

NLR – Dedicated to innovation in aerospace

Improving Air-to-Air Combat Behavior
Through Transparent Machine Learning

C u s t o m e r
National Aerospace Laboratory NLR

NLR-TP-2014-259 - July 2014

N a t i o n a l A e r o s p a c e L a b o r a t o r y N L R
A n t h o n y F o k k e r w e g 2
1 0 5 9 C M A m s t e r d a m
T h e N e t h e r l a n d s
T e l + 3 1 (0) 8 8 5 1 1 3 1 1 3
w w w . n l r . n l

UNCLASSIFIED

EXECUTIVE SUMMARY

UNCLASSIFIED

Report no.
NLR-TP-2014-259

Author(s)
A. Toubman
J.J.M. Roessingh
P. Spronck
A. Plaat
H.J. van den Herik

Report classification
UNCLASSIFIED

Date
July 2014

Knowledge area(s)
Training, Missiesimulatie en
Operator Performance

Descriptor(s)
Machine Learning
Multi-Agent Systems
Autonomous Agents
Computer Generated Forces
Air Combat

This report is based on a paper submitted to the I/ITSEC 2014, Orlando, Florida,
December 1-4, 2014..

Improving Air-to-Air Combat
Behavior Through Transparent
Machine Learning

Problem area
As the use of simulations for military training becomes more

prevalent, the need for properly behaving computer generated

forces (CGFs) increases. For each new training scenario, new

behavior has to be defined. However, access to expert knowledge

is costly, and newly defined behavior will be restricted to the

particular training scenario. Machine learning techniques may

offer a solution to these problems by automatically generating

CGF behavior. Because traditional machine learning techniques,

such as neural networks and evolutionary learning, produce

opaque behavior models that are hard to understand and reuse,

we turn to the Dynamic Scripting (DS) method.

Description of work
We applied DS, a machine learning technique from the world of

video games, to the air combat domain. It was designed for

Improving Air-to-Air Combat Behavior Through Transparent Machine

Learning

UNCLASSIFIED

National Aerospace Laboratory NLR
Anthony Fokkerweg 2, 1059 CM Amsterdam,
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
Telephone +31 (0)88 511 31 13, Fax +31 (0)88 511 32 10, www.nlr.nl UNCLASSIFIED

functional and computational requirements, such as fast and transparent learning, that are also

applicable to military training simulations. DS takes behavior rules and combines them into

scripts, which govern the behavior of CGFs in a simulation. Because air combat missions are

usually flown in multiples of two, we extended DS with a team coordination method, called DS+C.

This coordination method makes use of behavior rules, and therefore perfectly fits into the DS

learning mechanism. Using DS+C, agents learned which actions to coordinate in order to achieve

better results.

Results and conclusions
DS+C was tested in a 2v1 air combat simulation, and was compared to regular DS. We found that

agents using DS+C reach a 20% higher win/loss ratio than those using regular DS. Also, agents

using DS+C reach these higher win/loss ratios faster. Therefore, we conclude that DS+C maintains

the transparency of the DS learning method, while improving the efficiency of the learning

process and the effectiveness of the learned behavior.

Applicability
Because of its speed and ease of use, the DS+C method is very practical to implement and to

generate behavior for CGFs with. The method has already been applied in a simple air combat

simulation, and can easily be transferred to more complex settings (2v2 and 4v4 instead of 2v1).

DS only has to be initialized once, with behavior rules based on domain knowledge concerning

the tactical simulation. Because team coordination is an important trait in many domains, the

DS+C method may also provide positive results in for example land-based or naval combat

scenarios.

http://www.nlr.nl/

Improving Air-to-Air Combat
Behavior Through Transparent
Machine Learning

A. Toubman, J.J.M. Roessingh, P. Spronck1, A. Plaat1 and
H.J. van den Herik2

1 T i lburg Un iversity
2 Le id en Univers ity

C u s t o m e r
National Aerospace Laboratory NLR
July 2014

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

2 | NLR-TP-2014-259

This report is based on a paper submitted to the I/ITSEC 2014, Orlando, Florida, December 1-4, 2014.

The contents of this report may be cited on condition that full credit is given to NLR and the authors.

This publication has been refereed by the Advisory Committee AIR TRANSPORT.

Customer National Aerospace Laboratory NLR

Contract number -----

Owner NLR

Division NLR Air Transport

Distribution Unlimited

Classification of title Unclassified

Date July 2014

Approved by:

Author

Armon Toubman

Reviewer

Remco Meiland

Managing department

Harrie Bohnen

Date Date Date

 NLR-TP-2014-259 | 3

Summary

Training simulations, especially those for tactical training, require properly behaving computer

generated forces (CGFs) in the opponent role for an effective training experience. Traditionally,

the behavior of such CGFs is controlled through scripts. There are two main problems with the

use of scripts for controlling the behavior of CGFs: (1) building an effective script requires expert

knowledge, which is costly, and (2) costs further increase with the number of ‘learning events’ in

a scenario (e.g. a new opponent tactic). Machine learning techniques may offer a solution to

these two problems, by automatically generating, evaluating and improving CGF behavior. In this

paper we describe an application of the dynamic scripting technique to the generation of CGF

behavior for training simulations. Dynamic scripting is a machine learning technique that

searches for effective scripts by combining rules from a rule base with predefined behavior rules.

Although dynamic scripting was initially developed for artificial intelligence (AI) in commercial

video games, its computational and functional qualities are also desirable in military training

simulations. Among other qualities, dynamic scripting generates behavior in a transparent

manner. Also, dynamic scripting’s learning method is robust: a minimum level of effectiveness is

guaranteed through the use of domain knowledge in the initial rule base. In our research, we

investigate the application of dynamic scripting for generating behaviors of multiple cooperating

aircraft in air-to-air combat. Coordination in multi-agent systems remains a non-trivial problem.

We enabled explicit team coordination through communication between team members. This

coordination method was tested in an air combat simulation experiment, and compared against a

baseline that consisted of a similar dynamic scripting setup, without explicit coordination. In

terms of combat performance, the team using the explicit team coordination was 20% more

effective than the baseline. Finally, the paper will discuss the application of dynamic scripting in a

practical setting.

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

4 | NLR-TP-2014-259

 NLR-TP-2014-259 | 5

Content
Abbreviations 6

1 Introduction 7

2 Dynamic Scripting and Related Work 9

3 Dynamic Scripting with Team Coordination 12

4 Case Study 14

5 Results 17

6 Discussion 19

7 Conclusions and Future Work 21

Acknowledgements 22

References 23

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

6 | NLR-TP-2014-259

Abbreviations

Acronym Description
AI Artificial Intelligence

CAP Combat Air Patrol

CGF Computer Generated Force

DS(+C) Dynamic Scripting (with Coordination)

NLR National Aerospace Laboratory NLR

TP Turning Point

 NLR-TP-2014-259 | 7

1 Introduction

Simulation has become a mainstay in many fields (Bair & Jackson, 2013). In the field of military

training, simulation is an invaluable tool. Real-life exercises are expensive, dangerous and time-

consuming to set up, while simulations are relatively cheap, safe, and flexible (Fletcher, 2009;

Laird, 2000).

In military simulations, the roles of allies and opponents are often performed by computer

generated forces (CGFs). In high-fidelity simulators, the fidelity of the behavior of these CGFs is

crucial to the overall training experience. Traditionally, the behavior of CGFs is scripted

(Roessingh, Merk, Huibers, Meiland, & Rijken, 2012). Production rules—rules that map conditions

to actions—are manually crafted to suit specific (types of) CGFs. In complex domains such as air

combat, scripts for CGFs rapidly become complex and require substantial domain expertise to

create.

Artificial Intelligence techniques may provide a solution to the problem of generating behavior

for CGFs. Many different approaches have already been attempted. The use of cognitive models

is one seemingly popular approach, which can be found in well-known systems such as TacAir-

Soar (Jones et al., 1999) and ACT-R (Anderson, 1996). At the National Aerospace Laboratory

(NLR), recent work on CGF behavior has focused on optimizing cognitive models with machine

learning techniques such as neural networks and evolutionary learning (Koopmanschap,

Hoogendoorn, & Roessingh, 2013). However, such methods result in large, opaque behavior

models which are hard to understand and reuse.

In this paper, we return to scripts for the transparency of production rules. To ease the difficulty

of composing scripts that should result in effective behavior based on the rules given, we apply a

machine learning technique called dynamic scripting (DS) (Spronck, Ponsen, Sprinkhuizen-Kuyper,

& Postma, 2006). DS was originally developed for the generation of behavior for AI characters in

video games and was designed with certain functional and computational characteristics in mind

that transfer well to the domain of military training.

We extended DS with a method for team coordination, which we call DS+C. This extension

enables CGFs to automatically learn to coordinate actions through communication. At the end of

the learning process, the resultant coordination between the CGFs is understandable and

transparent. This transparency is a direct result of the fact that DS requires premade rules to

learn from and outputs combinations of these rules. We demonstrate both the machine learning

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

8 | NLR-TP-2014-259

process and the DS+C extension with an air combat simulation experiment. The results of this

experiment show that the use of DS+C leads to a 20% performance increase over the use of DS

without team coordination.

This work is targeted to practical military applications and, as such, contains new material that

builds on previous work (Toubman, Roessingh, Spronck, Plaat, & van den Herik, 2013).

 NLR-TP-2014-259 | 9

2 Dynamic Scripting and Related Work

Dynamic scripting is an automated learning technique based on reinforcement learning,

introduced by Spronck (Spronck et al., 2006). In essence, DS uses a weighted rule selection

mechanism to select rules from a rule base and generate a script. The generated script governs

the behavior of a simulated agent during an encounter with some opponent agent or agents.

The rule base is initialized with predefined behavior rules. These rules are pieces of behavior

based on domain knowledge. In other words, the rule base should be initialized with rules that

typify behavior that is possibly useful to the agent in situations that this agent might encounter.

The DS algorithm assigns a constant initial weight to each rule in the rule base, and begins a

selection process. A preset number of rules are randomly selected from the rule base according

to their weights. The selected rules form a script, which is used to control an agent during an

encounter. The result of this encounter is fed back to the DS algorithm which calculates a fitness

score based on this result. The calculated fitness score is used to update the weights of the rules

that were activated during the encounter, either positively or negatively. The change in weight

affects the likelihood of the rules to be selected for a new script. This process is repeated until

some goal is reached. For example, in the air combat domain, such a goal might be reaching a

point at which scripts are generated that can reliably defeat an opposing force. The DS learning

process is illustrated in Figure 1. See (Spronck et al., 2006) for full details on the DS algorithm.

Because of the stochastic nature of the rule selection mechanism, it is important to evaluate

samples of generated scripts. To this end, Spronck defined a measure called the turning point

(TP), which is the encounter after which the learning agents reached a higher fitness value than

the opposing agents for at least 10 consecutive encounters (the number 10 was picked

arbitrarily). At the turning point, it can be said that the learning agents are consistently

outperforming their opponents.

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

10 | NLR-TP-2014-259

DS was intended as a method for automated generation of behavior for AI characters in

commercial video games. In the video game industry, automated generation of AI behavior is

rarely used because of the possibility of unwanted behavior emerging, which lowers the overall

quality of the game and leads to negative reviews. DS was designed with several computational

and functional requirements in mind to address this issue. These requirements are listed as

speed (the learning algorithm should be fast), effectiveness (all behavior should be at least

reasonably effective in some situations), robustness (results are sampled and extreme results do

not lead to extreme weight updates), clarity (scripts are easily understood by humans), and

variety (the selection mechanism ensures behavior will be generated in different combinations).

The same requirements are applicable in the field of military training simulations, where the

quality of the behavior of constructive agents is at least as important as it is in commercial video

games.

In practice, DS can be applied in both an online and offline fashion. In other words, DS can be

used to learn initial behavior in an automated way (i.e., offline learning). Then, when the weights

of the rules have sufficiently converged, the algorithm can be left active when the learning agents

are set up against human trainees. When the result of such an encounter is fed back to DS, the

weights of the rules will again be updated. This way, while the training simulations are taking

place, the agents will still be able to learn and try different scripts against different strategies that

the humans might be employing. Alternatively, the learning process can be stopped and the

resulting rules and their weights can be inspected. Static scripts can then be manually extracted

and possibly tweaked.

Figure 1. Dynamic scripting in the context of two learning agents in an air combat simulation.

 NLR-TP-2014-259 | 11

When DS is used to control a team of agents (by assigning each agent its own rule base and DS

instance, i.e., decentralized control), team behavior is the result of emergence. However, it may

be desirable and even advantageous to have the agents in a team display some form of team

coordination. Especially in military training simulations, agents have to be able to coordinate

movements like staying in formation and performing tactical maneuvers.

In general, there are two methods of team coordination: centralized and decentralized

coordination (van der Sterren, 2002). With centralized coordination, one agent coordinates the

actions of multiple agents. With decentralized coordination, all agents in a team may influence

each other’s actions by sharing information through some form of communication.

For this paper, we are interested in exploring possible interactions between agents in the air

combat domain. For that reason, we have chosen to implement decentralized coordination. With

DS, decentralized control translates to multiple agents having their own rule base and instance of

the learning algorithm. We achieved coordination between the agents through communication.

Adding communication to multi-agent systems is not a trivial problem (Stone & Veloso, 2000).

For this reason, we attempted to fit the communication scheme (and therefore also the

coordination) into the learning mechanism of DS.

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

12 | NLR-TP-2014-259

3 Dynamic Scripting with Team Coordination

We implemented team coordination with DS through communication between agents resulting

in a technique we call DS+C. By utilizing the production rules for communication by sending

messages, and letting these messages trigger behavior in the recipients, the DS algorithm is able

to learn which exchanges of messages result in the most effective team behavior.

In general, the communication scheme consists of three parts. First, one additional action is

added to each rule of each agent. This action is to send a message to team members containing

the intention of that rule. For example, rules for agents in an air combat simulation might be

described as ‘evasive’ or ‘aggressive’.

The second part of the communication scheme is a new component for the agents. This

component stores messages that are received, until the agent has processed its rules. This

component is needed to account for any asynchronous processing between the agents.

The third part is the addition of new rules to the rule bases of the agents. These rules, (i.e., the

‘coordination rules’), are designed in such a way that the reception of messages containing

intentions of other agents trigger some form of corresponding behavior. The complete

communication scheme is shown in Figure 2.

Using this method, we obtain agents with rule bases that contain rules that are proactive (act and

send messages) and reactive (act on received messages) regarding team coordination. The rule

bases can also contain variants of the rules that send messages or act on received messages.

Because of the way the DS learning algorithm works, the rules are recombined into scripts, and

tested in simulated encounters. This way, the agents are able to learn which exchanges of

messages lead to the most effective behavior.

The specificity of the intentions that are sent in the messages should be tailored to the

application. If the intentions are described too narrowly, it is possible that DS will not be able to

match up the proactive rules of one agent with the right reactive rules in another agent.

However, if the intentions are described too widely, the chance of unrelated behavior being

coordinated between agents increases.

 NLR-TP-2014-259 | 13

Figure 2. Example of DS+C in action. (1) Proactive and reactive coordination rules are added to the rule
bases. The left rule base shows two example proactive rules, the right rule base shows two example
reactive rules. Variations on the same rules are made to give the DS algorithm more options to explore.
(2) The DS algorithm selects rules from the rule bases to form scripts (in this case, one rule per script). (3)
Agent A’s rule is activated by an incoming missile. A turns, and sends a message “evading” to B. This
activates B’s rule, causing B to turn.

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

14 | NLR-TP-2014-259

4 Case Study

As an exploratory study, we tested the application

of DS+C in a custom air-to-air combat simulation. In

the simulation, a formation of two blue fighters

(“the blues”), a lead and a wingman, had to

eliminate a single red fighter. The red fighter flew a

Combat Air Patrol (CAP) (see Figure 3) to defend an

area of airspace. The mission of the blues was

considered successful if they eliminated the red

fighter without any losses on their own side. The

mission of red was to eliminate all fighters it

detected. Figure 4 shows a screenshot of the

simulation.

The behavior of the blues was governed by scripts

generated using the DS+C method. The rules used

by the blues are divisible into roughly three sets.

The first set consists of default rules. These are rules

that define basic behavior that is needed in every encounter, and on which the agents can fall

back if no other rules apply. These rules are included in every script, and their weights are left

unchanged by the DS+C process. An example of a default rule is to fly in the direction of the

airspace that red is patrolling if no other rule applies.

The second set consists of general rules for air combat. These rules define behavior such as

tracking enemies on the radar, firing missiles at enemies and evading incoming missiles. These

rules are based on domain knowledge, although highly simplified to illustrate the principles. Also,

these are the rules that send the intention of the agent as a message (i.e., the proactive rules).

The third set consists of the coordination rules. These are the reactive rules that activate in

response to the reception of messages from other agents (or in our case, just the other blue

agent).

DS+C generated scripts with six rules plus the default rules. Each rule base had 31 rules that

started with a weight of 50. Each rule was also manually assigned a priority number. In case

multiple rules activated at the same time, this priority number would be used to determine

Figure 3. The scenario used in the case
study. The blue fighters (left) fly towards the
red fighter (right). The red fighter is flying a
Combat Air Patrol (CAP).

Figure 4. Screenshot of the simulation.

 NLR-TP-2014-259 | 15

precedence. In case the priority numbers were tied, the rule with the highest weight would be

chosen. A sample of four rules is shown in Table 1.

The red fighter used three basic tactics which were implemented as three static scripts. With the

Default tactic, red flew a basic CAP and engaged all enemies it detected, as described earlier. Red

also used an Evading tactic with which it would try to evade the radar of the blues, and a Close

Range tactic with which it would only fire missiles if the blues were in close range (that is, closer

than with the Default tactic). These three basic tactics each had an alternative version in which

red would fly its CAP in clockwise direction rather than in counter-clockwise direction, to

introduce more variety in the encounters. Finally, to test how well the blues would be able to

learn generalized behavior, red was given a composite tactic which consisted of the three basic

tactics plus their alternative versions. With these mixed tactics, red randomly selected a tactic

and would use it until it lost an encounter, at which point it would randomly select a new tactic

to use.

DS uses a fitness function to measure the performance of agents in an encounter. We measured

the performance of the blues using the following fitness function:

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �0.25 + (0.5 ∗ 𝑤𝑤𝑤𝑤𝑤𝑤)� + 0.125 ∗ 𝑠𝑠𝑠𝑠𝑠 + 0.125 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (1)

In Equation 1, winner is 1 if the blues won or 0 if they lost; speed is 1 minus the ratio of the

duration of the encounter to the maximum allowed duration; and resources is a value between 0

and 1 based on the number of missiles spent in the trial (stimulating the blues to eliminate red

with as few missiles as possible). The fitness function is used to calculate the weight adjustments

Table 1. A sample of the rules that the blues used in the experiment.

Rule Priority
If my teammate is alive, then fly in a ‘2-ship element’ formation 1

If my Radar Warning Receiver detects an enemy radar, then turn approximately towards

that radar.

6

If my radar is in ‘lock’ mode and I have missiles left and I am within 80 units from the

enemy, then fire a missile.

9

If I receive a message that my teammate is evading the enemy’s radar, change my heading

90 degrees plus the approximated relative bearing to the nearest enemy radar that is

detected by my Radar Warning Receiver.

6

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

16 | NLR-TP-2014-259

between trials. Unfortunately there is no standard way to do this, as the calculations have to be

tailored to the output of the fitness function. We used the following function:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = max (50 ∗ �(𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 2) − 1�,−25) (2)

The constants in Equation 2 represent the balance between reward and punishment. For

example, we set the maximum negative weight adjustment to -25, such that rules that started at

the initial weight of 50 would still have a reasonable chance to be selected in a subsequent trial.

Next, we compare the performance of DS+C to that of regular DS. In order to do so, we first

define performance in terms of efficiency (learning speed) and effectiveness (combat results).

We define effectiveness as the mean win/loss ratio during a learning episode. It is difficult to

define the efficiency of the DS algorithm, because it is hard to establish precisely when stationary

performance is reached. Both the DS algorithm and the simulated environment are stochastic by

nature. For this reason, it is unlikely that the DS algorithm will converge to a single optimal script.

A performance measure is needed that takes this fact into account.

To deal with the inherent variations in the learning process, we define the turning point measure

TP(x) (based on Spronck’s TP measure (Spronck et al., 2006)) as the encounter after which the

blues have won x percent of the last 20 encounters. The window size of 20 encounters was

chosen to allow for a sufficient number of evaluation points during a learning episode. A learning

episode consisted of 250 encounters. The x thus represents the chance that at TP(x) a winning

script will be generated. It now follows that an early TP(x) represents a more efficient learning

process, while a late TP(x) represents a less efficient learning process.

Two sets of experiments were run. In the first set, the blues used regular DS, while in the second

set they used DS+C. Red used one of the seven tactics described earlier. The results of the

experiments are described in the next section.

 NLR-TP-2014-259 | 17

5 Results

For each of the basic tactics used by red, results were averaged over 10 learning episodes, with

each episode consisting of 250 trials. In the case of the mixed tactics, the results were averaged

over 100 learning episodes for noise reduction purposes.

The average TP(x) was calculated with x being 50%, 60%, 70% and 80% wins, for the performance

of the blues against each of red’s tactics. These specific values for x were chosen because they

represent the most interesting ranges: win/loss ratios below 50% mean a majority of losses,

while win/loss ratios over 80% are unlikely due to the stochastic nature of DS. For the mixed

tactics, the TPs were compared using independent two-sample t-tests. Learning curves were

created using a rolling average of the win/loss ratio, with a window of 20 encounters. Also, a log

of the weight changes was kept to be able to see to what extent the coordination rules were

selected by the DS+C agents.

Table 2 shows the TPs of the blues using DS and DS+C against red’s individual basic tactics and

mixed tactics. Independent two-sample two-tailed t-tests show that against the mixed tactics at

TP(50%), the mean TPs are achieved significantly earlier using DS+C (t = 3.85, p = 0.00016) at the

a = 0.05 significance level. The same holds for TP(60%) (t = 3.60, p = 0.00039), TP(70%) (t = 3.60, p

= 0.00039), and TP(80%) (t = 2.46, p = 0.015).

Figure 5 shows the learning curves of the agents with DS and DS+C against red’s mixed tactics.

After around 100 trials, both the DS and DS+C agents seem to reach a plateau. After the first 100

encounters, DS and DS+C maintain a mean win/loss ratio of respectively 0.53 and 0.63. During

the entire learning process, the DS+C agents clearly outperformed the DS agents, with a mean

difference in win/loss ratio of 20.3%.

We found in the simulation logs that the coordination rules were selected and activated multiple

times. Several rules out of the 31 rules each blue had in its rule base received particularly high

weights. The blue lead favored one rule in particular, with a mean final weight of 178.6. This rule

stated ‘if I receive a message that my wingman is evading an enemy, turn approximately towards

that enemy’. The blue wingman mainly favored two rules that made it perform evasive actions

when it received a message from the lead that it was trying to avoid being detected by red, with

mean final weights of 103.8 and 106.6.

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

18 | NLR-TP-2014-259

The rule that was favored the most in the case without coordination was the ‘beam maneuver’

(flying perpendicular to an enemy’s radar to avoid detection). This rule received high weights

from both the blue lead (386.7) and the blue wingman (323.5). Also, in all cases, the blues

preferred firing missiles from a greater distance.

Table 2. TPs of DS and DS+C against red’s basic tactics (aggregated results, 10 learning episodes per tactic) and the
mixed tactics (averaged over 100 learning episodes).

 TP(50%) TP(60%) TP(70%) TP(80%)
Tactics of red DS μ σ μ σ μ σ μ σ
Patrol DS 30 13.9 33.1 14.3 48.1 20.6 108 74.3

 DS+C 23.4 5.3 25.8 7.2 28.1 8.4 31.2 11.1
Patrol (Evading) DS 49.4 17.3 67.7 31 78.3 28 108.9 59.5

 DS+C 28.1 8.1 34.8 10.4 52.4 38.6 77.9 77.9
Patrol (Close Range) DS 22.4 3.4 24.2 5.9 29.6 12 33.1 13.7

 DS+C 25.7 8.9 35.9 17.7 58 61.2 63.6 68.7
Patrol (alt.) DS 42.3 33.1 62.5 42.1 90.9 43.7 114.1 64.7

 DS+C 31.1 10.5 35.3 10.2 43.8 12.7 73.8 65.3
Patrol (Evading, alt.) DS 131.3 76.4 137.5 74.5 156 82.7 200.9 58.2

 DS+C 54.4 70.7 66.4 67.8 91.3 86.7 143.6 92.7
Patrol (Close Range, alt.) DS 59.1 71 71.6 67.3 121.2 82.8 169.4 92.5
 DS+C 45.9 17.1 90 57.9 116.4 75.6 154.2 77.5
Mixed DS 83.8 78.1 94.5 78.9 110.5 78.4 129.9 79.1
 DS+C 48.4 48.4 60.9 49.6 75.8 55.5 103.9 69.7
Basic (average) DS 55.8 56.7 66.1 57.8 87.3 66.5 122.4 82
 DS+C 34.8 31.3 48 42.7 65 61.3 90.7 80.6

Figure 5. Rolling average (window size 20) of win/loss ratio of the blues against red’s mixed tactics, with DS and DS+C.
Ratios are averaged over 100 learning episodes.

0,2

0,4

0,6

0,8

0 50 100 150 200 250

M
ea

n
w

in
/lo

ss
 ra

tio

Encounter

DS

DS+C

 NLR-TP-2014-259 | 19

6 Discussion

Over a large set of experiments, DS+C showed clear advantages over traditional DS for multi-

agent reinforcement learning. Throughout our experiments, the DS+C agents won more often

than DS agents from an opponent that frequently changed its tactics. The DS+C agents also

improved on the TPs set by the regular DS agents in encounters against both a predictable (basic

tactics) and unpredictable (mixed tactics) agent. Coordination in multi-agent systems is an

extensively researched topic with many open issues and learning opportunities (Stone & Veloso,

2000). The literature shows that the addition of coordination to a multi-agent system does not

automatically lead to increased performance (Balch & Arkin, 1994), which makes the results

obtained with DS+C especially noteworthy.

We used the newly defined TP(x) measure to compare the efficiency of DS and DS+C. Against an

opponent with mixed tactics, the DS+C agents reached the TP(x) at 50%, 60%, 70% and 80%

significantly earlier than the agents with regular DS did. Similar patterns can be seen in the

results for the basic tactics. In other words, in our experiments, these ‘milestones in learning’

were reached earlier by DS+C. Therefore, we may provisionally conclude that DS+C agents learn

more efficiently than DS agents.

The learning curves in Figure 5 show that the DS+C achieved and maintained a higher average

win/loss ratio throughout the learning process, against an opponent using mixed tactics.

Therefore, we provisionally conclude that apart from being more efficient, DS+C agents are also

more effective than DS agents, both during and after the learning process.

We mainly attribute the higher performance of the DS+C agents to the higher count of rules

leading to evasive actions in the rule bases. The blues lost an encounter if a single blue was hit by

a missile from red.1 Therefore cautious behavior was rewarded. This can be seen in the high

weights that several evasion rules received. This also possibly explains the earlier convergence to

optimal scripts, since the DS+C agents had more good options available. However, the

coordination rules were not intentionally biased towards evasive actions, and it is possible that

more aggressive rules would have a similar effect. At the same time, the fact that the blues

together had more missiles at their disposal than red is likely to have contributed to the

emergence of a low-risk strategy as well.

1 The possibility of partial wins—situations where red would shoot down one blue, but the surviving blue would still
destroy red—was considered, but a correct weight update for both blues was hard to achieve due to the interactivity
of the rules of the blues.

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

20 | NLR-TP-2014-259

The results show a slightly different picture against the opponent using each of the basic tactics.

As Table 2 shows, DS+C also reached the TPs earlier against the basic tactics on average, but with

a smaller lead. Only against the Close Range tactic did DS achieve the TPs earlier. We hypothesize

that if DS was able to rapidly find optimal behavior against this tactic of ‘red’, then the additional

coordination rules for DS+C only hindered the convergence to successful rules, resulting in later

TPs.

Furthermore, we detected a trend in the results of both DS and DS+C having relatively late TPs

against the alternative versions (with reversed direction) of red’s tactics. Additional experiments,

in which the formation of the blues was mirrored, also led to later TPs. This could be considered

an artefact in the experiments, or it could be an indication that the exact spatial configuration of

cooperating aircraft is a relevant factor in air combat.

Overall, we find that DS+C is an extension that has the ability to improve both the efficiency and

effectiveness of DS. The results found here could be improved even further with a better

understanding of the interactions and the effects of the rules that were used.

 NLR-TP-2014-259 | 21

7 Conclusions and Future Work

We have presented a method for team coordination through communication using DS, called

DS+C. DS is a transparent machine learning method, which combines predefined rules to produce

behavior for agents. Our DS+C extension provides team coordination using the same transparent

learning mechanism. The main benefit of DS+C over DS that we have found was to better

generalize learned behavior against unpredictable opponents. This way, the agents will be better

suited for use in training simulations involving human participants who might act unpredictably

as well.

We would like to emphasize that DS was originally developed for use in commercial video games.

Since video games and training simulations share many requirements regarding behavioral

realism and quality control, we advise to maintain a strong link between these fields.

In practical terms, we find that DS can be used in three different ways. First and foremost, it can

be used to rapidly generate behavior for CGFs. This can be done in an offline fashion by setting

up the learning agents against other AI enemies. Second, DS can be used to keep the behavior of

the agents adaptive in encounters against humans. By keeping the learning mechanism active

during the actual training sessions, the DS agents will continue to learn and adapt to the behavior

of the human trainees. Third, DS provides a transparent test bed for research on agent behavior.

This is demonstrated in how we used the DS algorithm to determine which exchanges of

messages provided the most benefit to our learning agents. The same setup could be used for

similar behavior extensions.

Future work will focus on the use of only one DS instance to generate behavior for multiple

agents. The reduced complexity might have an even greater positive impact on learning speeds.

Furthermore, the design and application of more elaborate pre-scripted tactics using DS will be

investigated, with the goal of adding more realistic behavior options.

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

22 | NLR-TP-2014-259

Acknowledgements

The authors thank Lt Col Roel Rijken (Royal Netherlands Air Force) for the first version of the

simulation environment and advice regarding air combat tactics, Pieter Huibers for further work

on the simulation and personal assistance, and Xander Wilcke for even further work on the

simulation.

 NLR-TP-2014-259 | 23

References
Anderson, J. (1996). ACT: A simple theory of complex cognition. American Psychologist, Vol 51(4),

355–365. doi:10.1037/0003-066X.51.4.355

Bair, L., & Jackson, J. (2013). M&S Professionals Domains, Skills, Knowledge, and Applications. The
Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), 1435–1445.
Retrieved from http://ntsa.metapress.com/index/X0M222V306264583.pdf

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999). Automated
intelligent pilots for combat flight simulation. AI Magazine, 20(1), 27–42. Retrieved from
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1438

Koopmanschap, R., Hoogendoorn, M., & Roessingh, J. J. (2013). Learning Parameters for a
Cognitive Model on Situation Awareness. In The 26th International Conference on
Industrial, Engineering & Other Applications of Applied Intelligent Systems (pp. 22–32).
Amsterdam, the Netherlands.

Roessingh, J. J., Merk, R.-J., Huibers, P., Meiland, R., & Rijken, R. (2012). Smart Bandits in air-to-air
combat training: Combining different behavioural models in a common architecture. In 21st
Annual Conference on Behavior Representation in Modeling and Simulation. Amelia Island,
Florida, USA.

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., & Postma, E. (2006). Adaptive game AI with
dynamic scripting. Machine Learning, 63(3), 217–248. doi:10.1007/s10994-006-6205-6

Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3), 345–383.

Toubman, A., Roessingh, J. J., Spronck, P., Plaat, A., & van den Herik, J. (2013). Dynamic Scripting
with Team Coordination in Air Combat Simulation (TP-2013-507). Amsterdam, the
Netherlands. Retrieved from http://reports.nlr.nl:8080/xmlui/handle/10921/927

Van der Sterren, W. (2002). Squad Tactics: Team AI and Emergent Maneuvers. In S. Rabin (Ed.), AI
Game Programming Wisdom (pp. 233–246). Charles River Media, Inc.

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning

24 | NLR-TP-2014-259

This page is intentionally left blank.

W H A T I S N L R ?

The NL R i s a D utc h o rg an i s at io n th at i de n t i f i es , d ev e lop s a n d a p pl i es h i gh -t ech know l ed g e i n t he

aero s pac e sec tor . Th e NLR ’s ac t i v i t i es ar e soc ia l ly r e lev an t , m ar ke t-or i en ta te d , an d co n d uct ed

no t- for - p ro f i t . I n t h i s , th e NL R s erv e s to bo ls te r th e gove r nm en t ’s i n nova t iv e c apa b i l i t ie s , w h i l e

a lso p romot i ng t he i n nova t iv e a n d com p et i t iv e ca pa c i t ie s o f i t s p ar tn er com pa ni e s .

The NLR, renowned for i ts leading expert ise, professional approach and independent consultancy, is

staffed by c l ient-orientated personnel who are not only highly ski l led and educated, but a lso

continuously strive to develop and improve their competencies. The NLR moreover possesses an

impressive array of high qual ity research fac i l i t ies.

NLR – Dedicated to innovation in aerospace

w w w . n l r . n l

	Cover

	Executive summary

	Title page

	Summary
	Content

	Abbreviations

	1 Introduction
	2 Dynamic Scripting and Related Work
	3 Dynamic Scripting with Team Coordination
	4 Case Study
	5 Results
	6 Discussion
	7 Conclusions and Future Work
	Acknowledgements
	References

