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Executive summary

Exact Bayesian and particle filtering of stochastic hybrid

systems

Problem area

In literature on Bayesian filtering of
stochastic hybrid systems most
studies are limited to Markov jump
systems. The main exceptions are
approximate Bayesian filtersfor
semi-Markov jump linear systems.
These studies showed that nonlinear
filtering becomes much more
challenging under non-Markov
jumps. This challenge however does
not apply to particlefiltering of
stochastic hybrid systems. In
practice, non-Markov jumps rather
are the rule, not the exception. For
example, on an airport, the
probability at which ataxiing
aircraft makes a maneuver depends
heavily onits position; e.g. when
taxiing near acrossing on the
airport, the probability of starting a
turnisrelatively high, whereas
outside these areas this probability
may be very smal. A similar
difference appliesto the probability
of an aircraft making aturn when it
isflying near awaypoint versus
flying halfway two waypoints.
Similar non-Markov jump behavior
aso appliesto other traffic
modalities, and to any other
intelligently controlled system.
Neverthelessin target tracking,
particle filtering studies have
continued to focus on Markov jump
systems
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Description of work

Thisreport considers filtering of
stochastic hybrid systems that go
beyond the well known Markov
jump system. First the non-
Markovian jump system studied in
thisreport isformally defined. Next
the exact Bayesian filter recursion
for this system is devel oped and the
implication of going beyond
Markov jumpsis shown.
Subsequently anovel particlefilter
for jJump nonlinear systemsis
developed which is referred to as
the Interacting Multiple Model
particlefilter (IMMPF). For
comparison Monte Carlo
simulations are performed.

Resultsand conclusions

Through Monte Carlo simulations
IMMPF has been tested and
compared with standard Particle
Filter (PF) and IMM. The results
show that the IMMPF performs
very well, even in cases where the
standard PF or IMM have problems.

Applicability

The applicability of the work
comprises the implementation of
the resulting filtering algorithmsin
amultitarget tracker, in particular
the Advanced suRveillance Tracker
And Server ARTAS.
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Exact Bayesian and Particle Filtering of
Stochastic Hybrid Systems

Henk A.P. Blom Senior Member IEEE & Edwin A. Bloem

Abstract—The standard way of applying particle filtering to
stochastic hybrid systems is to make use of hybridarticles,
where each particle consists of two components, oagsuming
Euclidean values, and the other assuming discrete me
values. This paper develops a novel particle filterfor a
discrete-time stochastic hybrid system. The noveltifes in the
use of the exact Bayesian equations for the conditial mode
probabilities given the observations. Therefore paitles are
needed for the Euclidean valued state component onlyfhe
novel particle filter is referred to as the Interading Multiple
Model (IMM) particle filter because it incorporates a filter
step which is of the same form as the interactiontep of the
IMM algorithm. Through Monte Carlo simulations, it is
shown that the IMM patrticle filter has significant advantage
over the standard particle filter, in particular for situations
where conditional switching rate or conditional moe
probabilities have small values.

Keywords: Stochastic hybrid systems, Bayesian filteng,

Particle filtering, state dependent switching, jumpnonlinear
systems, non-Markov jumps, maneuvering target traciag.

. INTRODUCTION

challenging under non-Markov jumps. This challenge
however does not apply to particle filtering of dtastic
hybrid systems [5]. Hence there is no reason tdimoa
focusing on Markov jump systems. In practice, noarkbv
jumps rather are the rule, not the exception. Fameple,
on an airport, the probability at which a taxiingceaft
makes a maneuver depends heavily on its positian; e
when taxiing near a crossing on the airport, thabability

of starting a turn is relatively high, whereas algsthese
areas this probability may be very small. A similar
difference applies to the probability of an airtratking a
turn when it is flying near a way-point versus fflgihalfway
two way-points. Similar non-Markov jump behaviosal
applies to other traffic modalities, and to any esth
intelligently controlled system. Nevertheless inrg&t
tracking, particle filtering studies have continugedfocus
on Markov jump systems [6] — [19].

In nonlinear filtering studies, the Sampling ImEornte
Resampling (SIR) based approach [20] has surfasetiea
baseline particle filter. It has shown to form degant and

The paradigm of particle filtering has stimulated general approach towards the numerical evaluatfothe

renewed interest in exact Bayesian filtering of Hinear

conditional density solution of the Chapman-Kolmamye

stochastic systems. In line with this, [1] recertiveloped Bayes (CKB) filter recursion [21] — [24]. For a ¢ar class
the exact Bayesian filter for Markov jump non-linea of problems it has been shown that increasing timeber of

systems. The aim of the current paper is to exteadexact Particles ensures weak sense convergence of
Bayesian filter characterization to the much largass of @PProximation density to the exact conditional dgrat a
non-Markov jump non-linear systems, and subsequeatl ate thgt is |_ndependent of or increases linearih whe
exploit this exact Bayesian characterization fore thState dimension of the process to be estimated-{23J].

development of a novel particle filter for stochastybrid This means that the SIR particle filter signifidgnelaxes
systems. the curse of dimensionality of CKB filtering. Priaeily,

In literature on Bayesian filtering of stochastightid ~the SIR particle filter has found a large variefyuseful
systems most studies are limited to Markov jumgesys. a}ppl!catlons, including some where established limaar
The main exceptions are approximate Bayesian dilfer ~filtering approaches do not work at all, such as visual
semi-Markov jump linear systems [2] — [4]. Theseds tracking example of [28] and the track-before-detec

showed that nonlinear filtering becomes much mor@Xa@mple of [29]. Because of its generality and tatcal
validity, the SIR particle filter has become a uwbef

reference in numerically approximating CKB filter
performance [18].

the
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The SIR particle filter is also capable in approaiimg
the CKB equations of a stochastic hybrid Markovgass

{x, 6} , with x_assuming values ifR", and §, assuming



values in a finite seM of possible modes [5]. Ldtx, 6}

be the hidden state process to be estimated froisy no
observations, then the SIR particle filter uslg particles,

particlej of which has two componenl{sx(tj ,Htj) at moment

t, with x/ assuming an Euclidean value afl assuming a

mode value. Each SIR particle filter cycle fram to t
consists of three steps:

Evolution: For each of th&\, particles at momertt1,

draw a new hybrid particléX’,8,') according to the
Chapman-Kolmogorov transition kernel;
«  Correction: For each of thél, particles evaluatez’

as the likelihood of the measurement at montent
given (%,8') and normalize the resulting, 's.

« Resampling: Draw N, independently identically

distributed (i.i.d.) hybrid particle values,8) ), with
from the sum of Zz' weighted Dirac measures at

%.8').

Successful application of this hybrid state versainthe
SIR particle filter has for example been shown tinget
tracking [6] — [7], signal processing [11] and (mé
monitoring and diagnosis [5]. In none of these eplam
applications the conditional mode probabilities /and
switching rates assumed very small values. Otheriliere
might have been very few (or zero) particles foe @r
more of the mode values, and then the empiricakitien
spanned by the particles with such a mode valus doé
form an accurate approximation of the mode proligor
the corresponding mode conditional density. A bifotee
approach in compensating for sample degeneracydwmail
to increase the number of particles. The aim &f plaper is
to develop a more elegant approach in improvingSHe
particle filter for stochastic hybrid systems.

work well without the need of ordering the samples
according to their weights.

« Boosting diversity by regularization, i.e. prior to
resampling, replace each Dirac measure in the
empirical distribution by an absolutely continuous
distribution. This approach has largely been
developed for particle filtering of stochastic
processes that, without regularization, do not
satisfy the regularity conditions under which the
weak convergence to the exact conditional density
is satisfied [12]. A valuable alternative is toens
a Monte Carlo Markov Chain (MCMC) move in
each SIR cycle [31], [11].

« Importance density based resampling. This means
that particle resampling anticipates how the
weights per particle will evolve over the next
prediction and correction steps. Each new particle

sample receives a weight! that compensates for

this importance resampling. The optimal
importance density has been characterized by
Doucet et al. [32]. Because exact implementation
is hard, approximations are needed. Best known is
the auxiliary resampling method by [33]. Other
relevant approximate importance resampling
methods have been developed by [32], [34] — [36].

« Rao-Blackwellization. This approach collects all
state components into two vectors. One or more
state components that satisfy a linear equation and
that do not appear in the measurement equation,
are placed in the first vector. The other state
components are placed in the second vector. For
the second vector, all filtering steps are perfarme
through particles [37]. Per particle, the conditibn
density of the first vector follows from a Kalman
filter, in which the value of the particle playseth
role of the measurement, e.g. [9], [32], [38] —][40

Typically an improvement of the SIR particle filtés

. ) . used to reduce the number of particles needed dlivee
Degeneration of samples is a well known phenomenon good filtering performance. Recently, [19] compartbe
particle filtering. Hence in Iiteratgre various #tion  ofactiveness of importance density resampling Rao-
approaches have been developed, i.e.: Blackwellization SIR improvement methods with the

* Less frequent resampling, i.e. perform resamplingaseline SIR particle filter. For some specific regtes of
only when the "effective sample size” drops belowracking a frequently maneuvering target in  clytter
a certain threshold [30]. importance density resampling in combination wigssl

* Better resampling methods. [23] showed that gequent resampling showed to be most effective in
resampling method which systematically draws ongitigating sample degeneracy and without signifilyan
random sample per group of samples havingcreasing the computational load per particle.
weight of 1/N, reduces the chance of sample

degeneracy. Another good alternative is residual All improvements of the SIR particle filter mentigh
resampling [30]. A complementary advantage oftbove have been developed with focus on Euclideared

systematic and residual resampling is that theE}ate estimation. This sug_gests_, ther_e is room for
improvement of the SIR particle filter with focus dhe



finite valued state component. To make this work,apply Furthermore, a and h are measurable mappings of
a novel kind of Rao-Blackwellization to a stochestybrid pixR"xR" into R" and MxR"xR"™ into RM
proceSS. We CO”eCt a” Euclidean Valued Componme respective'y, andc is a measurable mapp|ng of
vector, and place the mode component only in theerot
vector. Subsequently we perform particle filteritig the
Euclidean valued vector and apply the exact fétgnations
to the mode probabilities. Exactly the same splittiof _ . _ . .
mode and state components is used by the Ra-[)he filtering problem is to estimate the joint cdiwhal
Blackwellization application to a Markov jump limea density-probabilityp, 4y (x6),xOR",60M, of the pair
system [32], but with the allocation of particlasdaexact
filter equations the other way around. Indepengenfteach i ] ) ]
other, [17] and [41] have recognhized the value fuf t This pro_blem IS a_ddr_esse_d In th_e sequel of th|se_pa|;m
approach, with the latter including non-Markov jsnp prepara_ltlon for this, |.n this section we charag&rsome
Their particle filters for estimating the conditardensities Properties of the solutiofg, x, y;} of system (1)-(3).

of x given the modef are equivalent. However, the

equations for the estimation of conditional mod
probabilities differ as a result of the Markov/nitarkov o = _
jump difference. The current paper gives a full @siion  €VeTY initial condition(&,,%;) the system of equations (1)-

of the more general approach developed by [41]. (3) has a unique measurable soluti@d x, y} assuming
values inMxR" xR™x[0,T], T<c.

MxR" x[0,1] into M. The mappings, candh are time-
invariant for notational simplicity only.

(%.6) given the sequence of observatiofis={ y;; s< }.

é:irstly, by an iterative way of working frorh=0 to t =1,
then tot =2, and so on td =T , it can be verified that for

The paper is organized as follows. Section Il fdlyna
defines the non-Markovian jump system studied iis th ] ) ] ]
paper. Section Ill develops the exact Bayesiarerfilt S€condly, according to equation (2, is defined as a
recursion for this system, and shows the implicataf function of &, %_; and u,. This implies that the
going beyond Markov jumps. Section IV develops &eho evolution of the processg} depends of &}. Hence the
particle filter for jump nonlinear systems. ThisvBb process §} is not a Markov process.
particle filter has an interaction step which felbfrom the
initial derivation [42] of the Interacting Multiplévodel Thirdly, the joint process %,8} can be shown to be a

(IMM) filter algorithm. For this reason, the novearticle  \1arkov process. Substituting (2) into (1):
filter is referred to as the IMM particle filter.eStion V _
% = a( (6, X1, U)X W) (4)

performs Monte Carlo simulations to compare theehov
particle filters with the SIR particle filter andtivthe IMM;  Together with (2), this implies thafl( x) is a measurable
for a fair comparison with IMM, the example consigttis function of §_;, x_,, u, and w, for everyt>0. By a
a Markov-jump linear system. Through parameterat@m, repeated application of this functional relationfdllows
the different effects of rare and non-rare switghinthat for everys>t>0, (6;,x,) is a measurable function of
probability is discussed. Finally, Section VI draws@’ X, (Uyots) and (w,...w). This implies that the

conclusions. o o
joint procesg x, 8} satisfies the Markov property.
Il. FORMULATION OF THE PROBLEM
We consider the following system of stochastidourthly, we characterize the transition probapilit,, of

difference equations, 00 [T], T<co, a jump fromg_, =n to § =8 in terms of properties of
% = a6, %1, W) (1) x_, and u,, Application of the total probability theorem
G =c(G, %1, 1) (2) and subsequent evaluation, using (2), yields:
% =h(6, %, ¥) () Pag,u,@17.0= [ Rygp, ., (U617, du

where the pair, x) represents the hybrid system state, and R

y; represents the observation at montefitv} and {v} are :J' Paigx,u € 17, X,U)p, (U)du

independent sequences of i.i.d. standard Gausaidables R o

of dimensionn’ and m' respectively, {} is an {w, v} - _ .[ x(6.c07,% W) B, (U du (5)
independent sequence of i.i.d. standard uniforndaam (0] R '

variables,{w, v, u} is independent of thé1xR" valued where y a 0-1 indicator withy(6,6) =1 iff §=6 . This
initial condition @, %), with Ml a set oM discrete modes.



means that it makes sense to define the state-depen c(/7, X, u): Off, ifn=0ff, x<x R+ H ¢

mode transition probabilitiesl 4 (x) , as follows: =0n, ifn=0ff , x< R+ H ¢
My6(¥) A Pgig. ., @17.%), @n OM?, xOR" =0n, if7=0ff , x> R+ H w¢

_ (6 ) q ( =Off, if n=0ff , x> R+ Hyus ¢

—[Ojl]x ,c(7,% ) R, (U du ( —on ifn=0n o R H e

=Off, if n=0n, x> R- H «¢
=Off, if n=0n, xx R- H w¢
=0n, if7=0n,x<R-H,ug¢
For the transition probability this implies:

Fifthly, from (6) we can see that (8, x, u) is x-invariant
then,4(x) is x-nvariant and {3} is a finite state Markov

process. M,e(x) =1-&, ifx> R+ H, /7= Off, #= On
In return for loosing @}'s Markov property, the advantage =g, ifx< R+ H, n=Off, §= On
of working with an x-variant c(@,x,u) in (2) is the =1-¢, ifx<R-H, n=0n 6= Off
capability to define a mode valued jump proceg} that =&, ifx >R-H, 7=0n, 8= Off

incorporates stochastic hybrid processes where twth

process @} influences the evolution of processi{and |, example 1 the mode switching is determined in a
the processx} influences the evolution of proces#l). In yeterministic way by the evolution o, and the i.i.d.
order to !Ilus_trate this effect, we give two exasaypwhere sequence 4} has no influence on this at all. Thisqf-
mode switching depends on the evolution . { determined mode switching character is totally edidht
from the well known Markov kind ofy}-determined mode
u?witching. In example 2 the purex}determined mode
switching behavior is combined with some randouog-{
determined mode switching.

Example 1 We consider an open tank receiving an inp
flow of liquid from above. Liquid can be taken dueft in
the tank by switching a pump on/off. The pumpingdmds

captured by a processdj assuming values ifOn,Of}. In [5] it is demonstrated that filtering for stoatia hybrid

The level of liquid in the tank is captured by amchkdean ; hich | te th le 1 kind of
valued processx}. Assume the desired reference level of YStEMS, which incorporate the example ind %

liquid in the tank isR. In order to avoid that the pump isdependent switching, is well handled by the SIRtigiar
rapidly switching on and off, the switching takestoi filter. For example 2, however, a SIR particlesfilwith N,
account a hysteresis of strictly positive sidein level. particles works well where = 0 or whens >>1/N,, but
Hence a pump i©rrmode is switched tOff as soon as the not when0 < & < 1/N, . Such discontinuity in behavior is
level x;, hits the leveR-H. Similarly, anOff-mode pump is
switched toOn as soon as the levgl hits the levelR+H.
Hence the mappingsatisfies:

c(n, x,u) = Off, if 7= Off AND x< Rr H

rather unnatural, and asks for the development rof a
appropriate improvement of the SIR patrticle filtBrior to
developing an adequate solution for this in sectdnwe
first characterize the exact Bayesian filter reimursfrom

=On, if 7= Off AND x> R+ H the general CKB equations.
=0On, if n=0OnAND x> R- H
=Off, if 7= OnAND x< R- H Ill. EXACT BAYESIAN FILTER
Substituting this into eq. (6) and evaluation yseld

N,e(X) =1, ifx2 R+ H, 7= Off, #= On In this section we develop the exact recursive ggus for
=0, ifx< R+ H, 7= Off, = On the joint conditional density-probability p, 4 (X 6),
=1, ifx<R-H, n=0n 6= Off where Y, denotes the o -algebra generated by
=0, ifx >R-H, 7= 0n 8= Off measurements, up to and including momerit. For short

we refer to pxt’@tm(x,e) as the conditional density.

Example - f E.Or the samr? tank eﬁamp:I V‘I\{i now asbsunﬁecause %, 8} is a Markov process, the characterization of
bump switching errors ‘happen at a wlethis can be ;¢ conditional density consists of two steps:
modeled by the-mapping as follows:



» Chapman-Kolmogorov (CK) evolution from-1 tot,
i.e. characterize p)(t’[,tml(xe) as a function of

Pus v, (X 6) -

» Bayes measurement update, i.e.
Pw g1 (%.6) as a function ofp, 4  (X6).

The Bayes measurement update works similar as for
measurements of a Markov jump non-linear system, e.

[1]. For the characterisation of the CK step of tian-
Markov jump system, however, this derivation paafisf

short. Hence, we follow other derivation paths. One

derivation path uses the law of total probabiliand is

based on [41]. The second derivation path uses tr?_e

Chapman-Kolmogorov equation directly, and is basad
[14]. First we show the law of total probabilityerivation
path, then we formally state the result in Theorgém
including the assumptions adopted. Next we formgatbyve
Theorem 1 following the Chapman-Kolmogorov derigati
path.

By law of total probability

pXt—l!ﬂ |Y1—1(X’ 9) = z pX—lvgx v91—1|Y—1( x6’,/7) =
f ™

= z pﬂ [%-1.8-1.%-1 (9 l X’/7) pX—lﬂ—ﬂY—l ( X'/7)
noOM

Becauseuy, is independent ofY,_;, from eq. (2) follows
that 4 is conditionally independent ofY,_;
(6.1, %_1) - Hence (7) yields

given

pxt—l’gtmﬂ(x'g) = z pgt|>$—1491—1(9| X’,7) R&ﬂgt—lw—l( x”)
nOM

=D Moo X B, ay, 47 (8)

nOM

Also by law of total probability:

Pran. (O = [ Pya iy, (36,0 dk=
Rn

9)
- ,[ P s, (X X:0) P g1y, (X.0) dX
Rn

Becausew, is independent ofY;_;, from (4) follows that
x, is conditionally independent of,_; given (x_;,6,_;).
Hence (9) yields

px,am_l(W):J- P, g (X1 X.0) B, g1y, (%,0) dk (10)
Rn

Substitution of (8) into (10) yields

characterize

p’iv@”—l(xg):j p*ﬁvh(xlg’ ),()I:Znﬂe(x) Qhﬁﬂthl(xq)] o
R M
(11)

Together with Bayes theorem for the measuremenéatepd
step, (11) yields (12) in the Theorem below.

Theorem 1

et h(g, x,w) be such that the densitpytmﬂt(yl x8) is

measurable for all(g,x)0 MxR", let (&%) admit a
measurable densitypy , (6,X), and let the transition

kernel of the Markov proces€3f} admit a measurable
transition  density p&@lmﬂﬂ(x’m X,7), for all

n,x), (8,x)OMxR", then the conditional density
satisfies

Puar (0= Pyia (K1 X0 [ By 4, (X6, 0
]RI’\

Z[nﬂg X Q‘\—lvgt—ﬂv\ﬁﬂ X7 :|ﬂ){ & (32
AOM

with ¢, a normalization constant.

Proof: (using Chapman-Kolmogorov)

Because pytlx,@(w x8)0(0,,0) for all (y,6,x)0

R"xMxR", application of (generalised) Bayes theorem
(e.g. [43], p.129) yields:

Pu.ar (X6) = Pyixa (Vil X6) Beg iy, (x6)] ¢ (13)

Because{X, §} is a Markov process, the evolution from
t -1 tot satisfies the Chapman-Kolmogorov equation

pxtxé“Yt—l(X’B): J- Z p>fv6“>6-151—1(x6| )k’,]) &1@—1|¥1(k”)d5<
R" /M
(14)

Factoring the Markov transition density in (14)lgie
Peaiaa, SO XM= Big x,8, (X, XM Qi 10,0 1547

= Pxigxa8s X107 M XL (15)



Becausew;, is independent of}_;, from (1) follows that Remark 1: If ¢ is x-invariant,a andh are linear in X,w)

x, is conditionally independent &_, givenx_, andg. and &\) respectively, p, g v (.|8) is Gaussian for alf,
t+1

Using this in (15) yields then Py 16, (-1€) is a mixture ofN"~ Gaussian densities
) . [44] — [45]. If we stick to all these conditions thvithe
Pu.gixs 6. (XO1XT)= B o, (X180, XN g (X) (16)  exception of thex-invariantc, then the appearance of the
Mye(X) in (12) destroys this exact Gaussian mixture
Substituting (16) into (14) and shifting summatioelds solution. The best hope for some novel Gaussiartungix
solution then is thafl,,(x) has a Gaussian shape (or the
Py (% 8) = .[ P x, (X164 X). shape of a finite Gaussian mixture) for every .
® 17
Z Moo X Doy X7 })dx For the IMM particle filter development it is relant to
nOM decompose the exact recursive filter equation iaofém 1
into a sequence of basic transitions. The folloveaguence
Substituting this into (13) yields (12). Q.E.D.of transitions defines such a decomposition:

Eg. (12) shows that state dependent mode switching itehi
probabilities have a multiplicative effect on theoahe- Px_, 6 Dw(ﬁﬂﬁ@_’ Pan.,
switching-conditional evolution of the Euclidean lued Bl W i i A SV PRV

state x, . For hybrid stochastic processes this means there wan, O $iale Predjefion B iy

are two kinds of multiplication of conditional détmess with _
other densities. One is due to Bayesian updating of p, g, O et o Py aly
measurements and the other is due to state dependen

switching between modes The output of the first two transitions is integtthrough

If c(8,x,u) is x-invariant then & } is a Markov process , the following equation:

and the transition Probabl|ltﬂ”9(x) is x-|nvar|ant. Then pxtflﬂtlm(x’e) = Pg ,Y,I(XW) Q%Ih(g) (19)

the term M, ,(X) in (12) can be shifted out of the

integration overdX , and we get the Corollary below. We follow the above four transitions in developitite
. IMM particle filter, and do this in two steps. Asst step

Corollary 1 (for Markov jump systems) we characterize the four transitions using resfitsn

Let the assumptions of Theorem 1 hold true, and l&fection III.
c(6, x,u) bex-invariant for(8,x)0 MxR", then
Mode switching: The mode switching transition
Pean (%6) = Py (il %6) characterizes how the conditional mode probabslideolve
fromt—1 to t. By law of total probability

2 Moo [ P, (<160, g1, R1)OX| /& (18 Par, @ = [ Py, iy, (x6) o
Rn

oM R"
Substitution of (8) and subsequent evaluation gield
with ¢, a normalization constant -
G pﬂ M4 (H) - I Z nﬂg(x) &—1@—1”—1( X”) dx=
R /7EM

Comparison of (18), for Markov jump systems, wifl),

for non-Markov jump systems, shows a relative small :z I P, (XIMM,6(A R 4y () | (20)

difference: 1,, is outside and inside the integration over 7| g

X' OR" respectively. Because of this difference, under th
non-Markov jump situation it is no longer possitdemake State interaction: The state interaction transition
explicit use of IMM’'s mixing probabilitieg o in the characterizes how the conditional state densitiesbaing

derivation of the exact Bayesian filter recursidg)( This Mixed under influence of mode switching. By divigiboth
derivation path has been followed in [1] to getursipn left and right hand terms in (8) bygy  (6) we get for
(18). Pa., (6)>0:




- s
Prig . (X10) ;M[”ne(x) B aa, (4] By, ©) (21) Pan. (6) = I >|n, z 15(x= A1) | e
Eqg. (21) represents the IMM interaction step atlével of RH”DM =
the mode-conditional density. For Markov jump &ne
systems this form has been derived for the fimsetin [42] B Z 2“'79( ) 1
eq. (20). It is also derived in [46], section lglldwing
another path of derivation. In later expositions |MiM,
e.g. [47], p.461, [48], p.453, eq. (21) is deriviedan This forms the mode switching step of the IMM paleti
approximate way only. filter.

(25)
nOM j=1

Remark 2: If the condition pg), (6) >0 is not satisfied Interaction resampling step of IMMPF
Next, substituting approximation (24) into (21) and
subsequent evaluation yields:

for one or mored-values then a practical way of handling
this is to skip evaluation of eq. (21) and assume a

arbitrarily bounded density for the corresponding
S

8)’s. . .
Pr, (X16)'s P (K10)= X M) D 440 41) |1 i, )=
OM

j=1
State prediction The state prediction transition

S
characterizes the evolution of mode conditionaltesta = n )47,1' M'ia‘ X— ){7,1' I Ty () (26)
0\ = - - t-1
densities fromt —1 to t. From (1) we get ,;szﬂ" 7 ( l) ! ( l) R

Puin, . (X1 X,0)= J' 5( x- 8, X, V9) R (Wdw (227 Eq. (26) makes clear thap, 4 v (x|6) is an empirical

(0] density spanned byNe= MS particles, whereas (24)
shows that Pu 6, (x|9) was an empirical density

Substituting this in (10) yields

B spanned byS particles only. A logical way to reduce the
Px.an, (% 0) = j j S(x- a6, % W) R, (W) dviD number of particles to spaf, 4 v, (x|6) is to perform a
]R" [O,l] 11 Tt
D (X ) dx 23 resampling of eq. (26). This forms the interaction
%16 [%-1

resampling step of the IMM particle filter.

Correction: The correction transition is characterized bYRemark 3: Choosing the moment of interaction as the right
(13). moment of resampling is similar to in IMM doing the
hypothesis merging step in combination with theriattion
IV." IMM PARTICLE FILTER step rather than after measurement update [46].
Now we use the characterizations of the four ttams for
the development of the IMM particle filter (IMMPEge Prediction step of IMMPF
Table 3). Substituting the resampled version @f 4 v  (X|6) and

At momentt —1 the IMM particle filter starts with the set Pw (W) =5( W= V‘f]) into (22) and subsequent evaluation
of weighted partlcles[ Lullenm, joq,. ,S}} thus Vields:

with a total number of Ne = MSparticles. This set of Pu.g, (x6) = I I -6, %, V\))J( W \ﬁ]) oV
weighted particles spans the empirical density R"R"

S . ) 9 j —
= _ 6, , o\ X - =
p>‘1—1:9t—1|\(—1(x' 0) - ;'ut_:ﬂ 5( x= )f_:{) (24) Ii—l ( )

. . . S .
as an approximation of the exact density o  (x6). Z 7 Jd(x 3(9. 2 Vi—Jl)) =
j=1
Mode Switching step of IMMPF S 0
Substituting approximation (24) into (20) and suwpsmnt Zﬂt J5( ) (27.a
evaluation yields: =l
with

X6 = a(g,—_,lj V\fJ) (27.b)



- 09(6.x,y)
This forms the prediction step of the IMM partifileer. Py.ix 6 (vl x8)= R (96, x ) { dy

Correction step of IMMPF
Substituting eq. (27) into (13) and subsequent uatain

The main changes of the IMMPF over the SIR PF are:

yields - Resample fixed number of particles per mode;
s _ _ - Probabilities for{8} instead of particles fofd} ;
Px.ary (% 0) = Pyjyq (VI XH)Z,U}QM_( - i‘J)/ ¢= - Resampling after interaction/mixing rather thanemft
j=1 measurement update.
S
=Z,uf"5(x—>§g‘1)/q (28.a)
j=1
with 20 = py e 0 (VI X1 .6)1 (28.b) Table 1. SIR Particle Filter (SIR PF) cycle
SIR Pradal = Pxany

This forms the correction step of the IMM partifileer. Particles{,utj_l D[O,l],é{j_l DM,)([j_lljRn j=1,..N p}

Output step of IMMPF - ) = S I (0.8 o j
Because we have particle values far only, we next Py g, (X )_Z:ut—l)(( 6-)0(x=%_y)

j=1
determine the output equations of the IMM partifiler.
From the law of total probability we have:

. Generatewtj and utj i.i.d. from p,, (W) and p, (u)
f’@m(g)zj Py 41y (% 6)dx (29) |« Evolution:
Rn

g =clg!,,x ,u
where Py (6) is an approximation ofg, (6) - ' ( 1 %o Y )

Substitution of (28.a) into (29) and subsequentuatin X = 5‘(6’tJ X W)
yields » Correction:
. A=l NGy 160 %), o8 %) 08 KT
Par () = w213 x= 1 ) dx= N,
il ni[; t ( ) with ¢, such thatz,ﬂt' =1
s )=
= Zﬂfvl (30) + Resampling:

i=1 ' =1IN,
T~hrough dividing the left and right hapd terms 28.@) by (th 8 ) - /—ltj)((g,ép )J(X_XJ )
Pgpy, (6) and  subsequent  evaluation we get for =t

E)@N(H)>O:

S . .
B (X10)= D p15(x= %1 ) Ty ) (31)

j=1
Substitution of (30) into (31) yields:

S S
Buia, (X10)= 2 i 13(x= %0 ) 13wl (32)
j=1 j=1

Equations (30) and (32) characterize the output sfethe
IMM particle filter.

Remark 4:1f y=h(, x V) has for eact¥,x an inverse

v=g(8,xy) which is differentiable iny, then (e.g.
Kitagawa, 1996):



Table 2. IMM Particle Filter (IMMPF) cycle

Table 4. Hybrid Particle Filter (HPF) cycle

IMM Particle Filter (IMMPF) cycle

Hybrid Particle Filter (HPF) cycle

Particles
{,ut_‘ 00,1, x%4 OR",80M; j =

Np/M - )
Besan, (60 = Y llo(x- 1)
,—

1..N, M}

Particles
{ 1 0[0,10,x¢) OR",60M; = 1,...N,, /M}

Np/M ' )
Besan, (60 = Y llo(x- 1)

j=1

e Mode switching:
N,/ M

76D Pay, @)= > Mg (0 ]

nOM j=1
* Interaction resampling:
=y @MIN,, jofL..N, M}, 60M

If %(8)=0 thenx?) =21 otherwise

N IM
%~ 33 My (04 ko x-
nOM  j=1
» Prediction:

v\f'i ~ RM(W) i.i.d. for (6, j)OMx{,...,
0 =a(0. 5 )
» Correction:

K =1 Wy a R 1F.6)1

) 17%.6)

N, /M}

N,/M
with ¢, such thatz Z 0.) =
j=1 60M
e Output:
Np/M
%O Pgy ()= D ]
=1

Ny /M

Bugx (X10)= D 15[ x= 1) 11,0) if 1 (6)>0
=1

e Mode switching:
|~y (U)
a1 =c{o. ] f7)
» Prediction:
Wil ~ p, (Wiid. §0M,jO{L.N,/M}
%01 = a(ée'j , {_llvfl)
« Correction:

0 =11ty g k16 80 )

Np M
with ¢, such that z z,ugj =
=1 60M
* Resampling:
Ny /M
w@ = > uix(@.e)
i=1 pOM
K = R(OMIN,
Ny /M
S ol ol e
i=1 pOM

ii.d. for (8, ))OMx{1,...N, M} if y;(6)>0

Table 3. Comparison of particle filter charactécist

SIR PF HPF IMMPF

(table 1) (table 4) (table 2)
Memorize
8 val Yes No No

, -values

gv;?c?ing Simulation Simulation Analytical
X, -Prediction | Simulation Simulation Simulation
Correction Standard Standard Standard
Resampling After After correction Combined with
timing correction Interaction
Resamplin Fixed number| Fixed number
tvoe piing Equal weights| of particles per| of particles per
P mode mode

Table 3 provides an overview of similarities anflatences
between SIR PF applied to stochastic hybrid systants
IMM PF. In addition, table 3 extends this compamnigo a
version of the SIR particle filter that has shownwork
well for multi-target tracking [14]. We refer toishscheme
(see Table 4) as Hybrid Particle Filter (HPF).

V. MONTE CARLO SIMULATIONS

In this section some Monte Carlo simulation resalts
given for the IMM Particle Filter (IMMPF), the stdard
Particle Filter (PF) and the IMM algorithm. In atidh we
also give simulation results for a Hybrid Partididter
(HPF) which differs from the standard PF by resamgph
fixed number of particles per mode. For each ofptasicle
filters we used a total dfl;=10000and N,=1000 particles
respectively. The simulations primarily aim at dgain
insight in the behavior and performance of thefftin case
of less frequent switching. In the example scesattiere is



an object moving with two possible modes, i =2.
One mode is constant velocity and the other mode
constant acceleration. The object starts with zedocity
and continues this for 40 scans. After scan 40adthiect
starts to accelerate with at a value equal to thedsrd
deviation o, of acceleration values. In scenarios 1 and
the object continues with constant velocity aftears 60,
while in scenarios 3 and 4 the object continueglacating.
In each simulation, the filters start with perfexttimates
and run for 100 scans.

The model considered is a Markov jump linear system

% =Af)x.+ BE)w
Y =[1 0 O] +om\%

with M ={1, 2} and

1T, 0 1T it
AD=l0 1 0, A2)=|0 1 T,
0 00 0 0 «a
0 0
B(l)=a,| 0|, B(2)=g,| O
1 1-qg2
- I
n= TT1 TlT
S 1__5

LF)

TABLE |
SCENARIO PARAMETER VALUES

; Oa Om n 7] Ts
Scenario a
M/ [m] [s] [s] [s]
1 0.9 50 30 50 5 1
2 0.9 50 30 5000 5 1
3 0.9 1 30 50 5 1
4 0.9 1 30 5000 500 1
TABLE Il
COMPUTATIONAL LOAD PER SCAN(10°S)
Np IMM PF HPF IMMPE
10° 4 138 115 96
10° 4 19 13 11

Scenario 11n this scenario, the target accelerates with 5g
between 40 s and 60 s. The model used by the lgartic
filters expect accelerations to happen about onee p
minute. With Np:104 particles, all three particle filters
perform similarly well; they converge to a lowerlua
during uniform motion than IMM does. As a side effaéhe
peak RMS error at the start of acceleration iglierparticle
filters slightly higher than it is for IMM. Thesesults agree
well with those in [6] — [7]. Reduction of the nuerbof
particles to Np:103 affects PF dramatically, but has
negligible impact on HPF and IMMPF.

Scenario 2:
In this scenario, the target accelerates with Sgéen 40 s

where g, represents the standard deviation of accelerati@amd 60 s. The model used by the particle filterpeek
noise, o, represents the standard deviation of th@CCelerations to happen less than once per hour.

measurement errofT is the time duration between two

successive observation momentsl andt, 7; and 7, are

With szlo4 particles, IMMPF performs marginally better
than IMM does, while PF performs dramatically worse
HPF performs significantly worse during the initial

the mean durations of modes 1 and 2 respectivhly, tacceleration period only. Reduction of the numbér o
parametera 0 (0,1] allows the acceleration in mode 2 toparticles thNp:lO3 has a negative effect on the convergence

vary randomly in time. Table | gives the scenarogmeter
values that are being used for the Monte Carlo Isitians.

during constant velocity for all three particle tdils.
Moreover, during the period of acceleration, PF &iRF

For each of the scenarios Monte Carlo simulationdorsen dramatically in performance.

containing 100 runs have been performed for eacthef
filters. To make the comparison more meaningfut, €6

Scenario 3:

filters the same random number streams were uskd. T'Ne target accelerates with 0.1g after 40 s. Theehosed

results of the Monte Carlo simulations of the feoenarios
are shown as follows:

The position RMS errors in figures 1 through 4.
The speed RMS errors in figures 5 through 8.

The computational load in Table II.

The acceleration RMS errors in figures 9 through 12

by the particle filters expect accelerations togepabout
once per minute. With}\lpzlo4 particles, all three particle
filters perform equally well, and significantly bet than
IMM does. Reduction of the number of particlesNg10°
has a clear negative effect for the standard PFdbes not
affect IMMPF and HPF.
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Figure 1. Scenario 1. The target accelerates vgthedween 40 s
and 60 s. The particle filter parameters ag=5g,

7, =50s and 7, =5s.

Scenario 4:

The target accelerates with 0.1 g after 40 s. Thdahused
by the particle filters expect accelerations to g&p less
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Figure 2. Scenario 2. The target accelerates vgtheédween 40 s
and 60 s. The particle filter parameters atg=5g,

7, =5000s and 7, =5s.

Summary of Monte Carlo simulation results:
With Np:104 particles, all three particle filters perform
better than IMM for scenarios 1 and 3. For scesafiand

than once per hour. With:lO4 particles, all four filters, 4 however, IMM and IMMPF perform similarly well, &
except the standard PF, perform similarly well. Théhe standard PF performs less good on sudden aatiefe
standard PF performs dramatically worse during t@otts and the HPF response is less good for acceleration

acceleration. Reduction of the number of partittesi G

scenario 2 only. Witerzl(f' particles the performance of

has a clear negative effect for the standard PRlem&#IPF, PF degrades for all scenarios, of HPF for scenariasd 4,

but not for the IMMPF.

and of IMMPF for scenario 2 only.
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Figure 3. Scenario 3. The target accelerates with 8fter 40 s.
The particle filter parameters ate, =0.1g, 71 =50s

and 7, =5s.

VI. CONCLUDING REMARKS

In this paper we considered filtering of stochastydbrid

time (seconds)
b.Ny=10° particles

Figure 4. Scenario 4. The target accelerates wittg@fter 40 s.
The particle filter parameters are, =0.1g, 77 = 5000<

and 7, =500s.

Hence IMMPF is the preferred particle filter fobshastic
hybrid systems.

systems that go beyond the well known Markov jump

system. We derived the exact Bayesian filter aretiubis Next we compare IMMPF with IMM. For the regular
for the development of a novel particle filter fdiscrete SWitching scenarios 1 and 3, the IMMPF has some
time stochastic hybrid systems. Because of its |aiityi performance advantage over IMM, also when the nurobe
with the interaction step of IMM, this novel patédilter is ~ Particles is down to f0The computational load of IMMPF
referred to as IMM particle filter (IMMPF). ThrougiC is then three times higher than the load of IMMweuwer,
simulations for four scenarios, IMMPF has beenegsind for the scenarios with infrequent mode switchindera

compared with standard PF and IMM. With* Iarticles, (Scenarios 2 gnd 4), the IMM performs similarly Maed the
the IMMPF performs well for all four scenarios. The!lMMPF. In this case the main advantage over IMMhiat

computational load is 25 times the load of IMM. Thé MMPF incorporates various kinds of deviations frone
computational load of the standard PF is even highe Markov jump linear IMM (i.e. non-linear and non-Naw

expected, the IMMPF works well for all four scenari Mode switching). ' N N
including ones where standard PF or IMM has problem Because IMMPF uses particles for the conditionaisitees



given the mode, it is likely that several of theRSI

improvement methods referred to in the introductbihis

paper, combine quite well with IMMPF, and are expdc
to allow a significant reduction of the number @lricles.

This is topic of research in a follow-up study.
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Figure 5. Scenario 1. The target accelerates vgtheédween 40 s
and 60 s. The particle filter parameters atg=5g,

Figure 6. Scenario 2. The target accelerates vgtheédween 40 s
and 60 s. The particle filter parameters ag=5g,

7, =50s and 7, =5s. 7, =5000< and 7, =5s.
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Figure7. Scenario 3. The target accelerates witly@fter 40 s. Figure 8. Scenario 4. The target accelerates wittg@fter 40 s.
The particle filter parameters ate, =0.1g, 71 =50s The particle filter parameters ate, =0.1g ,

and 7, =5s. 7, =5000s< and 7, = 500s.
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Figure 9. Scenario 1. The target accelerates vgthedween 40 s Figure 10. Scenario 2. The target accelerates ygthetween 40 s
and 60 s. The particle filter parameters ag=5g, and 60 s. The particle filter parameters ag=5g,

71 =50s and 7, = 5s. 71 =5000< and 7, =5s.
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Figure 11. Scenario 3. The target accelerates@itty after 40 s.  Figure 12. Scenario 4. The target accelerates@itly after 40 s.
The particle filter parameters ate, =0.1g, 71 =50s The particle filter parameters are, =0.1g, 77 = 5000<

and 7, =5s. and 7, =500s.





