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Summary. For safety-critical operations in the nuclear and chemical industries,
Petri nets have proven to be useful for the compositional specification of appropri-
ate accident risk assessment models. For air traffic operations, the development of
such model is more challenging due to the high distribution of and complex interac-
tions between the multiple agents involved. The specific problems are: A) Need for a
hierarchy from low level Petri nets to the complete Petri net; B) Duplication of arcs
and transitions within a low level Petri net; C) Cluttering of interconnections. The
chapter develops adequate solutions for each of these problems. The solution ap-
proaches are first explained graphically, and next formally. The approach developed
is illustrated for an air traffic operation example.

1 Introduction

The aim of this chapter is to extend the compositional specification power
of Petri nets for application to a multi-agent hybrid system. The motivating
type of application is accident risk assessment of safety-critical operations in
general, and of air traffic operations in particular. For safety-critical operations
in e.g. nuclear and chemical industries, it is common practice that accident
risk assessment models are being developed to provide valuable feedback to
the process of design and certification of a change (e.g. [16], [18]). Accident
risk assessment could play a similar valuable role in the design of novel air
traffic operations.

By the very nature of air traffic management, the various decision-makers
are highly distributed: per aircraft there is a crew of pilots, and per air traffic
control centre there are many human operators. In addition, the safety related
decision-making process involves interactions of these humans with each other
and with:

e a random and often unpredictable environment, e.g. varying wind, thun-
derstorms, etc.,
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a large set of procedural rules and guidelines,
many technical and automation support systems,
decision-makers at airline operation centres.

These aspects make accident risk assessment for air traffic operations a
very challenging application area, the decision making process of which is
significantly more complex than it is of operations in other safety-critical
industries as is illustrated in Figure 1 of the Introduction of this book. This
makes the specification of an unambiguous mathematical model of air traffic
operations a very challenging task.

The most advanced approaches that have been developed in literature
to model accident risk of safety-critical operations in nuclear and chemical
industries make use of the compositional specification power of Petri nets to
instantiate a model, and subsequently use stochastic analysis and Monte Carlo
simulation (e.g. [16]) to evaluate the model. Since their introduction in the
1960s, Petri nets have shown their usefulness for many practical applications
in different industries (e.g. [4]). Various Petri net extensions and generalisa-
tions, new analysis techniques, and numerous supporting computer tools have
been developed, which further increased their modelling opportunities, though
falling short for air traffic operations. In order to capture the characteristics of
air traffic operations through a Petri net, [7] extended Dynamically Coloured
Petri Net (DCPN) of [6], [5], [8] to Stochastically and Dynamically Coloured
Petri Net (SDCPN) and proved that there exists a close relationship with
the larger class of Generalised Stochastic Hybrid Processes (GSHP) needed
to model air traffic operations. Basically, a DCPN is an extension of Coloured
Stochastic Petri Net (e.g. [12]), in the sense that in DCPN the token colours
evolve in time (dynamically) as solutions of differential equations while the
tokens reside in their places. In an SDCPN, differential equations are replaced
by stochastic differential equations. The DCPN formalism has been success-
fully used in practical air traffic applications, (e.g. [2], [3]). However, it was
found that when being used for modelling more and more complex multi-agent
hybrid systems, the compositional specification power of Petri nets reaches its
limitations. More specifically, the following problems were identified:

A. Need for a hierarchy from low level Petri nets to the complete Petri net. For
the modelling of a complete Petri net for complex systems, a hierarchical
approach is necessary in order to be able to separate local modelling issues
from global or interaction modelling issues.

B. Duplication of arcs and transitions within a low level Petri net. Often the
addition of an interconnection between two low-level Petri nets leads to a
duplication of transition and arcs in the receiving Petri net.

C. Cluttering of interconnections. The number of interconnections between
the different low level Petri nets tends to grow quadratically with the size
of the Petri net.
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2 Compositional Specification Challenge

In literature, approaches have been developed to address problem A. These
approaches are outlined below.

Ref. [14] introduced Hierarchical Coloured Petri Nets. These Hierarchical
CPNs allow a set of subnets, called pages, to be related to each other, in
such a way that together they constitute a single model. The pages interact
with each other in a well-defined way. A page can also be substituted by
a place or a transition, in order to show its role in the larger model, or to
postpone its detailed modelling until later. In addition to these substitution
transitions and places, Hierarchical CPN allow invocation transitions (CPN
is temporarily extended with a new instance of an invocation subpage), place
fusion (a set of places is folded into a single place) and transition fusion (a set
of transitions is folded into a single transition). The pages that interact solve
problem A.

More recent approaches also address problem A; they consider elementary
Petri nets that have input (or entry) and output (or exit) places through
which these Petri nets are coupled with other Petri nets. One example ap-
proach is B(PN)? (Basic Petri Net Programming Notation), introduced by
Best and Hopkins (see e.g. [10]). The compositional denotational semantics
of B(PN)? programs can be given in terms of M-nets (modular multilabelled
nets), which form an algebra of composable high-level Petri nets. These Petri
net components have at least one entry place and at least one exit place.
Several composition operations (e.g. parallel composition, sequential compo-
sition) are defined to couple the Petri nets. Communication is performed by
transition synchronisation. Another example approach is by [15], who intro-
duced the concept of Petri net Components and showed how systems can be
composed from components. These components have input and output places
and components can be connected at these input and output places. Ref. [15]
also provides the compositional semantics.

Also addressing problem A are [9] and [11], who consider sub-Petri nets
that model parallel systems, and draw these sub-Petri nets in separate boxes.
Places and transitions in different sub-Petri nets are coupled by arcs to model
interactions. Ref. [9] uses Synchronous Interpreted Petri Nets (SIPN) as basis
and shows how the interactions can be used to model synchronisation or pri-
ority of the parallel systems. Ref. [9] also allows hierarchy: a macroplace can
be exploded (or imploded) to form (or hide) a complete sub-Petri net. Ref.
[11] uses Generalised Stochastic Petri nets (GSPNs), refers to the sub-Petri
nets as modules, and adopts the requirement that there should be exactly one
token in each module; transitions in a module are not allowed to consume
a token from another module without returning one immediately. Therefore,
[11] introduced three module coupling mechanisms: 1) marking tests; 2) com-
mon transitions; 3) interconnection blocks. In addition, in order to improve
the compactness of the module, [11] recommends two rules, called optimisa-
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tion rules: 1) avoidance of immediate internal transitions; 2) module folding
using memories.

For addressing problem B, some ideas from literature are useful. In order
to avoid the duplication of transitions, one might apply transition fusion as
proposed by [14], or module folding of [11].

The aim of this chapter is to combine and adopt the approaches from lit-
erature that solve problem A and to develop approaches to solve problems B
and C, and to organise these new developments into a compositional specifica-
tion approach for SDCPN. In addition, also the effectiveness of the approach
is illustrated for the modelling of an air traffic example. The relations between
our approach and those found in literature are explained in Sections 4 and 5,
and are summarised below.

To solve problem A, the compositional specification of a SDCPN for a
complex process or operation starts with developing a Local Petri Net (LPN)
for each agent that exists in the process or operation (e.g. air traffic controller,
pilot, navigation and surveillance equipment). Counterparts of LPNs in liter-
ature are the modules of [11], the pages of [14] and the components of [15]. An
essential difference is that our LPNs (and [11]s modules) are connected with
each other such that the number of tokens residing in an LPN is not influenced
by these interconnections, while [14] and [15] do not pose this restriction.

We use two types of interconnections between nodes and arcs in different
LPNs:

e Enabling arc (or inhibitor arc) from one place in one LPN to one transition
in another LPN. These types of arcs have been used widely in Petri net
literature, including [11] for inhibitor arcs and [9] for both types.

e Interaction Petri Net (IPN) from one (or more) transition(s) in one LPN
to one (or more) transition(s) in another LPN. These IPNs are similar to
the interconnection blocks of [11]. If an IPN consists of one place only,
then the connection of two LPNs through an IPN also has some similarity
with place fusion, see e.g. [14] or [15], except that our IPN will not change
the number of tokens in its connecting LPNs.

Each LPN is surrounded by a box. This boxing idea has also been used
by e.g. [9] or [15]. Next, to solve problems B and C, we identify additional
interconnections between LPNs that allow, with well-defined meanings, arcs
to initiate and/or to end on the edge of the box surrounding an LPN. To
the authors knowledge this element has no counterpart in Petri net literature;
however, it is based on how [13] composes statecharts. The meaning of these
interconnections from or to an edge of a box allows several arcs or transitions
to be represented by only one arc or transition. In that sense, there is a relation
with transition fusion used by [14] and with module folding used by [11].

This chapter is organised as follows: Section 3 briefly outlines SDCPN; for
a more complete definition we refer to [7]. Section 4 outlines how a SDCPN
can be specified in a logical sequence for each entity of an agent, and explains
how the entities of agents are connected without changing the structure of low
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level entities. This solves problem A above. Section 5 defines some new Petri
net clustering types which avoid the internal duplication problem (problem B)
and the problem of cluttering interconnections (problem C). It is noted that
these clustering types can also be applied to other Petri net extensions than
SDCPN. Section 6 extends the SDCPN definition of Section 4 to include these
new clustering types. In Section 7 the approach developed is illustrated for an
air traffic operation example. Finally, Section 8 gives concluding remarks.

3 Stochastically and Dynamically Coloured Petri Net

This section gives a definition of SDCPN. Subsection 3.1 describes the SDCPN
elements, while Subsection 3.2 describes the SDCPN evolution rules. These
elements and evolution rules together form the SDCPN definition. For a more
formal SDCPN definition and a simple SDCPN example we refer to [5] and
to [7].

3.1 SDCPN Elements

A Stochastically and Dynamically Coloured Petri Net [7] is given by the fol-
lowing tuple: SDCPN = (P, T, A, N, 8§, €, V,' W, G, D, ¥, J), where:

P is a set of places

T is a set of transitions which consists of a set of guard transitions (T¢), a
set of delay transitions (Jp) and a set of immediate transitions (77).

A is a set of arcs which consists of a set of ordinary arcs (A,), a set of enabling
arcs (Ae) and a set of inhibitor arcs (A;).

N is a node function which maps each arc to an ordered pair of one transition
and one place; multiple arcs between the same place and transition are
allowed.

8 is a set of colour types for the tokens occurring in the net (a colour is the
value of an object or process in Petri net terminology). Each colour type
is to be of the form R™.

@ is a colour function which maps each place to a colour type in 8.

V and W are sets of place-specific colour functions which together describe
the behaviour of the colour of a token while it resides in its place. For
each place, these elements determine a stochastic differential equation,
which is locally Lipschitz continuous.

G is a set of Boolean-valued transition guards associating each transition in
Ta with a guard function. This guard function is continuously evaluated
when the transition has a token in each of its input places, i.e., when
there is at least one token per input arc of the transition present. The
guard function must evaluate to True before the transition is allowed to
fire (i.e. remove and produce tokens). This happens when the colours of
the input tokens of the transition (which can change value through time)
reach particular transition-specific value combinations.



-8
NLR-TP-2006-688

D is a set of transition delays associating each transition in Tp with a delay
function. This delay function is continuously evaluated when the transition
has a token in each of its input places. The delay function determines for
how long the transition must wait before it is allowed to fire (i.e. remove
and produce tokens). The firing rate depends on the colours of the input
tokens of the transition (which can change value through time) and is
determined by a Poisson point process.

F is a set of (probabilistic) firing functions. For each transition it describes
the quantity and colours of the tokens produced by the transition at its
firing. A transition produces 0 or 1 token per outgoing arc; this quantity
and the colour of the produced tokens is according to a transition-specific
probabilistic mapping rule that may depend on the colours of the input
tokens.

J is an initial marking which defines the set of tokens initially present, i.e., it
specifies in which places they initially reside, and the colours they initially
have.

The set of places P, the set of transitions T, the set of arcs A and the node
function N are defined in a Petri net graph. Figure 1 shows the graphical
representation of the elements in P, T and A. The node function N describes
how these components are connected into a Petri net graph.

O Place Guard transition ——  Ordinary arc
® Token [0] Delay transition ——  Inhibitor arc

E] Immediate transition =~ ——e  Enabling arc

Fig. 1. Notation for places, tokens, transitions and arcs in Petri net graphs. On the
right-hand- side there is a simple example Petri net graph, with two places and two
transitions and a token in place P1

3.2 SDCPN Evolution

Tokens and the associated colour values in a SDCPN evolve over time quite
similar as in a Coloured Stochastic Petri Nets (e.g. [12]). The main additions
are that the colour of a token while it is residing in a place is an element
of IR™ (where n is place-specific) and may evolve according to a differential
equation that is governed by the colour functions V and W of the specific
place where the token resides, and that guard and delay transitions take the
evolving colour values into account. For DCPN, this differential equation is an
ordinary differential equation, completely described by V only. For SDCPN,
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this differential equation is a stochastic differential equation, described by V
(for the flow part) and W (for the Brownian motion term).

Tokens can be removed from places by transitions that are connected to
these places by incoming ordinary arcs. A transition can only remove tokens if
two conditions are both satisfied. If this is the case, the transition is said to be
enabled. The first condition is that the transition must have at least one token
per ordinary arc and one token per enabling arc in each of its input places
and have no token in the input places to which it is connected by an inhibitor
arc. When the first condition holds, the transition is said to be pre-enabled.
The second condition differs per type of transition. For immediate transitions
the second condition is automatically satisfied if the transition is pre-enabled.
For guard transitions the second condition is specified by the set of transition
guards G and for delay transitions it is specified by the set of transition delays
D, see their description in Subsection 3.1.

When these two conditions are satisfied, the transition removes the tokens
from the input places by which it is connected through an ordinary arc. It
does not remove the tokens from places by which it is connected through an
enabling arc. Subsequently, the transition produces a token for some or all of
its output places, specified by the firing function F. The colour of a produced
token (which must be of the correct type, indicated by what € defines for the
output place), and the place for which it is produced is also specified by the
firing function F. The evaluation of G, D and F may be dependent on the
colours of the input tokens of the corresponding transition.

In order to avoid ambiguity, for a DCPN the following rules apply when
two transitions are enabled simultaneously:

Ry The firing of an immediate transition has priority over the firing of a guard
or a delay transition.

R; If one transition becomes enabled by two or more disjoint sets of input
tokens at exactly the same time, then it will fire these sets of tokens
independently, at the same time.

Ry If one transition becomes enabled by two or more non-disjoint sets of
input tokens at exactly the same time, and the firing of one set disables
the other, then the set that is fired is selected randomly.

R3 If two or more transitions become enabled at exactly the same moment
by disjoint sets of input tokens, then they will fire at the same time.

R4 If two or more transitions become enabled at exactly the same moment
by non-disjoint sets of input tokens, then the transition that will fire is
selected randomly, with the same probability for each transition.

Note that in Rule Ry there is a conflict between tokens fighting for the same
transition and in Rule Ry there is a conflict between transitions fighting for
the same set of tokens; these rules settle these fights by appointing a random
winner. In Rules R; and Rg there is no conflict between tokens fighting for the
same transition or for transitions fighting for the same tokens; these firings
can occur independently and these rules only take care of the timing of these
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individual firings. For a motivation of why these rules are chosen like this,
see [5].

4 Local Petri Nets-Based Specification of an SDCPN

The compositional specification of a Stochastically and Dynamically Coloured
Petri Net for a complex process with many different interacting agents such
as exist in air traffic operations (e.g. air traffic controllers, pilots, navigation
and surveillance equipment), is a bottom-up process (note that for DCPN
this process is the same, except that no Brownian motion terms need to be
defined). Prior to starting this compositional process, per agent the relevant
low level functional entities have to be identified based on expert domain
knowledge of that agent. For this chapter we assume that these low-level
functional entities are given per agent. The compositional specification idea is
then first to specify one small Petri net per functional entity of an agent, and
refer to this as a Local Petri Net (LPN). Next, the interactions between these
LPNs are specified. Note that our LPN definition has similar counterparts in
Petri net literature. For example, [11] considers Generalised Stochastic Petri
Nets to be composed of Modules in a similar way as we propose for SDCPN
to be composed of LPNs. Ref. [14] proposes Hierarchical Coloured Petri Nets
to be composed of Pages, while [15] considers the composition of Petri Net
Components. An essential difference is that our LPNs (and Fotas modules)
are connected with each other such that the number of tokens residing in an
LPN (or module) is not influenced by these interconnections, while [14] and
[15] do not pose this restriction.

The specification of the various elements of one LPN is explained in Sub-
section 4.1; this has to be accomplished for all LPNs. Subsection 4.2 describes
how the interconnections between these LPNs are established.

4.1 Specification of Local Petri Net
Specification of elements P, J, A, N

First, places (drawn as circles) are identified for the LPN. These places may
represent operational or physical conditions (nominal modes and non-nominal
modes). Next, the transitions are identified: If between two places, say P; and
Py, a switch might occur, one transition (rectangle) is drawn, with two arcs
(arrows) connecting the places with the transition. The places are gathered
in the set of places P, the transitions are gathered in the set of transitions 7,
and the arcs are gathered in the set of arcs A. The node function N describes
for each arc which place and transition it connects.
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Specification of elements 8§, €, V and 'W

A complex stochastic dynamic process such as in air traffic operations cannot
be described by places and transitions alone. Usually, some (piecewise) con-
tinuous valued timed processes are identified, which can be influenced by and
which can influence the LPN places and transitions. In SDCPN, continuous
valued processes are associated with tokens that reside in the places. In gen-
eral, if a token resides in a particular place, its value changes according to a
differential equation that is associated with that place. In this step, all places
are checked on whether a continuous valued process can be associated with it.
Note that on the other hand, it may happen that identified continuous valued
processes lead to a necessary introduction of new places. For example: one
continuous-valued process appears to alternately follow two different differen-
tial equations; in that case two places need to be introduced, each associated
with one of these differential equations. All continuous valued process types
are collected in the set 8. The mapping of each place of the Petri net to one of
these types is described by €. The sets of place-specific colour functions V and
‘W describe how the colour of a token changes while it is staying in a place. For
each place, V and W specify the coefficients of a differential equation which
describes the rate of change of the token colour: if Vp and Wp define the token
colour functions for place P that has colour type Cp, then the colour ¢/’ € Cp
of a token in place P at time ¢ satisfies: def’ = Vp(cP)dt + Wp(c)dw;, where
{w;} is Brownian motion.

Specification of elements G, D, F and J in Local PN terms

Next, for each transition, one should determine whether it is a guard transi-
tion, a delay transition or an immediate transition. A guard transition fires
based on the combined colours of its input tokens reaching some value. A
delay transition models a duration, e.g. of an action. An immediate transition
fires without delay. The guard transitions are collected in the set T, the de-
lay transitions are collected in Tp and the immediate transitions are collected
in the set J7. Subsequently, the guards G and the delays D are specified in
detail. The firing function F describes the colours of the tokens fired by a
transition into its output places, given the colours of the tokens in the input
places. Finally, the initial marking J describes which place(s) of the LPN ini-
tially contain one or more token(s) and describes the initial colour values of
these tokens, hence it describes the initial state of the process modelled by
the SDCPN.

4.2 Interconnections Between LPNs

The interconnections between the LPNs have to be specified in a way that
allows to start at the lowest level and then step by step going up to the
highest level, and such that an interconnection at a higher level does not
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imply a significant change at a lower level. The typical exception on this is
caused by non-local influences on G, D and F. In order to improve into this
desired direction, in this subsection some specific types of interconnections
are identified.

Following [11] one step in enabling a systematic bottom-up specification of
a Petri net is to ensure that each LPN always contains exactly one token. For
air traffic types of applications it often is useful to allow multiple tokens to be
within one LPN, e.g. one for each aircraft. Hence we relaxed the Fota-principle
to the following requirement: all interconnections between LPNs shall be such
that the number of tokens in an LPN is not directly influenced by these in-
terconnections. Subsequently we identified two types of interconnections that
satisfied our above requirement:

e Enabling arc (or inhibitor arc) from one place in one LPN to one transition
in another LPN.

e Interaction Petri Net (IPN) from one (or more) transition(s) in one LPN
to one (or more) transition(s) in another LPN.

Enabling and inhibitor interconnections are illustrated in Figures 2 and
3, respectively. Note that in these figures, each LPN is surrounded by a box.
This boxing idea has also been used by e.g. [9] or [15].

LPN A LPN B

Fig. 2. Illustration of an enabling arc from one place in LPN A to one transition in
LPN B

LPN A LPN B

Fig. 3. Illustration of an inhibitor arc from one place in LPN A to one transition
in LPN B
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Enabling and inhibitor arcs are used to describe how agents modelled by
individual LPNs influence each other. The transition at the tip of the arc (i.e.
transition 7" in LPN B in Figures 2 and 3) can only fire if the process modelled
by LPN A is in a particular state or marking, and when it fires, it may use the
information existing in this marking of LPN A. For example, it may appear
that the guard or delay of transition 7' is dependent of the colour of the token
in place P. In those cases, the Petri net graph needs to be extended with
(enabling) arcs from place P to transition T in order to get access to this
information (and the guard or delay of the transition, which in the previous
subsection has only be defined locally, needs to be adapted). Since tokens are
not consumed through enabling arcs at a transition firing, the state of LPN
A is not changed through this firing. Ref. [9] uses enabling arcs like this to
model synchronisation. [11] uses GSPN which do not support enabling arcs
although they do support inhibitor arcs; however, [11] does allow tokens of
other modules be consumed and immediately placed back, which is similar to
using an enabling arc.

An Interaction Petri Net (IPN) consists of at least one place, and zero or
more transitions. It connects, by means of ordinary arcs, one or more transi-
tion(s) in one LPN with one or more transition(s) in another LPN. If there
are transitions in the IPN, and if these transitions are connected with other
LPNs, then only enabling or inhibitor arcs can be used for the connections
of these transitions with other LPNs. An example of an IPN is illustrated in
Figure 4. It can be easily verified that an IPN does not influence the number
of tokens in the LPNs it connects.

LPN A IPN  LPNB
)

fi C//ﬁ

\m§

Fig. 4. Illustration of an Interaction Petri Net from one transition in LPN A to two
transitions in LPN B

Interaction Petri Nets are used when enabling or inhibitor arcs are insuf-
ficient to model the interconnection between two agents. For example, it can
hold on to state information from its input LPN (i.e. LPN A in Figure 4) while
the state of LPN A itself evolves further. Also, IPNs can be used to connect
two transitions, while enabling or inhibitor arcs always connect a place with
a transition. Note that our IPNs are similar to the Interconnection blocks
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of [11]. The connection of two LPNs through an Interaction Petri Net also
has some similarity with Place Fusion, see e.g. [14] or [15], except that our
Interaction Petri Net will not change the number of tokens in its connecting
LPNs.

5 Extension with Interconnection Mapping Types

Interconnections between LPNs through enabling (or inhibitor) arcs and IPNs
might lead to a combinatorial growth of the number of interconnections with
the size of the Petri net. To avoid this combinatorial growth as much as
possible, in this section hierarchical clustering and interconnection mapping
approaches are graphically developed, based on how [13] composes statecharts:

1. Interconnection mapping types I and II are defined to avoid possible du-
plication of transitions and arcs within LPNs caused by specifying inter-
connections between LPNs.

2. Interconnection mapping types III, IV and V are defined to avoid clutter-
ing of interconnections between places and transitions of different LPNs.

3. Interconnection mapping types VI and VII define interconnections from
or to hierarchical clusters of LPNs, which reduce the cluttering of inter-
connections.

4. Combinations of interconnection mapping types, and an additional inter-
connection mapping type VIII that avoids a duplication of transitions and
arcs within an LPN and duplication of arcs between LPNs.

In Section 6, the SDCPN definition is extended to include these interconnec-
tion mapping types.

5.1 Avoid Duplication of Transitions and arcs within an LPN

Figure 5 shows an example where interconnections between LPNs lead to
duplication of transitions and arcs within one of these LPNs. A transition
from place P3 to place P4 occurs if either P1 or P2 contains a token. To
model this, it is necessary to use two transitions T1 and T2 between P3 and
P4. The use of only one transition between P3 and P4 would model an and
relation (i.e. both P1 and P2 contain a token) instead of an or relation.

In most cases, the duplicated transitions and arcs do not have an essentially
different meaning, and they are mostly introduced to be able to make use
of colours of tokens residing in other LPNs. In particular, these duplicated
transitions have the same guard or delay and the same firing function. This
makes that duplication leads to reduced readability. This subsection presents
some interconnection mapping types to avoid such duplication.
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LPN A1 LPN B
= P4
T
LPN A2
P3
P2

Fig. 5. Illustration of duplication of transitions within an LPN

LPN interconnection mapping type [

A set of s enabling arcs initiating on s places, merging into one arc and ending
on one transition, means that this transition is duplicated s times, and that s
enabling arcs are drawn between the s places and the s resulting transitions.
This type of arc is called merging arc. The transition at the end of the merging
arc should be in a different LPN than the s places that are at the beginning of
the arc. Figure 6 shows an example of this interconnection mapping type. Note
that in order to avoid confusion when using this interconnection mapping type,
the s duplicated transitions should have the same guard or delay function and
the same firing function and their input places should have the same colour
type. Interconnection mapping type I is not defined with inhibitor or ordinary
arcs instead of enabling arcs.
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LPN A1 LPN A1
LPN B
LPN B
P1 P1
T
LPN A2 = LPN A2
P2 P2

Fig. 6. LPN interconnection mapping type I. The point where several arcs merge
into one arc is represented by a small black square

LPN interconnection mapping type I

An enabling arc initiating on the edge of an LPN box and ending on a transi-
tion in another LPN box, means that enabling arcs initiate from all places in
the first LPN and end on duplications of this transition in the second LPN.
Figure 7 shows an example of this interconnection mapping type. The dupli-
cated transitions should have the same guard or delay function and the same
firing function and their input places should have the same colour type. In-
terconnection mapping type II is not defined with inhibitor or ordinary arcs
instead of enabling arcs.

LPN A LPN B LPN A LPN B
N [
T _ T1]
= T2
\

Fig. 7. LPN interconnection mapping type Il

5.2 Avoid Cluttering of Interconnections between LPNs

The interconnection mapping types in the previous subsection avoid the du-
plication problem, but not the cluttering due to the many enabling arcs and
IPNs between places and transitions of different LPNs. If several LPNs are
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interconnected in one graph the result becomes unreadable. This subsection
presents some interconnection mapping types to avoid this:

e Interconnection mapping type III can be applied to avoid enabling arcs
cluttering.

e Interconnection mapping types IV and V can be applied to avoid IPNs
cluttering.

LPN interconnection mapping type 11

An enabling arc ending on the edge of an LPN box, means that enabling
arcs end on each transition in this LPN. Figure 8 shows an example of this
interconnection mapping type. Interconnection mapping type III can also be
used with inhibitor arcs instead of enabling arcs. It cannot be used with
ordinary arcs, due to the restriction that the number of tokens in an LPN
should remain the same.

LPN A LPN B LPN A LPN B

Fig. 8. LPN interconnection mapping type III

LPN interconnection mapping type IV

An ordinary arc initiating on the edge of an LPN box and ending on a place
within an IPN means that ordinary arcs initiate from all transitions in this
LPN. Figure 9 shows an example of this interconnection mapping type. In-
terconnection mapping type IV is not defined with enabling or inhibitor arcs
instead of ordinary arcs.

LPN A IPNC LPN A IPN C

B

Fig. 9. LPN interconnection mapping type IV
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LPN interconnection mapping type V

An ordinary arc ending on the edge of an LPN box and starting from a place
within an IPN means that ordinary arcs end on each transition in this LPN.
Figure 10 shows an example of this interconnection mapping type. Intercon-
nection mapping type IV is not defined with enabling or inhibitor arcs instead
of ordinary arcs.

IPNC LPN B IPNC LPN B

Fig. 10. LPN interconnection mapping type V

5.3 Clustering of LPNs

In this subsection, we define enabling arcs that go from or to a cluster of
LPNs. This is done following the next two interconnection mapping types.
Figures 11 and 12 show examples of these interconnection mapping types.

LPN interconnection mapping type VI

Suppose there is one LPN A and a set of n LPNs B; (i=1,2, ..., n) which
is enclosed by a large box. An enabling arc initiating on the edge of LPN A
and ending on the edge of the large box with the set of LPNs B;, means that
the enabling arc represents n actual enabling arcs, initiating on the edge of
LPN A and ending on the edge of each LPN B;. Interconnection mapping
type VI can also be defined from a place to a large box of LPNs (by means
of an enabling arc), or from a place within an IPN to a large box of LPNs
(by means of an ordinary arc). It is not defined with inhibitor arcs instead
of enabling arcs. Note that the right hand side of Figure 11 makes use of a
combination of interconnection mapping types IT and III. For more examples
of such combinations, see Subsection 5.4.
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LPN B1

LPN B1
LPN A LPN A

LPN B2

U

Fig. 11. LPN interconnection mapping type VI

LPN B2

LPN interconnection mapping type VII

Suppose there is a set of n LPNs A; (i=1,2, ..., n) which is enclosed by a
large box and one LPN B. An enabling arc initiating on the edge of the large
box with the set of LPNs A; (i=1,2, ..., n) and ending on the edge of LPN B,
means that the enabling arc represents n actual enabling arcs, initiating on
the edge of each LPN A; and ending on the edge of LPN B. Interconnection
mapping type VII can also be defined from a large box to a transition. It is
not defined with ordinary or inhibitor arcs instead of enabling arcs.

STV
LPN A1 LPN A1
D LPN B LPN B
LPN A2 = LPN A2

L]

Fig. 12. LPN interconnection mapping type VII
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5.4 Combinations of Interconnection Mapping Types and
Additional Type

Interconnection mapping types can also be combined, such as interconnection
mapping type I with II, type II with III, type IV with V, or type VI with VIL.
An illustration of combination of II with III is given below.

LPN interconnection mapping types II and III combined

An enabling arc initiating on the edge of an LPN box and ending on the
edge of another LPN box, means that enabling arcs initiate from all places in
the first LPN and end on duplications of all transitions in the second LPN.
Figure 16-fig: LPN IMP II and III shows an example of this combination of
interconnection mapping types II and III.

LPN A LPN B LPN A LPN B
I N =

L

Fig. 13. LPN interconnection mapping types Il and III combined

Finally, we introduce an additional interconnection mapping type which
avoids duplication of transitions and arcs within an LPN, and consequently
cluttering of arcs between LPNs:

LPN interconnection mapping type VIII

An ordinary arc initiating on the edge of an LPN box and ending on a tran-
sition inside the same box, means that ordinary arcs initiate from all places
in the LPN box to duplications of this transition. The duplicated transitions
should have the same guard or delay function and the same firing function and
their set of input places should have the same set of colour types. Figure 14
illustrates how this avoids both the duplication of transitions and arcs within
an LPN, and the duplication of arcs between LPNs.
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Fig. 14. LPN interconnection mapping type VIII, which avoids duplication of arcs
and transitions within an LPN and duplication of arcs between LPNs

Remark: The interconnection mapping types introduced in this section
could also be used for other types of Petri nets than SDCPN, provided that
these other types of Petri nets support the same graphical elements as SDCPN,
such as enabling arcs. If this is not the case, the interconnection mapping types
might still be used, but then the restriction that the number of tokens in an
LPN cannot be changed by the interconnections must be removed.

6 Extension of SDCPN with Interconnection Mapping
Types I through VIII

This subsection extends the SDCPN definition of [7] to include the intercon-
nection mapping types identified in Section 5. The extension is referred to as
SDCPN®™,

SDCPN“™ is a tuple (P, T, B, A" L, Nmt § €, V,W, G, D, F, J),
where P, 7,8, C, V,'W, G, D, F, J are as in the definition of SDCPN (Section
3 or Ref. [7]), and the other elements are outlined below:

ATt s the set of arcs in the SDCPN®™_ It equals the set of arcs A = A, U
Ae UA; as defined in [7], but extended with a set of merging arcs (Ay,).
In other words, A" = A U A,,.

A merging arc is a set of s > 2 enabling arcs merging into one arc, where
s can be different for each merging arc. The merging point is denoted by a
small black square.

B is a set of boxes which consists of a set By, of LPN-boxes and a set B¢ of
Cluster-boxes.



-22-
NLR-TP-2006-688

Each box in B is drawn as a rectangle with rounded corners. Note that at
this definition level, each element of B is just an empty box. The box function
L (see definition next) will specify the actual contents (i.e. the places and
transitions or other boxes) of each box in B. There, each LPN-box in B, will
be associated with an LPN, and each cluster-box in B¢ will be associated
with a cluster of LPNs.

L is a box function which specifies the contents of each box in B: L maps
each place in P to zero or one box in B, each transition in T to zero or
one box in B, and each box in By, to zero or one box in Be. Places (and
transitions) that form IPNs are not mapped to an LPN-box but can be
mapped to a cluster-box, and at least two LPN-boxes should be mapped
to each cluster-box.

For each LPN-box in By, the box function specifies which places in P and
which transitions in T are drawn in it to form an LPN; for each cluster-box in
B it specifies which (at least two) LPN-boxes in By, are drawn in it to form
a cluster of LPNs. Some places (and transitions) are not inside any LPN-box;
these form the IPNs. It is however possible that IPNs are part of a cluster-
box (although they are not part of an LPN-box). Similarly, not all LPN-boxes
need to be inside a cluster-box.

Nt is a node function which maps each arc in A,, to an ordered pair of
which the first component is a set of places (but not in IPNs) or boxes,
and the second component is a transition. Furthermore, N*™ maps each
arc in A = A, UA¢ UA,;, to an ordered pair of nodes, where a node is a
place, a transition, an LPN-box or a cluster-box. Multiple arcs between
the same pair of nodes are allowed (but not both an inhibitor arc and
another type of arc). There are the following restrictions:

e Ordinary arcs can only be drawn from a place to a transition within
the same LPN- box, from a transition to a place within the same LPN-
box, from a place in an IPN to a transition, from a transition to a place
in an IPN, from a place in an IPN to an LPN-box, from an LPN-box
to a place in an IPN, from a place in an IPN to a cluster-box, or from
an LPN box to a transition in the same LPN box.

e FEnabling arcs can only be drawn from a place to a transition within the
same LPN- box, from a place to a transition in a different LPN-box or
in an IPN;, from a place (but not in an IPN) to an LPN- or cluster-box,
from an LPN- or cluster-box to a transition, or between two boxes (i.e.
LPN-LPN, LPN-cluster, cluster-LPN or cluster-cluster).

e Inhibitor arcs can only be drawn from a place to a transition within
the same LPN- box, from a place to a transition in a different LPN-box
or in an IPN, or from a place (but not in an IPN) to an LPN box.

e Merging arcs can only be drawn from a set of places (but not in IPNs)
or boxes, to a transition that is in another LPN than these places or
boxes. The input places of a merging arc should be of the same type.



23
NLR-TP-2006-688

Note that the guards G, delays D, and firing functions F defined for
DCPN*™ are equal to those defined for SDCPN. However, since the elements
G, D, and F use the colours of the transition input tokens as input, their
evaluation is a little more complicated in the sense that from the SDCPN*™
graph it is not immediately obvious which places are the input and output
places of the transitions. These input and output places become clear if the
SDCPN® graph is extended to a SDCPN graph, i.e. the cluttered one with-
out the interconnection mapping types. Some rules that avoid this for the
most-often used interconnection mapping types are given below. Here, only
the between-LPN interconnections are considered. The pre-enabling, enabling
or firing of each transition is also dependent on the colours of the input tokens
along the within-LPN connections, but to keep the description brief, these are
not considered here.

e If a transition has an incoming merging arc (see e.g. interconnection map-
ping type I), it is pre-enabled if it has a token in at least one of the places
also connected to this merging arc. The transition is enabled if it is enabled
by this input token as described in [7] (e.g. its guard evaluates to true, or
its delay has passed). If there are tokens in several of these input places,
the transition guard or delay function uses their colours in parallel for its
evaluation.

e If a transition has an (enabling) incoming arc connected with an LPN-box
(see e.g. interconnection mapping type II), then it is pre-enabled if there
is at least one token somewhere in this input LPN-box (and this is usually
the case). It is enabled if it is enabled by this input token as described in
[7].

e If the LPN-box in which a transition resides has an input place (see e.g.
interconnection mapping type III), then the transition is pre-enabled if
there is a token in this input place, and its guard or delay uses the colour
of this token for its evaluation as described in [7].

e If the LPN-box in which a transition resides has an input LPN-box (see e.g.
interconnection mapping type II combined with IIT), then the transition is
pre-enabled if there is at least one token somewhere in the input LPN-box
(and this is usually the case) and its guard or delay uses the colour of this
token for its evaluation as described in [7].

7 Free Flight Air Traffic Example

The compositional specification approach described has been used to specify
an initial SDCPN™ for a risk assessment of the Free Flight based air traffic
operation adopted in [17]. Free Flight -sometimes referred to as Self Separation
Assurance- is a concept where pilots are allowed to select their trajectory freely
at real time, at the cost of acquiring responsibility for conflict prevention.
It changes ATM in a fundamental way: the centralised control becomes a
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distributed one, responsibilities and tasks transfer from ground to air, ATC
sectorization and routes are removed and new technologies are brought in.
Before such concept can be implemented, it is necessary to determine its level
of safety. The aim of this section is to illustrate the SDCPN®™ specification
developed in [1] for a collision risk model for Free Flight.

7.1 LPNs of the Free Flight Air Traffic Example

In the Free Flight air traffic example, the airspace is an En-Route Airspace
without fixed routes or an active ATC specifying routes. All aircraft flying in
this airspace are assumed to be properly equipped and enabled for Free Flight:
the pilots can try to optimise their trajectory, due to the enlarged freedom to
choose path and flight level. The pilots are only limited by their responsibility
to maintain airborne separation, in which they are assisted by a system called
ASAS (Airborne Separation Assistance System). This can be considered as a
system processing the information flows from the data-communication links
between aircraft, the navigation systems and the aircraft guidance and control
systems. ASAS detects conflicts, determines conflict resolution manoeuvres
and presents the relevant information to the aircrew.

The number of agents involved in the Free Flight operation is huge and
ranges from the Control Flow Management Unit to flight attendants. In the
setting chosen for an initial risk assessment, the following agents are taken
into account:

A Pilot-Flying in each aircraft,
A Pilot-Non-Flying in each aircraft,
A number of systems and entities per aircraft, like the aircrafts position
evolution and the Conflict Management Support systems,

e A number of global systems and entities, like the communication frequen-
cies and the satellite system.

As explained in the beginning of Section 4, LPNs are specified for each
relevant functional entity of each agent. It was judged sufficient to specify the
following number of LPNs for the agents:

6 LPNs for each Pilot-Flying,

2 LPNs for each Pilot-Non-Flying,

36 LPNs for the systems and entities of each aircraft,
7 LPNs for the environment.

The actual number of LPNs in the whole model then depends on the number
N of aircraft involved, and equals 7+ N x (6 + 2 + 36).

7.2 Interconnected LPNs of Pilot Flying

This subsection illustrates, for the specific Free Flight air traffic example, a
Petri Net model for the Pilot Flying as agent. A graphical representation of
all LPNs the Pilot-Flying consists of, is given in Figure 15.
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Fig. 15. The agent Pilot-Flying in Free Flight is modelled by 6 different LPNs, and
a number of ordinary and enabling arcs and some IPNs, consisting of one place and
input and output arcs
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The Human-Machine-Interface where sound or visual clues might indicate
that attention should be paid to a particular issue, is represented by a LPN
that does not belong to the Pilot-Flying as agent and is therefore not depicted
in the Figure. Similarly, the arcs to or from any other agent are not shown
in Figure 15. Because of the very nature of Petri Nets, these arcs can easily
be added during the follow-up specification cycle. To get an understanding
of the different LPNs, a good starting point might be the LPN Current Goal
(at the bottom of the figure) as it represents the objective the Pilot-Flying is
currently working on. Examples of such goals are Collision Avoidance, Con-
flict Resolution and Horizontal Navigation. For each of these goals, the pilot
executes a number of tasks in a prescribed or conditional order, represented in
the LPN Task Performance. Examples of such tasks are Monitoring and Deci-
sion, Execution and Execution Monitoring. If all relevant tasks for the current
goal are considered executed, the pilot chooses another goal, thereby using his
memory (where goals deserving attention might be stored, represented by the
LPN Goal Memory) and the Human-Machine-Interface. His memory where
goals deserving attention might be stored is represented as the LPN Goal
Memory in Figure 15.

So, the LPNs Current Goal, Task Performance, and Goal Memory are
important in the modelling of which task the Pilot-Flying is executing. The
other three LPNs are important in the modelling on how the Pilot-Flying
is executing the tasks. The LPN State SA, where SA stands for Situation
Awareness, represents the relevant perception of the pilot about the states of
elements in his environment, e.g. whether he is aware of an engine failure. The
LPN Intent SA represents the intent, e.g. whether he needs to leave the Free
Flight Airspace. The LPN Cognitive mode represents whether the pilot is in
an opportunistic mode, leading to a high but error-prone throughput, or in a
tactical mode, leading to a moderate throughput with a low error probability.

Table 1. Numbers of interconnection mapping types and Petri net elements before
and after application of interconnection mapping types. The number of places (i.e.
19 places within LPNs and 8 places between LPNs) does not change due to the
interconnection mapping types

Number of elements In Figure 15 Without interconnection mapping types
Within LPNs 27 transitions 279 transitions

66 arcs 642 arcs
Between LPNs 16 ordinary arcs 293 ordinary arcs

7 enabling arcs 1023 enabling arcs
1 inhibitor arc 7 inhibitor arcs
Total 117 2244

There are many interactions (which, in some cases, are complex) between
these individual LPNs, which are depicted as enabling arcs and IPNs with one
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place only. The use of the new interconnection mapping types makes that the
figure is still readable. Interconnection mapping types I, IV, V, VI and VII
have not been used, while type II has been used 2x, type III 4x, and type
VIII 3x. Table 1 shows that without the use of these interconnection mapping
types the figure really would be cluttered with duplicated transitions and arcs
within LPNs, and with connections drawn between LPNs.

8 Concluding Remarks

For the compositional specification of a multi-agent hybrid system this chap-
ter has introduced a hierarchical extension of the compositional specification
power of Petri nets, which avoids the need for all kinds of low level changes
once making connections at a higher model level. Moreover the problem of
combinatorial growth of the number of interconnections with the size of the
Petri net is remedied. The effectiveness of the SDCPN based compositional
specification is illustrated for an air traffic example of a taxiing aircraft cross-
ing an active runway.

After a SDCPN®"t has been specified for a particular application, the
next step is to analyse it, and to investigate and assess particular charac-
teristics of the application. This can be done in various ways; for exam-
ple, the DCPN can be directly used as basis of a computer (e.g. Monte
Carlo) simulation. Instead of this, or in addition to this, a particular SDCPN
property can be used: In [7] it has been proven that, under a few condi-
tions, a SDCPN is equivalent to a particular powerful subclass of hybrid state
Markov process, named Generalised Stochastic Hybrid Process (GSHP), see
16-BujorianuLygerosGloverPola2003. Due to this equivalence, typical GSHP
properties can be used to analyse the SDCPN“™, even without elaborating
the particular transformation from SDCPN®™ to GSHP for the application
considered, and Monte Carlo simulations can be run which make use of GSHP
mathematical properties. By those means, a collision risk model for Free Flight
is instantiated using Petri-nets and the new interconnection mapping types.
The usage of the new interconnection mapping types improves simplicity,
readability and resilience against modelling errors.
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