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Problem area 
In literature on Bayesian filtering of 
stochastic hybrid systems most 
studies are limited to Markov jump 
systems. The main exceptions are 
approximate Bayesian filters for 
semi-Markov jump linear systems. 
These studies showed that nonlinear 
filtering becomes much more 
challenging under non-Markov 
jumps. This challenge however does 
not apply to particle filtering of 
stochastic hybrid systems. In 
practice, non-Markov jumps rather 
are the rule, not the exception. For 
example, on an airport, the 
probability at which a taxiing 
aircraft makes a maneuver depends 
heavily on its position; e.g. when 
taxiing near a crossing on the 
airport, the probability of starting a 
turn is relatively high, whereas 
outside these areas this probability 
may be very small. A similar 
difference applies to the probability 
of an aircraft making a turn when it 
is flying near a waypoint versus 
flying halfway two waypoints. 
Similar non-Markov jump behavior 
also applies to other traffic 
modalities, and to any other 
intelligently controlled system. 
Nevertheless in target tracking, 
particle filtering studies have 
continued to focus on Markov jump 
systems 

Description of work 
This report considers filtering of 
stochastic hybrid systems that go 
beyond the well known Markov 
jump system. First the non-
Markovian jump system studied in 
this report is formally defined. Next 
the exact Bayesian filter recursion 
for this system is developed and the 
implication of going beyond 
Markov jumps is shown. 
Subsequently a novel particle filter 
for jump nonlinear systems is 
developed which is referred to as 
the Interacting Multiple Model 
particle filter (IMMPF). For 
comparison Monte Carlo 
simulations are performed. 
 
Results and conclusions 
Through Monte Carlo simulations 
IMMPF has been tested and 
compared with standard Particle 
Filter (PF) and IMM. The results 
show that the IMMPF performs 
very well, even in cases where the 
standard PF or IMM have problems. 
 
Applicability 
The applicability of the work 
comprises the implementation of 
the resulting filtering algorithms in 
a multitarget tracker, in particular 
the Advanced suRveillance Tracker 
And Server ARTAS. 
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Abstract—The standard way of applying particle filtering to 

stochastic hybrid systems is to make use of hybrid particles, 
where each particle consists of two components, one assuming 
Euclidean values, and the other assuming discrete mode 
values. This paper develops a novel particle filter for a 
discrete-time stochastic hybrid system. The novelty lies in the 
use of the exact Bayesian equations for the conditional mode 
probabilities given the observations. Therefore particles are 
needed for the Euclidean valued state component only. The 
novel particle filter is referred to as the Interacting Multiple 
Model (IMM) particle filter because it incorporates a filter  
step which is of the same form as the interaction step of the 
IMM algorithm. Through Monte Carlo simulations, it i s 
shown that the IMM particle filter has significant advantage 
over the standard particle filter, in particular fo r situations 
where conditional switching rate or conditional mode 
probabilities have small values. 

 
Keywords: Stochastic hybrid systems, Bayesian filtering, 

Particle filtering, state dependent switching, jump-nonlinear 
systems, non-Markov jumps, maneuvering target tracking. 

I. INTRODUCTION 

The paradigm of particle filtering has stimulated a 
renewed interest in exact Bayesian filtering of non-linear 
stochastic systems. In line with this, [1] recently developed 
the exact Bayesian filter for Markov jump non-linear 
systems. The aim of the current paper is to extend the exact 
Bayesian filter characterization to the much larger class of 
non-Markov jump non-linear systems, and subsequently to 
exploit this exact Bayesian characterization for the 
development of a novel particle filter for stochastic hybrid 
systems.  

In literature on Bayesian filtering of stochastic hybrid 
systems most studies are limited to Markov jump systems. 
The main exceptions are approximate Bayesian filters for 
semi-Markov jump linear systems [2] – [4]. These studies 
showed that nonlinear filtering becomes much more 
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challenging under non-Markov jumps. This challenge 
however does not apply to particle filtering of stochastic 
hybrid systems [5]. Hence there is no reason to continue 
focusing on Markov jump systems. In practice, non-Markov 
jumps rather are the rule, not the exception. For example, 
on an airport, the probability at which a taxiing aircraft 
makes a maneuver depends heavily on its position; e.g. 
when taxiing near a crossing on the airport, the probability 
of starting a turn is relatively high, whereas outside these 
areas this probability may be very small. A similar 
difference applies to the probability of an aircraft making a 
turn when it is flying near a way-point versus flying halfway 
two way-points. Similar non-Markov jump behavior also 
applies to other traffic modalities, and to any other 
intelligently controlled system. Nevertheless in target 
tracking, particle filtering studies have continued to focus 
on Markov jump systems [6] – [19]. 
 
In nonlinear filtering studies, the Sampling Importance 
Resampling (SIR) based approach [20] has surfaced as the 
baseline particle filter. It has shown to form an elegant and 
general approach towards the numerical evaluation of the 
conditional density solution of the Chapman-Kolmogorov-
Bayes (CKB) filter recursion [21] – [24]. For a large class 
of problems it has been shown that increasing the number of 
particles ensures weak sense convergence of the 
approximation density to the exact conditional density at a 
rate that is independent of or increases linearly with the 
state dimension of the process to be estimated [25] – [27]. 
This means that the SIR particle filter significantly relaxes 
the curse of dimensionality of CKB filtering. Practically, 
the SIR particle filter has found a large variety of useful 
applications, including some where established non-linear 
filtering approaches do not work at all, such as the visual 
tracking example of [28] and the track-before-detect 
example of [29]. Because of its generality and theoretical 
validity, the SIR particle filter has become a useful 
reference in numerically approximating CKB filter 
performance [18]. 
 

The SIR particle filter is also capable in approximating 
the CKB equations of a stochastic hybrid Markov process 

{ , }t tx θ , with tx  assuming values in n
R , and tθ  assuming 
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values in a finite set M  of possible modes [5]. Let { , }t tx θ  

be the hidden state process to be estimated from noisy 
observations, then the SIR particle filter use PN  particles, 

particle j of which has two components ( , )j j
t tx θ  at moment 

t, with j
tx  assuming an Euclidean value and j

tθ  assuming a 

mode value. Each SIR particle filter cycle from t-1 to t 
consists of three steps: 

• Evolution: For each of the pN  particles at moment t-1, 

draw a new hybrid particle ( , )j j
t tx θ  according to the 

Chapman-Kolmogorov  transition kernel; 

• Correction: For each of the pN  particles evaluate j
tµ  

as the likelihood of the measurement at moment t; 

given ( , )j j
t tx θ  and normalize the resulting jtµ ’s. 

• Resampling: Draw pN  independently identically 

distributed (i.i.d.) hybrid particle values ( , )j j
t tx θ , with  

from the sum of j
tµ  weighted Dirac measures at 

( , )j j
t tx θ . 

 
Successful application of this hybrid state version of the 
SIR particle filter has for example been shown for target 
tracking [6] – [7], signal processing [11] and failure 
monitoring and diagnosis [5]. In none of these example 
applications the conditional mode probabilities and/or 
switching rates assumed very small values. Otherwise, there 
might have been very few (or zero) particles for one or 
more of the mode values, and then the empirical density 
spanned by the particles with such a mode value does not 
form an accurate approximation of the mode probability or 
the corresponding mode conditional density. A brute force 
approach in compensating for sample degeneracy would be 
to increase the number of particles. The aim of this paper is 
to develop a more elegant approach in improving the SIR 
particle filter for stochastic hybrid systems.  
 
Degeneration of samples is a well known phenomenon in 
particle filtering. Hence in literature various mitigation 
approaches have been developed, i.e.: 

• Less frequent resampling, i.e. perform resampling 
only when the ”effective sample size” drops below 
a certain threshold [30].  

• Better resampling methods. [23] showed that a 
resampling method which systematically draws one 
random sample per group of samples having 

weight of 1/ pN  reduces the chance of sample 

degeneracy. Another good alternative is residual 
resampling [30]. A complementary advantage of 
systematic and residual resampling is that they 

work well without the need of ordering the samples 
according to their weights. 

• Boosting diversity by regularization, i.e. prior to 
resampling, replace each Dirac measure in the 
empirical distribution by an absolutely continuous 
distribution. This approach has largely been 
developed for particle filtering of stochastic 
processes that, without regularization, do not 
satisfy the regularity conditions under which the 
weak convergence to the exact conditional density 
is satisfied [12]. A valuable alternative is to insert 
a Monte Carlo Markov Chain (MCMC) move in 
each SIR cycle [31], [11]. 

• Importance density based resampling. This means 
that particle resampling anticipates how the 
weights per particle will evolve over the next 
prediction and correction steps. Each new particle 

sample receives a weight jtµ  that compensates for 

this importance resampling. The optimal 
importance density has been characterized by 
Doucet et al. [32]. Because exact implementation 
is hard, approximations are needed. Best known is 
the auxiliary resampling method by [33]. Other 
relevant approximate importance resampling 
methods have been developed by [32], [34] – [36]. 

• Rao-Blackwellization. This approach collects all 
state components into two vectors. One or more 
state components that satisfy a linear equation and 
that do not appear in the measurement equation, 
are placed in the first vector. The other state 
components are placed in the second vector. For 
the second vector, all filtering steps are performed 
through particles [37]. Per particle, the conditional 
density of the first vector follows from a Kalman 
filter, in which the value of the particle plays the 
role of the measurement, e.g. [9], [32], [38] – [40]. 

 
Typically an improvement of the SIR particle filter is 

used to reduce the number of particles needed to realize 
good filtering performance. Recently, [19] compared the 
effectiveness of importance density resampling and Rao-
Blackwellization SIR improvement methods with the 
baseline SIR particle filter. For some specific examples of 
tracking a frequently maneuvering target in clutter, 
importance density resampling in combination with less 
frequent resampling showed to be most effective in 
mitigating sample degeneracy and without significantly 
increasing the computational load per particle. 

 
All improvements of the SIR particle filter mentioned 

above have been developed with focus on Euclidean valued 
state estimation. This suggests there is room for 
improvement of the SIR particle filter with focus on the 
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finite valued state component. To make this work, we apply 
a novel kind of Rao-Blackwellization to a stochastic hybrid 
process. We collect all Euclidean valued components in one 
vector, and place the mode component only in the other 
vector. Subsequently we perform particle filtering to the 
Euclidean valued vector and apply the exact filter equations 
to the mode probabilities. Exactly the same splitting of 
mode and state components is used by the Rao-
Blackwellization application to a Markov jump linear 
system [32], but with the allocation of particles and exact 
filter equations the other way around. Independently of each 
other, [17] and [41] have recognized the value of this 
approach, with the latter including non-Markov jumps. 
Their particle filters for estimating the conditional densities 

of tx  given the mode tθ  are equivalent. However, the 

equations for the estimation of conditional mode 
probabilities differ as a result of the Markov/non-Markov 
jump difference. The current paper gives a full exposition 
of the more general approach developed by [41].  
 

The paper is organized as follows. Section II formally 
defines the non-Markovian jump system studied in this 
paper. Section III develops the exact Bayesian filter 
recursion for this system, and shows the implication of 
going beyond Markov jumps. Section IV develops a novel 
particle filter for jump nonlinear systems. This novel 
particle filter has an interaction step which follows from the 
initial derivation [42] of the Interacting Multiple Model 
(IMM) filter algorithm. For this reason, the novel particle 
filter is referred to as the IMM particle filter. Section V 
performs Monte Carlo simulations to compare the novel 
particle filters with the SIR particle filter and with the IMM; 
for a fair comparison with IMM, the example considered is 
a Markov-jump linear system. Through parameter variation, 
the different effects of rare and non-rare switching 
probability is discussed. Finally, Section VI draws 
conclusions.         

II.  FORMULATION OF THE PROBLEM 

We consider the following system of stochastic 
difference equations, on [0,T], T<∞, 

( )1, ,t t t tx a x wθ −=   (1) 

( )1 1, ,t t t tc x uθ θ − −=   (2) 

( ), ,t t t ty h x vθ=   (3) 

where the pair (θt, xt) represents the hybrid system state, and 
yt represents the observation at moment t, {wt} and {vt} are 
independent sequences of i.i.d. standard Gaussian variables 
of dimension n′  and m′  respectively, {ut} is an { , }t tw v -

independent sequence of i.i.d. standard uniform random 

variables, { , , }t t tw v u  is independent of the n×RM  valued 

initial condition (θ0, x0), with M  a set of M discrete modes. 

Furthermore, a and h are measurable mappings of 
n n′× ×M R R  into n

R  and n m′× ×M R R  into m
R  

respectively, and c is a measurable mapping of 

[0,1]n× ×RM  into M . The mappings a, c and h are time-

invariant for notational simplicity only.  
 
The filtering problem is to estimate the joint conditional 

density-probability , | ( , )
t t tx Yp xθ θ , ,nx θ∈ ∈MR , of the pair 

( , )t tx θ  given the sequence of observations { };t sY y s t= ≤ . 

This problem is addressed in the sequel of this paper. In 
preparation for this, in this section we characterize some 
properties of the solution { , , }t t tx yθ  of system (1)-(3).  

 
Firstly, by an iterative way of working from 0t =  to 1t = , 
then to 2t = , and so on to t T= , it can be verified that for 
every initial condition 0 0( , )xθ  the system of equations (1)-

(3) has a unique measurable solution { , , }t t tx yθ  assuming 

values in [0, ]n m T× × ×M R R , T<∞.  

 
Secondly, according to equation (2), tθ  is defined as a 

function of 1tθ − , 1tx −  and tu . This implies that the 

evolution of the process {θt} depends of {xt}. Hence the 
process {θt} is not a Markov process.  
 
Thirdly, the joint process {xt,θt} can be shown to be a 
Markov process. Substituting (2) into (1): 

( )( )1 1 1, , , ,t t t t t tx a c x u x wθ − − −=  (4) 

Together with (2), this implies that (θt, xt) is a measurable 
function of 1tθ − , 1tx − , tu  and tw , for every t>0. By a 

repeated application of this functional relation, it follows 
that for every s>t>0, ( , )s sxθ  is a measurable function of 

tθ , tx , ( ,..., )t su u  and ( ,..., )t sw w . This implies that the 

joint process { , }t tx θ  satisfies the Markov property.   

 
Fourthly, we characterize the transition probability ηθΠ  of 

a jump from 1tθ η− =  to tθ θ=  in terms of properties of 

1tx −  and tu , Application of the total probability theorem 

and subsequent evaluation, using (2), yields: 

( )

1 1 1 1

1 1

| , , | ,

| , ,

[0,1]

( | , ) ( , | , )

     ( | , , ) ( )

, ( , , ) ( )                         (5)         

t t t t t t t

t t t t t

t

x u x

x u u

u

p x p u x du

p x u p u du

c x u p u du

θ θ θ θ

θ θ

θ η θ η

θ η

χ θ η

− − − −

− −

=

=

=

∫

∫

∫

R

R

where χ a 0-1 indicator with ( , ) 1χ θ θ ′ =  iff θ θ ′= . This 
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means that it makes sense to define the state-dependent 
mode transition probabilities ( )xηθΠ , as follows:  

( )
1 1

2
| ,

[0,1]

( )  ( | , ),   ( , ) ,  

, ( , , ) ( )                           (6)

t t t

t

n
x

u

x p x x

c x u p u du

ηθ θ θ θ η θ η

χ θ η
− −

Π ∆ ∈ ∈

= ∫

RM

  
Fifthly, from (6) we can see that if ( , , )c x uθ is x-invariant 

then ( )xηθΠ  is x-invariant and {θt} is a finite state Markov 

process.  

In return for loosing {θt}’s Markov property, the advantage 
of working with an x-variant ( , , )c x uθ  in (2) is the 

capability to define a mode valued jump process {θt} that 
incorporates stochastic hybrid processes where both the 
process {θt} influences the evolution of process {xt} and  
the process {xt} influences the evolution of process {θt}. In 
order to illustrate this effect, we give two examples where 
mode switching depends on the evolution of {xt}.  

 
Example 1: We consider an open tank receiving an input 
flow of liquid from above. Liquid can be taken out / left in 
the tank by switching a pump on/off. The pumping mode is 
captured by a process {θt} assuming values in {On,Off}. 
The level of liquid in the tank is captured by an Euclidean 
valued process {xt}. Assume the desired reference level of 
liquid in the tank is R. In order to avoid that the pump is 
rapidly switching on and off, the switching takes into 
account a hysteresis of strictly positive size H in level. 
Hence a pump in On-mode is switched to Off as soon as the 
level xt, hits the level R-H. Similarly, an Off-mode pump is 
switched to On as soon as the level xt hits the level R+H. 
Hence the mapping c satisfies: 

( ), , ,  if  AND 

 ,  if  AND 

 ,  if  AND 

,  if  AND               

c x u Off Off x R H

On Off x R H

On On x R H

Off On x R H

η η
η
η
η

= = < +
= = ≥ +
= = > −
= = ≤ −

 

Substituting this into eq. (6) and evaluation yields: 

 

( ) 1,   if ,  ,  

0,  if ,  ,  

1,   if - ,  ,   

0,  if  - ,  ,                

x x R H Off On

x R H Off On

x R H On Off

x R H On Off

ηθ η θ
η θ
η θ
η θ

Π = ≥ + = =

= < + = =
= ≤ = =
= > = =

 

 
Example 2: For the same tank example we now assume 
pump switching errors happen at a rateε . This can be 
modeled by the c-mapping as follows: 

  

( ), , ,  if  , ,

 ,  if  , ,

 ,  if  , ,

,  if  , ,

 ,  if  , ,

,  if  , ,

,  if  , ,

  ,  if  

c x u Off Off x R H u

On Off x R H u

On Off x R H u

Off Off x R H u

On On x R H u

Off On x R H u

Off On x R H u

On On

η η ε
η ε
η ε
η ε
η ε
η ε
η ε
η

= = < + >
= = < + ≤
= = ≥ + >
= = ≥ + ≤
= = > − >
= = > − ≤
= = ≤ − >
= = , ,              x R H u ε≤ − ≤

 

For the transition probability this implies: 
( ) 1 ,   if ,  ,  

,        if ,  ,  

1 ,   if - ,  ,   

,        if  - ,  ,                

x x R H Off On

x R H Off On

x R H On Off

x R H On Off

ηθ ε η θ
ε η θ

ε η θ
ε η θ

Π = − ≥ + = =

= < + = =
= − ≤ = =
= > = =

 

 
In example 1 the mode switching is determined in a 
deterministic way by the evolution of {xt}, and the i.i.d. 
sequence {ut} has no influence on this at all. This {xt}- 
determined mode switching character is totally different 
from the well known Markov kind of {ut}-determined mode 
switching. In example 2 the pure {xt}-determined mode 
switching behavior is combined with some random {ut}-
determined mode switching.  
 
In [5] it is demonstrated that filtering for stochastic hybrid 

systems, which incorporate the example 1 kind of tx -

dependent switching, is well handled by the SIR particle 
filter. For example 2, however, a SIR particle filter with Np 
particles works well when 0ε =  or when 1 / pNε >> , but 

not when 0 1 / pNε< < . Such discontinuity in behavior is 

rather unnatural, and asks for the development of an 
appropriate improvement of the SIR particle filter. Prior to 
developing an adequate solution for this in section IV, we 
first characterize the exact Bayesian filter recursion from 
the general CKB equations. 

III.  EXACT BAYESIAN FILTER 

 
In this section we develop the exact recursive equations for 
the joint conditional density-probability  , | ( , )

t t tx Yp xθ θ , 

where tY  denotes the σ -algebra generated by 

measurements ty  up to and including moment t . For short 

we refer to , | ( , )
t t tx Yp xθ θ  as the conditional density. 

Because {xt,θt} is a Markov process, the characterization of 
this conditional density consists of two steps: 
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• Chapman-Kolmogorov (CK) evolution from 1t −  to t, 
i.e. characterize 

1| ( )
t t tx Yp xθ θ

−, ,  as a function of 

1 1 1| ( )
t t tx Yp xθ θ
− − −, , .  

• Bayes measurement update, i.e. characterize 

| ( )
t t tx Yp xθ θ, ,  as a function of 

1| ( )
t t tx Yp xθ θ

−, , . 

The Bayes measurement update works similar as for 
measurements of a Markov jump non-linear system, e.g. 
[1]. For the characterisation of the CK step of the non-
Markov jump system, however, this derivation path falls 
short. Hence, we follow other derivation paths. One 
derivation path uses the law of total probability, and is 
based on [41]. The second derivation path uses the 
Chapman-Kolmogorov equation directly, and is based on 
[14]. First we show the law of total probability  derivation 
path, then we formally state the result in Theorem 1, 
including the assumptions adopted. Next we formally prove 
Theorem 1 following the Chapman-Kolmogorov derivation 
path. 

By law of total probability 

1 1 1 1 1

1 1 1 1 1 1

, | , , |

| , , , |

( , ) ( , , )

( | , ) ( , )

t t t t t t t

t t t t t t t

x Y x Y

x Y x Y

p x p x

p x p x

θ θ θ
η

θ θ θ
η

θ θ η

θ η η

− − − − −

− − − − − −

∈

∈

= =

=

∑

∑
M

M

   (7) 

Because tu  is independent of 1tY− , from eq. (2) follows 

that tθ  is conditionally independent of 1tY−  given 

1 1( , )t txθ − − . Hence (7) yields 

1 1 1 1 1 1 1, | | , , |( , ) ( | , ) ( , )
t t t t t t t t tx Y x x Yp x p x p xθ θ θ θ

η
θ θ η η

− − − − − − −
∈

= ∑
M

   

1 1 1, |                       ( ) ( , )
t t tx Yx p xηθ θ

η
η

− − −
∈

= Π∑
M

 (8) 

Also by law of total probability: 

1 1 1

1 1 1 1

, | , , |

| , , , |

( , ) ( , , )

( | , ) ( , )

t t t t t t t
n

t t t t t t t
n

x Y x x Y

x x Y x Y

p x p x x dx

p x x p x dx

θ θ

θ θ

θ θ

θ θ

− − −

− − − −

′ ′= =

′ ′ ′=

∫

∫
R

R

 (9) 

Because tw  is independent of 1tY− , from (4) follows that 

tx  is conditionally independent of 1tY−  given 1 1( , )t tx θ− − . 

Hence (9) yields 

1 1 1 1, | | , , |( , ) ( | , ) ( , )
t t t t t t t t t

n

x Y x x x Yp x p x x p x dxθ θ θθ θ θ
− − − −

′ ′ ′= ∫
R

 (10) 

Substitution of  (8) into (10) yields 

1 1 1 1 1, | | , , |,( , ) ( | , ). ( ') ( , )  
t t t t t t t t t

n

x Y x x x Yp x p x x x p x dxθ θ ηθ θ
η

θ θ η
− − − − −

∈

 
′ ′ ′ = Π
  
∑∫
MR

                    (11) 

Together with Bayes theorem for the measurement update 
step, (11) yields (12) in the Theorem below. 

Theorem 1 
Let ( , , )h x wθ  be such that the density | , ( | , )

t t ty xp y xθ θ   is 

measurable for all ( , )xθ ∈ n×RM , let  (θ0,x0) admit a 

measurable density 
0 0, ( , )xp xθ θ , and let the transition 

kernel of the Markov process {θt,xt} admit a measurable 
transition density 

1 1, | , ( , | , )
t t t tx xp x xθ θ θ η

− −
′ , for all 

( , ) ,xη ′ ( , ) nxθ ∈ ×RM , then the conditional density 

satisfies 

1

1 1 1

, | | | ,

, |,

( , ) ( | ) ( | , ) 

                          . ( ') ( , ) /    (12)           

t t t t t t t t t
n

t t t

x Y y x t x x

x Y t

p x p y x p x x

x p x dx c

θ θ θ

ηθ θ
η

θ θ θ

η

−

− − −

,

∈

′= ,

 ′ ′Π 

∫

∑
R

M

with tc  a normalization constant. 

Proof:  (using Chapman-Kolmogorov)              
       
Because | , ( | , ) (0, )

t t ty xp y xθ θ ∈ ∞  for all ( , , )y xθ ∈  

n n× ×R RM , application of (generalised) Bayes theorem 
(e.g. [43], p.129) yields: 

1| | |( ) ( | ) ( ) /
t t t t t t t t tx Y y x t x Y tp x p y x p x cθ θ θθ θ θ

−, , ,, = , ,  (13) 

Because { , }t tx θ  is a Markov process, the evolution from 

1t −  to t satisfies the Chapman-Kolmogorov equation 

1 1 1 1 1 1, | , | , , |( , ) ( , | , ) ( , )
t t t t t t t t t t

n

x Y x x x Yp x p x x p x dxθ θ θ θ
η

θ θ η η
− − − − − −

∈

′ ′ ′= ∑∫
MR

                    (14) 

Factoring the Markov transition density in (14) yields 

1 1 1 1 1 1, | , | , , | ,( , | , ) ( | , , ) ( | , )
t t t t t t t t t t tx x x x xp x x p x x p xθ θ θ θ θ θθ η θ η θ η

− − − − − −
′ ′ ′=  

1 1| , ,                                  ( | , , ) (')
t t t tx xp x x xθ θ ηθθ η

− −
′= Π   (15) 
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Because tw  is independent of 1tθ − , from (1) follows that  

tx  is conditionally independent of 1tθ −  given 1tx −  and tθ .  

Using this in (15) yields  

1 1 1, | , | ,( , | , ) ( | , ) ( ')
t t t t t t tx x x xp x x p x x xθ θ θ ηθθ η θ

− − −
′ ′= Π      (16) 

Substituting (16) into (14) and shifting summation yields 

1 1

1 1 1

, | | ,

, |

( , ) ( | , ). 

                           . ( ') ( , )  

t t t t t t
n

t t t

x Y x x

x Y

p x p x x

x p x dx

θ θ

ηθ θ
η

θ θ

η

− −

− − −
∈

′=

 
′ ′ Π

  

∫

∑

R

M

    (17) 

Substituting this into (13) yields (12).  Q.E.D. 

Eq. (12) shows that state dependent mode switching 
probabilities have a multiplicative effect on the mode-
switching-conditional evolution of the Euclidean valued 
state tx . For hybrid stochastic processes this means there 

are two kinds of multiplication of conditional densities with 
other densities. One is due to Bayesian updating of 
measurements and the other is due to state dependent 
switching between modes 

If ( , , )c x uθ  is x-invariant then {θt } is a Markov process , 

and the transition probability ( )xηθΠ  is x-invariant. Then 

the term ( )xηθΠ  in (12) can be shifted out of the 

integration over dx′ , and we get the Corollary below.  

Corollary 1 (for Markov jump systems) 
Let the assumptions of Theorem 1 hold true, and let 

( , , )c x uθ  be x-invariant for( , )xθ ∈ n×RM , then 

1 1 1 1

, | |

| , , |,

( , ) ( | ) 

    . ( | , ) ( , ) ' /    (18)

t t t t t t

t t t t t t
n

x Y y x t

x x x Y t

p x p y x

p x x p x dx c

θ θ

ηθ θ θ
η

θ θ

θ η
− − − −

,

∈

= ,

 
 ′ ′Π
 
 

∑ ∫
M R

with tc  a normalization constant 

Comparison of (18), for Markov jump systems, with (12), 
for non-Markov jump systems, shows a relative small 
difference: ηθΠ  is outside and inside the integration over 

nx′∈R  respectively. Because of this difference, under the 
non-Markov jump situation it is no longer possible to make 

explicit use of IMM’s mixing probabilities , |t η θµ  in the 

derivation of the exact Bayesian filter recursion (12). This 
derivation path has been followed in [1] to get recursion 
(18).  

Remark 1: If c is x-invariant, a and h are linear in (x,w) 
and (x,v) respectively, 

0 0 0| , (. | )x Yp θ θ  is Gaussian for all θ, 

then | , (. | )
t t tx Yp θ θ  is a mixture of Nt+1 Gaussian densities 

[44] – [45]. If we stick to all these conditions with the 
exception of the x-invariant c, then the appearance of the 

( )xηθΠ  in (12) destroys this exact Gaussian mixture 

solution. The best hope for some novel Gaussian mixture 
solution then is that ( )xηθΠ  has a Gaussian shape (or the 

shape of a finite Gaussian mixture) for every ,η θ . 

For the IMM particle filter development it is relevant to 
decompose the exact recursive filter equation in Theorem 1 
into a sequence of basic transitions. The following sequence 
of transitions defines such a decomposition: 

 

1

1 1 1

1 1

1 1 1

1

Mode Switching
|

, | State Interaction
| ,

State Prediction 
, | , |

Correction        
, | , |

t t

t t t

t t t

t t t t t t

t t t t t t

Y
x Y

x Y

x Y x Y

x Y x Y

p
p

p

p p

p p

θ
θ

θ

θ θ

θ θ

−

− − −
− −

− − −

−

→


→

→

→

  

 
The output of the first two transitions is integrated through 
the following equation: 
 

1 1 1 1 1, | | , |( , ) ( | ) ( )
t t t t t t t tx Y x Y Yp x p x pθ θ θθ θ θ
− − − − −

=  (19) 

 
We follow the above four transitions in developing the 
IMM particle filter, and do this in two steps. As first step 
we characterize the four transitions using results from 
section III.  
 
Mode switching: The mode switching transition 
characterizes how the conditional mode probabilities evolve 
from 1t −  to t . By law of total probability 

( )
1 1 1| , |( ) ,

t t t t t
n

Y x Yp p x dxθ θθ θ
− − −

= ∫
R

 

Substitution of (8) and subsequent evaluation yields 

( )

( )

1 1 1 1

1 1 1 1 1

| , |

| , |

( ) ( ) ,

| ( ) ( )

t t t t t
n

t t t t t
n

Y x Y

x Y Y

p x p x dx

p x x dx p

θ ηθ θ
η

θ ηθ θ
η

θ η

η η

− − − −

− − − − −

∈

∈

= Π =

 
 = Π ⋅  (20)
 
 

∑∫

∑ ∫

R

R

M

M

 
State interaction: The state interaction transition 
characterizes how the conditional state densities are being 
mixed under influence of mode switching. By dividing both 
left and right hand terms in (8) by 

1| ( )
t tYpθ θ

−
 we get for 

1| ( ) 0
t tYpθ θ

−
> : 
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1 1 1 1 1 1| , , | |( | ) ( ) ( | ) / ( )

t t t t t t t tx Y x Y Yp x x p x pθ ηθ θ θ
η

θ η θ
− − − − − −

∈

 = Π ∑
M

 (21) 

Eq. (21) represents the IMM interaction step at the level of 
the mode-conditional density.  For Markov jump linear 
systems this form has been derived for the first time in [42] 
eq. (20). It is also derived in [46], section II, following  
another path of derivation. In later expositions on IMM, 
e.g. [47], p.461, [48], p.453, eq. (21) is derived in an 
approximate way only. 

Remark 2: If the condition 
1| ( ) 0

t tYpθ θ
−

>  is not satisfied 

for one or more θ -values then a practical way of handling 
this is to skip evaluation of eq. (21) and assume an 
arbitrarily bounded density for the corresponding 

1 1| , ( | )
t t tx Yp xθ θ
− −

’s.   

State prediction: The state prediction transition 
characterizes the evolution of mode conditional state 
densities from 1t −  to t . From (1) we get 

( )( )
1| ,

[0,1]

( | , ) , , ( )      (22)
t t t tx x wp x x x a x w p w dwθ θ δ θ

−
′ ′= −∫

��

 
Substituting this in (10) yields 

( )( )

( )

1

1 1

, |

[0,1]

, |

( , ) , , ( )

                                              . ,            (23)

t t t t
n

t t t

x Y w

x Y

p x x a x w p w dw

p x dx

θ

θ

θ δ θ

θ

−

− −

′= − ⋅

′ ′

∫ ∫
R

 
Correction: The correction transition is characterized by 
(13). 

IV.  IMM  PARTICLE FILTER 

Now we use the characterizations of the four transitions for 
the development of the IMM particle filter (IMMPF, see 
Table 3). 
 
At moment 1t −  the IMM particle filter starts with the set 

of weighted particles { }, ,
1 1, ; , {1,.., }j j

t tx j Sθ θµ θ− − ∈ ∈M , thus 

with a total number of PN MS= particles. This set of 
weighted particles spans the empirical density 

( )1 1 1

, ,
, | 1 1

1

( , )
t t t

S
j j

x Y t t
j

p x x xθ θ
θ θ µ δ

− − − − −
=

= −∑ɶ  (24) 

as an approximation of the exact density 
1 1 1, | ( , )

t t tx Yp xθ θ
− − −

. 

 
Mode Switching step of IMMPF: 
Substituting approximation (24) into (20) and subsequent 
evaluation yields: 

( ) ( )

( )

1

, ,
| 1 1

1

, ,
1 1

1

( )

(25)

t t
n

S
j j

Y t t
j

S
j j

t t
j

p x x x dx

x

η η
θ ηθ

η

η η
ηθ

η

θ µ δ

µ

− − −
∈ =

− −
∈ =

 
 = Π − =
  

= Π

∑ ∑∫

∑∑

ɶ

MR

M

 
This forms the mode switching step of the IMM particle 
filter. 
 
Interaction resampling step of IMMPF: 
Next, substituting approximation (24) into (21) and 
subsequent evaluation yields: 
 

( ) ( )

( ) ( )

1 1 1

1

, ,
| , |1 1

1

, , ,
|1 1 1

1

( | ) / ( )

/ ( ) (26)

t t t t t

t t

S
j j

x Y Yt t
j

S
j j j

Yt t t
j

p x x x x p

x x x p

η η
θ ηθ θ

η

η η η
ηθ θ

η

θ µ δ θ

µ δ θ

− − −

−

− −
∈ =

− − −
∈ =

 
 = Π − =
  

= Π −

∑ ∑

∑∑

ɶ ɶ

ɶ

M

M

Eq. (26) makes clear that 
1 1| , ( | )

t t tx Yp xθ θ
− −
ɶ  is an empirical 

density spanned by PN MS=  particles, whereas (24) 
shows that 

1 1 1| , ( | )
t t tx Yp xθ θ
− − −
ɶ  was an empirical density 

spanned by S particles only. A logical way to reduce the 
number of particles to span 

1 1| , ( | )
t t tx Yp xθ θ
− −
ɶ  is to perform a 

resampling of eq. (26). This forms the interaction 
resampling step of the IMM particle filter. 
 
Remark 3: Choosing the moment of interaction as the right 
moment of resampling is similar to in IMM doing the 
hypothesis merging step in combination with the interaction 
step rather than after measurement update [46]. 
 
Prediction step of IMMPF 
Substituting the resampled version of 

1 1| , ( | )
t t tx Yp xθ θ
− −
ɶ  and 

( ),( )
t

j
w tp w w wθδ= −ɶ  into (22) and subsequent evaluation 

yields: 

( )( ) ( )

( )

( )( )

1

,
, |

,,
1

1

, ,,
1 1

1

( , ) , ,

       , ,

t t t
n n

j
x Y t

S
jj

t t
j

S
j jj

t t t
j

p x x a x w w w dw

x x

x a x w

θ
θ

θθ

θ θθ

θ δ θ δ

µ δ

µ δ θ

−
′

−
=

− −
=

′= − − ⋅

′⋅ − =

= − =

∫ ∫

∑

∑

ɶ

R R

 

( ), ,

1

                                                   (27.a)
S

j j
t t

j

x xθ θµ δ
=

= −∑
with  

( ),, ,
1       , ,jj j

t ttx a x wθθ θθ −=  (27.b) 
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This forms the prediction step of the IMM particle filter. 
 
Correction step of IMMPF 
Substituting eq. (27) into (13) and subsequent evaluation 
yields 

( )

( )

, ,
, | |

1

, ,

1

( , ) ( | , ) /

/ (28.a)

t t t t t t

S
j j

x Y y x t t t
j

S
j j

t t t
j

p x p y x x x c

x x c

θ θ
θ θ

θ θ

θ θ µ δ

µ δ

=

=

= − =

= −

∑

∑

ɶ

with  , , ,
| , ( | , ) /

t t t

j j j
t t y x t tp y x cθ θ θ

θµ µ θ=  (28.b) 

 
This forms the correction step of the IMM particle filter. 
 
Output step of IMMPF 

Because we have particle values for tx  only, we next 

determine the output equations of the IMM particle filter. 
From the law of total probability we have: 

 | , |( ) ( , )
t t t t t

n

Y x Yp p x dxθ θθ θ= ∫ɶ ɶ

R

 (29) 

where | ( )
t tYpθ θɶ  is an approximation of | ( )

t tYpθ θ . 

Substitution of (28.a) into (29) and subsequent evaluation 
yields 
 

( ), ,
|

1

,

1

( )

(30)

t t
n

S
j j

Y t t
j

S
j

t
j

p x x dxθ θ
θ

θ

θ µ δ

µ

=

=

= − =

=

∑∫

∑

ɶ

R  

 
Through dividing the left and right hand terms of (28.a) by 

| ( )
t tYpθ θɶ and subsequent evaluation we get for 

| ( ) 0
t tYpθ θ >ɶ : 

 ( ), ,
| , |

1

( | ) / ( )
t t t t t

S
j j

x Y t t Y
j

p x x x pθ θ
θ θθ µ δ θ

=

= −∑ɶ ɶ  (31) 

Substitution of (30) into (31) yields: 

 ( )1

, , ,
| ,

1 1

( | ) /
t t t

S S
j j j

x Y t t t
j j

p x x xθ θ θ
θ θ µ δ µ

−
= =

= −∑ ∑ɶ  (32) 

Equations (30) and (32) characterize the output step of the 
IMM particle filter. 
 

Remark 4: If ( ), ,y h x vθ= has for each , xθ  an inverse  

( ), ,v g x yθ=  which is differentiable in y, then (e.g. 

Kitagawa, 1996):   

| ,
g( , , )

( | , ) ( ( , , )) 
yt t t ty x v
x y

p y x p g x yθ
θθ θ  ∂=  ∂ 

 

 
The main changes of the IMMPF over the SIR PF are: 
− Resample fixed number of particles per mode; 
− Probabilities for { }tθ  instead of particles for { }tθ ; 

− Resampling after interaction/mixing rather than after 
measurement update. 

 
 
 
Table 1. SIR Particle Filter (SIR PF) cycle 
SIR      

1 1 1, | , |t t t t t tx Y x Yp pθ θ− − −
→ɶ ɶ  

Particles { }1 1 1[0,1], , ; 1,...,j j j n
pt t tx j Nµ θ− − −∈ ∈ ∈ =M R  

1 1 1, | 1 1 1
1

( , ) ( , ) ( )
p

t t t

N
j j j

x Y t t t
j

p x x xθ θ µ χ θ θ δ
− − − − − −

=

= −∑ɶ  

For j=1,..., pN : 

• Generate j
tw  and j

tu  i.i.d. from ( )
twp w  and ( )

tup u  

• Evolution: 

( )1 1, ,j jj j
t tt tc x uθ θ − −=  

( )1, ,jj j j
t t ttx a x wθ −=  

• Correction: 

{ }1 ; ( , ), ( , ) ( , ) /jj j j j j j j T
t m t t t t t t t tt N y h x g x g x cµ µ θ θ θ−= ⋅  

with tc  such that 
1

1
pN

j
t

j

µ
=

=∑  

• Resampling: 

1/j
t pNµ =  

( ) ( )
1

, ~ , ( )
pN

j j j j j
t t t t t

j

x x xθ µ χ θ θ δ
=

−∑  
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Table 2. IMM Particle Filter (IMMPF) cycle 
IMM Particle Filter (IMMPF) cycle   
Particles 

 { }, ,
1 1[0,1], , ; 1,..., /j j n

pt tx j N Mθ θµ θ− −∈ ∈ ∈ =R M  

( )1 1 1

/
, ,

, | 1 1( , )
p

t t t

N M
j j

x Y t t
j

p x x xθ θ
θ θ µ δ

− − − − −= −∑ɶ  

• Mode switching: 

( )1

/
, ,

| 1 1
1

( ) ( )
p

t t

N M
j j

t Y t t
j

p xη η
θ ηθ

η
γ θ θ µ

− − −
∈ =

∆ = Π∑ ∑ɶ

M

 

• Interaction resampling: 
, ( ) /j

t t pM Nθµ γ θ= ,   { }1,..., /pj N M∈ , θ ∈M  

If  ( ) 0tγ θ =  then , ,
1 1
j j

t tx xθ θ
− −= , otherwise 

( ) ( )
/

, , , ,
1 1 1 1

1

~ / ( )
pN M

j j j j
tt t t t

j

x x x xθ η η η
ηθ

η
µ δ γ θ− − − −

∈ =

Π −∑ ∑
M

   

• Prediction: 
, ~ ( )

t

j
t ww p wθ    i.i.d. for ( , ) {1,..., / }pj N Mθ ∈ ×M  

( ),, ,
1, ,jj j

t ttx a x wθθ θθ −=  

• Correction: 
, , ,

| , ( | , ) /
t t t

j j j
t t y x t t tp y x cθ θ θ

θµ µ θ= ⋅  

      with tc  such that 
/

,

1

1
pN M

j
t

j

θ

θ
µ

= ∈

=∑ ∑
M

 

• Output: 
/

,
|

1

( ) ( )
p

t t

N M
j

t Y t
j

p θ
θγ θ θ µ

=

∆ = ∑ɶ  

( )
/

, ,
| ,

1

( | ) / ( )
p

t t t

N M
j j

x Y t t t
j

p x x xθ θ
θ θ µ δ γ θ

=

= −∑ɶ  if ( ) 0tγ θ >  

 
 
 

 
 

Table 3. Comparison of particle filter characteristics 

 
SIR PF  
(table 1) 

HPF 
 (table 4) 

IMMPF  
(table 2) 

Memorize  

tθ -values 
Yes No No 

Mode-
switching 

Simulation Simulation Analytical 

tx -Prediction Simulation Simulation Simulation 

Correction Standard Standard Standard 
Resampling  
timing 

After 
correction 

After correction 
Combined with 
Interaction 

Resampling  
type 

Equal weights 
Fixed number 
of particles per 
mode 

Fixed number 
of particles per 
mode 

 

Table 4. Hybrid  Particle Filter (HPF) cycle 
Hybrid  Particle Filter (HPF) cycle   
Particles  

{ }, ,
1 1[0,1], , ; 1,..., /j j n

pt tx j N Mθ θµ θ− −∈ ∈ ∈ =R M  

( )1 1 1

/
, ,

, | 1 1
1

( , )
p

t t t

N M
j j

x Y t t
j

p x x xθ θ
θ θ µ δ

− − − − −
=

= −∑ɶ  

• Mode switching: 
,
1 ~ ( )

t

j
utu p uθ

−  

( ),, ,
1, ,jj j

t ttc x uθθ θθ θ −=  

• Prediction: 
, ~ ( )

t

j
t ww p wθ i.i.d., , {1,., / }pj N Mθ ∈ ∈M

( ),, , ,
1, ,jj j j

t t ttx a x wθθ θ θθ −=  

• Correction: 
,, , ,

| ,1 ( | , )/
t t t

jj j j
t y x t tt t tt p y x cθθ θ θ

θµ µ θ−= ⋅  

with tc  such that 
/

,

1

1
pN M

j
t

j

θ

θ
µ

= ∈

=∑ ∑
M

 

• Resampling: 

( )
/

, ,

1

( ) ,
pN M

j j
t t t

j

θ η

η
γ θ µ χ θ θ

= ∈

= ∑ ∑
M

 

, ( ) /j
t t pM Nθµ γ θ=  

( ) ( )
/

, , , ,

1

~ , / ( )
pN M

j j j j
t t t ttt t

j

x x xθ θ θ θ

η
µ δ θ θ δ γ θ

= ∈

−∑ ∑
M

 

i.i.d. for { }( , ) 1,..., /pj N Mθ ∈ ×M  if ( ) 0tγ θ >  

 
 
Table 3 provides an overview of similarities and differences 
between SIR PF applied to stochastic hybrid systems and 
IMM PF. In addition, table 3 extends this comparison to a 
version of the SIR particle filter that has shown to work 
well for multi-target tracking [14]. We refer to this scheme 
(see Table 4) as Hybrid Particle Filter (HPF).  
 

V. MONTE CARLO SIMULATIONS 

In this section some Monte Carlo simulation results are 
given for the IMM Particle Filter (IMMPF), the standard 
Particle Filter (PF) and the IMM algorithm. In addition we 
also give simulation results for a Hybrid Particle Filter 
(HPF) which differs from the standard PF by resampling a 
fixed number of particles per mode. For each of the particle 
filters we used a total of Np=10000 and Np=1000 particles 
respectively. The simulations primarily aim at gaining 
insight in the behavior and performance of the filters in case 
of less frequent switching. In the example scenarios there is 
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an object moving with two possible modes, i.e. 2M = . 
One mode is constant velocity and the other mode is 
constant acceleration.  The object starts with zero velocity 
and continues this for 40 scans. After scan 40 the object 
starts to accelerate with at a value equal to the standard 
deviation aσ  of acceleration values. In scenarios 1 and 2 

the object continues with constant velocity after scan 60, 
while in scenarios 3 and 4 the object continues accelerating. 
In each simulation, the filters start with perfect estimates 
and run for 100 scans.  

The model considered is a Markov jump linear system: 
 

1( ) ( )t t t t tx A x B wθ θ−= +   

[1 0 0]t t m ty x vσ= +    

 
with {1,2}=M and  

1 0

(1) 0 1 0

0 0 0

sT

A

 
 =  
  

,   

21
2

1

(2) 0 1

0 0

s s

s

T T

A T

α

 
 

=  
 
 

 

0

(1) 0

1
aB σ
 
 =  
  

,    

2

0

(2) 0

1

aB σ

α

 
 =  
 − 

 

1 1

2 2

1

1

s s

s s

T T

T T

τ τ

τ τ

 −
 Π =
 −  

 

 
where aσ  represents the standard deviation of acceleration 

noise, mσ  represents the standard deviation of the 

measurement error, sT  is the time duration between two 

successive observation moments 1t −  and t, 1τ  and 2τ  are 

the mean durations of modes 1 and 2 respectively, the 
parameter (0,1]α ∈  allows the acceleration in mode 2 to 

vary randomly in time. Table I gives the scenario parameter 
values that are being used for the Monte Carlo simulations. 
For each of the scenarios Monte Carlo simulations 
containing 100 runs have been performed for each of the 
filters. To make the comparison more meaningful, for all 
filters the same random number streams were used. The 
results of the Monte Carlo simulations of the four scenarios 
are shown as follows: 
− The position RMS errors in figures 1 through 4. 
− The speed RMS errors in figures 5 through 8. 
− The acceleration RMS errors in figures 9 through 12 
− The computational load in Table II. 
 
 
 
 

 
Scenario 1: In this scenario, the target accelerates with 5g 
between 40 s and 60 s. The model used by the particle 
filters expect accelerations to happen about once per 
minute. With Np=104 particles, all three particle filters 
perform similarly well; they converge to a lower value 
during uniform motion than IMM does. As a side effect, the 
peak RMS error at the start of acceleration is for the particle 
filters slightly higher than it is for IMM. These results agree 
well with those in [6] – [7]. Reduction of the number of 
particles to Np=103 affects PF dramatically, but has 
negligible impact on HPF and IMMPF. 
 
Scenario 2: 
In this scenario, the target accelerates with 5g between 40 s 
and 60 s. The model used by the particle filters expect 
accelerations to happen less than once per hour. 
With Np=104 particles, IMMPF performs marginally better 
than IMM does, while PF performs dramatically worse. 
HPF performs significantly worse during the initial 
acceleration period only. Reduction of the number of 
particles to Np=103 has a negative effect on the convergence 
during constant velocity for all three particle filters. 
Moreover, during the period of acceleration, PF and HPF 
worsen dramatically in performance. 
 
Scenario 3: 
The target accelerates with 0.1g after 40 s. The model used 
by the particle filters expect accelerations to happen about 
once per minute. With Np=104 particles, all three particle 
filters perform equally well, and significantly better than 
IMM does. Reduction of the number of particles to Np=103 
has a clear negative effect for the standard PF, but does not 
affect IMMPF and HPF. 

TABLE II 

COMPUTATIONAL LOAD PER SCAN (10-3 s) 

Np IMM PF HPF IMMPF 

104
 4 138 115 96 

103
 4 19 13 11 

 

TABLE I 
SCENARIO PARAMETER VALUES 

Scenario α 
σa 

[m/s2] 
σm 

[m] 
τ1 

[s] 
τ2 

[s] 
TS 

[s] 

1 0.9 50 30 50 5 1 
2 0.9 50 30 5000 5 1 
3 0.9 1 30 50 5 1 
4 0.9 1 30 5000 500 1 
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Figure 1. Scenario 1. The target accelerates with 5g between 40 s 
and 60 s. The particle filter parameters are 5gaσ = , 

1 50sτ =  and 2 5sτ = . 

 
 
Scenario 4: 
The target accelerates with 0.1 g after 40 s. The model used 
by the particle filters expect accelerations to happen less 
than once per hour. With Np=104 particles, all four filters, 
except the standard PF, perform similarly well. The 
standard PF performs dramatically worse during constant 
acceleration. Reduction of the number of particles to 103 
has a clear negative effect for the standard PF and the HPF, 
but not for the IMMPF.  
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Figure 2. Scenario 2. The target accelerates with 5g between 40 s 
and 60 s. The particle filter parameters are 5gaσ = , 

1 5000sτ =  and 2 5sτ = .  

 
 
Summary of Monte Carlo simulation results: 
With Np=104 particles, all three particle filters perform 
better than IMM for scenarios 1 and 3. For scenarios 2 and 
4 however, IMM and IMMPF perform similarly well, while 
the standard PF performs less good on sudden acceleration, 
and the HPF response is less good for acceleration in 
scenario 2 only. With Np=103 particles the performance of 
PF degrades for all scenarios, of HPF for scenarios 2 and 4, 
and of IMMPF for scenario 2 only. 
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Figure 3. Scenario 3. The target accelerates with 0.1g after 40 s. 
The particle filter parameters are 0.1gaσ = , 1 50sτ =  

and 2 5sτ = . 

 

VI.  CONCLUDING REMARKS 

In this paper we considered filtering of stochastic hybrid 
systems that go beyond the well known Markov jump 
system. We derived the exact Bayesian filter and used this 
for the development of a novel particle filter for discrete 
time stochastic hybrid systems. Because of its similarity 
with the interaction step of IMM, this novel particle filter is 
referred to as IMM particle filter (IMMPF). Through MC 
simulations for four scenarios, IMMPF has been tested and 
compared with standard PF and IMM. With 104 particles, 
the IMMPF performs well for all four scenarios. The 
computational load is 25 times the load of IMM. The 
computational load of the standard PF is even higher. As 
expected, the IMMPF works well for all four scenarios 
including ones where standard PF or IMM has problems. 
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Figure 4. Scenario 4. The target accelerates with 0.1 g after 40 s. 
The particle filter parameters are 0.1gaσ = , 1 5000sτ =  

and 2 500sτ = . 

 
 
Hence IMMPF is the preferred particle filter for stochastic 
hybrid systems. 
 
Next we compare IMMPF with IMM. For the regular 
switching scenarios 1 and 3, the IMMPF has some 
performance advantage over IMM, also when the number of 
particles is down to 103. The computational load of IMMPF 
is then three times higher than the load of IMM. However, 
for the scenarios with infrequent mode switching rate 
(scenarios 2 and 4), the IMM performs similarly well as the 
IMMPF. In this case the main advantage over IMM is that 
IMMPF incorporates various kinds of deviations from the 
Markov jump linear IMM (i.e. non-linear and non-Markov 
mode switching). 
Because IMMPF uses particles for the conditional densities 
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given the mode, it is likely that several of the SIR 
improvement methods referred to in the introduction of this 
paper, combine quite well with IMMPF, and are expected 
to allow a significant reduction of the number of particles. 
This is topic of research in a follow-up study. 
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Figure 5. Scenario 1. The target accelerates with 5g between 40 s 
and 60 s. The particle filter parameters are 5gaσ = , 

1 50sτ =  and 2 5sτ = . 
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Figure 6. Scenario 2. The target accelerates with 5g between 40 s 
and 60 s. The particle filter parameters are 5gaσ = , 

1 5000sτ =  and 2 5sτ = . 
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Figure7. Scenario 3. The target accelerates with 0.1 g after 40 s. 
The particle filter parameters are 0.1gaσ = , 1 50sτ =  

and 2 5sτ = . 
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Figure 8. Scenario 4. The target accelerates with 0.1 g after 40 s. 
The particle filter parameters are 0.1a gσ = , 

1 5000sτ =  and 2 500sτ = . 
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Figure 9. Scenario 1. The target accelerates with 5g between 40 s 
and 60 s. The particle filter parameters are 5gaσ = , 

1 50sτ =  and 2 5sτ = . 
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Figure 10. Scenario 2. The target accelerates with 5g between 40 s 
and 60 s. The particle filter parameters are 5gaσ = , 

1 5000sτ =  and 2 5sτ = . 
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Figure 11. Scenario 3. The target accelerates with 0.1 g after 40 s. 
The particle filter parameters are 0.1gaσ = , 1 50sτ =  

and 2 5sτ = . 
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Figure 12. Scenario 4. The target accelerates with 0.1 g after 40 s. 
The particle filter parameters are 0.1gaσ = , 1 5000sτ =  

and 2 500sτ = . 

 

  




