspondence with this verification result for y3, but were less accurate for y1 and y2; see table 

4. Although these accuracies in this final design point were not very satisfactory, it was 

concluded from additional MutiFit evaluations that the other fitting methods would not provide 

any significantly better local accuracy in this design point. Moreover, the limited accuracy for y1 

and y2 eventually is due to the small data set, which is very sparse for the 9 dimensional design 

space. 

The verification result in the final best design point, when compared to the best of the 104 

design points of the original data set (Table 4), shows a clear improvement for y3, but slightly 

worse values for y1 and y2. It should be noted though that this verification result is Pareto 

optimal when compared to the points of the data set. Moreover, it provides a quite different 

optimal design alternative as it is located in a quite different region of the design space. 

 

 
4 Conclusions and discussion 

The response surface optimization approach for aircraft design presented in this paper is flexible 

and applicable to a variety of design problems. A key benefit of this approach is that large 

numbers of interesting (Pareto optimal) design points can be found relatively quickly and easily 

at the cost of only few computationally expensive analyses, whilst a reasonable control of the 

accuracy is maintained. For high-dimensional design problems the visualization, assessment and 

selection of the most interesting design points requires special attention. Representation of the 

results in parameter space as well as in objective space provides valuable information for design 

decisions, where involvement of design specialists is required. 

The accuracy of the objective function values as predicted by the fits is an aspect of this 

approach that needs special attention. Several ways to deal with the accuracy aspect were 

demonstrated: Use as much as possible information that is available, e.g. proper DOE, as many 

as possible data points, a priori knowledge of the underlying functions; use different fitting 

methods and determine the best fit; carefully define appropriate validity domains for the fits 

(e.g. avoid extrapolation); try to account for fitting errors in the fit prediction by incorporating 

residual estimations. 

The FMINCON optimization runs in the winglet study required quite many (several hundreds) 

evaluations of the objective and constraint (response surface) functions. These evaluations are 

performed sequentially, so cannot be effectively vectorized. Although these functions are 

quickly evaluated (less than one second), computing time does become an issue if many 

FMINCON runs are required. This issue can be dealt with by incorporating the gradients of the 

objective and constraint functions in the FMINCON optimization run. Current investigation is 
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ongoing to include these gradient functions by means of the derivatives of the considered 

response surface functions. 
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