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Summary

Discontinuous Galerkin discretizations of the slip flow boundary condition at curved walls in in-

viscid gas dynamics are not very accurate when linear basis functions are combined with elements

with straight edges at the boundary. This is particularly true when the boundary integrals are com-

puted with a Gauss quadrature rule, but also occurs when the more accurate Taylor quadrature rule

is used. The error at the solid surface results in a boundary layer which can significantly pollute

the numerical solution. In this paper sources of these problems are analyzed and demonstrated

for the subsonic flow about a circular cylinder. It is shown that the use of the recently developed

Taylor quadrature rule for the flux integrals in combination with superparametric elements results

in more than a factor three reduction in total pressure loss at the wall in comparison with isopara-

metric elements and Gauss quadrature. The effects of boundary curvature can also be removed

using mesh adaptation. Local mesh refinement of linear isoparametric elements is very effective

in reducing the error at slip flow boundaries and provides a good alternative to the use of super-

parametric elements. This is possible because it is demonstrated that it is not necessary to use a

higher-order boundary representation.
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1 Introduction

Discontinuous Galerkin finite element methods (DGFEM) provide a new numerical discretization

technique for the Euler equations of gas dynamics. The DGFEM is a combination of an upwind

finite volume scheme and a finite element method, with as key feature the use of local polynomial

basis functions to represent the test and trial functions. These basis functions are only weakly

coupled to neighboring elements, which make discontinuous Galerkin methods ideally suited for

mesh adaptation using local mesh refinement. The discontinuous Galerkin finite element method

for hyperbolic conservation laws has been pioneered by Cockburn and Shu (for a general survey

see (Ref. 4, 5)). Discontinuous Galerkin methods for the Euler equations with local mesh refine-

ment are described in Baumann and Oden (Ref. 3) and Van der Vegt and Van der Ven (Ref. 8).

Recently, the DGFEM has been extended by Van der Vegt and Van der Ven (Ref. 9) to basis

functions which are discontinuous in both space and time. This so-called space-time DGFEM is

well suited for problems with time-dependent boundaries, which require moving and deforming

meshes. Aerodynamic applications, such as oscillating and deforming wings, can be found in

(Ref. 9, 10).

In most of the flow domain DG finite element methods result in an accurate numerical discretiza-

tion, but at solid surfaces, where a slip flow boundary condition must be applied in inviscid gas

dynamics, DGFEM suffers from a significant loss in accuracy. This was first demonstrated by

Bassi and Rebay (Ref. 1) for the smooth subsonic flow about a circular cylinder, where in the near

wall region and wake of the cylinder a significant shear layer occurred, which is incorrect for in-

viscid flow. Bassi and Rebay showed that using linear polynomials for the test and trial functions

in combination with quadratic superparametric elements significantly reduced this effect for trian-

gular elements, but did not really give an explanation for this phenomenon. Recently, Van der Ven

and Van der Vegt (Ref. 10) proposed a new so-called Taylor quadrature rule for the flux integrals in

the space-time DGFEM to improve the numerical efficiency of the method. The Taylor quadrature

rule results in a factor three improvement in performance, but it was noticed that it also results in

a significantly reduced numerical shear layer for the flow about a circular cylinder, (Ref. 10). It

seems that not only the choice of element type, namely isoparametric or superparametric, but also

the flux quadrature rule and boundary discretization, directly affect the accuracy near a slip flow

boundary.

The main objective of this paper is to investigate different techniques to improve the accuracy in

the near wall region and wake of inviscid flows with a slip flow boundary condition. For subsonic

flow the error caused by the slip flow boundary condition dominates the overall numerical error
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and also generates unphysical vorticity and entropy near the wall. An improved discretization

of the slip flow boundary condition is of great importance for many applications which require

good accuracy in the near wall region, such as in aerodynamics. In this paper we will focus on

the effects of the flux quadrature rule, element type, and the calculation of the wall pressure in

combination with the HLLC flux proposed by Toro et al. (Ref. 6). Also, we will consider local

mesh refinement based on the boundary curvature as an alternative technique to reduce the errors

near a slip flow boundary.

Since the problems with the slip flow boundary conditions in discontinuous Galerkin methods

occur both in two and three-dimensions, and are independent of the time integration technique,

we limit the present discussion to simple two-dimensional steady flows. The results are, however,

directly applicable to space-(time) DGFEM in three dimensions. In the remainder of this paper we

first discuss the discontinuous Galerkin discretization for the Euler equations. Next, we discuss

the evaluation of the element face and volume integrals using Gauss and Taylor quadrature rules,

followed by the evaluation of the pressure at the slip wall. The effect of the different techniques is

demonstrated with the subsonic flow about a circular cylinder.



- 7 -

NLR-TP-2002-300

2 Governing equations

The Euler equations for inviscid gas dynamics with initial and boundary conditions in a domain� � � �
can be expressed as:�� � 
 � � � � � � �� � � � � � 
 � � � � � � � � � � � � � �  � " � � $ � & ( � (1)


 � � � � � � , � 
 � 
 . � � � � � � �  � � " � � $ � & ( �

 � � � � $ � � 
 $ � � � � �  2� �

with 
 3 2� " 6 � $ � & ( 8 � 9
the vector of conserved quantities,

� � 3 � 9 8 � 9
, � < � > � ? �

the flux

vectors, which are defined as:


 �
ABB
C

DD E FD H
J KK
M � � � �

ABB
C

D E �D E F E � � Q R F �E � � D H � Q �
J KK
M �

, 3 � 9 " � 9 8 � 9
the boundary operator, with 
 . 3 � � " � � $ � & ( 8 � 9

the prescribed boundary

data, 
 $ 3 2� 8 � 9
the data at the initial time

� � � $
, and & represents the final time. In addition, D ,Q

, H 3 2� " 6 � $ � & ( 8 � Z \ ] � _
denote the density, pressure and specific total energy, respectively,E F , � ` � > � ? �

the components of the velocity vector E 3 2� " 6 � $ � & ( 8 � �
in the Cartesian

coordinate direction � F , and
R F � the Kronecker delta symbol. The Euler equations are closed with

an equation of state, for which we assume a calorically perfect gas:
Q � � d e > � D � H e f� E F E F �

,

with d the ratio of specific heats at constant pressure and constant volume. In this paper we use

the summation convention on repeated indices.
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3 Discontinuous Galerkin discretization

For the discontinuous Galerkin finite element discretization the domain
�

is approximated with a

tessellation h i of quadrilateral elements j  h i , which are open domains and satisfy the condition\ k l n p r 2j � 3 � 2� i 8 �
as t 8 �

, with t the radius of the smallest circle containing all elements

j  h i . In addition, the elements j  h i satisfy the condition j � v j � w � x
if < z� < { .

The elements j  h i are connected to a reference element }j � 6 e > � > ( �
, either through the

isoparametric mapping ~ fk
:

~ fk 3 }j 8 j 3 � �8 � � f�
F � $

f�
� � $ � F � � j � }Q F � � f

� }Q � � � � � � (2)

with:

}Q $ � � F � � f� � > e � F � �
}Q

f � � F � � f� � > � � F � �
and � F � � j �

, ` � <  ] � � > _
the vertices of element j , or through the superparametric mapping ~ � k

,

which is defined as:

~ � k 3 }j 8 j 3 � �8 � � ��
F � $

��
� � $ � F � � j � }� F � � f

� }� � � � � � � (3)

with:

}� $ � � F � � f� � F � � F e > � �
}� f � � F � � > e � �F �
}� � � � F � � f� � F � � F � > � �

and � F � � j �
, ` � <  ] � � > � ? _

the vertices, midpoints of the edges, and center of the element j .

The discontinuous Galerkin discretization uses basis functions in each element which are discon-

tinuous across element faces. The DG basis functions are defined through the following steps:

� Define � f � }j �
as the space of polynomials }� 3 }j 8 �

of degree � >
on the reference

element }j :

� f � }j � 3 � � � � � ] }� � � < � � � > � ? _ �
� Define � f� � j �

, � � � > � ? �
, as the space of functions

� 3 j 8 �
associated to functions in

� f � }j �
through the mapping ~ � k

, (2)-(3):

� f� � j � 3 � � � � � ] � � � }� � � � ~ � k � � f � < � � � > � ? _ �
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� Define the space of functions
2� f� � j � 3 � � � � � ]   � � < � � � > � ? _

, with the basis functions  � 3 j 8 �
defined as:  $ � � � � > �  � � � � � � � � � � e >

� j � ¢ k � � � � � £ j � < � > � ? �
� Define the function space ¤ f� ¥ i � j �

as:

¤ f� ¥ i � j � 3 � ] � Q f � ¦ ¦ ¦ � Q 9 � § 3 j 8 � 9 � Q F  2� f� � j � _ �
then the vector of conservative variables 
 © k

can be approximated as 
 i 3 j " 6 � $ � & ( 8 � 9
as:


 i � � � � � 3 � « � 
 © k � � ��
� � $ }
 � ¥ k � � �   � � � � � for �  j � (4)

with
«

the projection operator to the finite-dimensional space ¤ f� ¥ i � j �
and }
 � ¥ k   ¯ f � 6 � $ � & ( � ° 9

.

The weak form in each element j  h i for the Euler equations of gas dynamics can now be

defined as:

Find a 
 i  ¤ f� ¥ i � j �
, such that 
 i � � � � � � « � 
 $ � � � �

, and for all ± i  ¤ f� ¥ i � j �
the following

relation is satisfied:££ � ¢ k ± i ¦ 
 i £ j � e ¢ ² k ± i ¦ ³ � 
 ´ � 
 µ � £ ¶ � ¢ k � ± i� � � � � � 
 i � £ j �
(5)

The weak formulation is obtained by multiplying the Euler equations (1) in each element j  h i
with the test functions ± i  ¤ f� ¥ i � j �

, integration by parts over the element j , and finally

a summation over all elements in h i . Weak continuity at the element faces
� j is ensured by

introducing the numerical flux ³ 3 � 9 " � 9 8 � 9
. This is accomplished by considering the

traces 
 ´ and 
 µ of 
 i in the boundary integrals of the elements j � and j � w , which satisfy the

condition
2j � v 2j � w � � j , as the initial data of a Riemann problem. For the present subsonic

flow calculations no stabilization operator was necessary. More details, including the derivation

of the weak formulation for the space-(time) discontinuous Galerkin finite element method, can

be found in Van der Vegt and Van der Ven (Ref. 9).

The discontinuous Galerkin finite element discretization is now obtained if we introduce the poly-

nomial representations for the test and trial functions ± i and 
 i , given by (4), into the weak

formulation (5) and conduct the element integrations:£ }
 �£ � ¢ k   F   � £ j � e ¢ ² k   F ³ F � 
 ´ � 
 µ � £ ¶ � ¢ k �   F� � � � � � 
 i � £ j � ` � � � > � ? �
(6)
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The resulting equations for the polynomial coefficients are solved using a Runge-Kutta time inte-

gration method in combination with a multigrid convergence acceleration technique. In this paper

we only consider steady state solutions, but for implicit time-accurate calculations a pseudo-time

integration technique is used to solve the non-linear equations for the expansion coefficients. For

more details see (Ref. 9).
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4 Numerical flux function

The introduction of the numerical flux introduces upwinding into the finite element discretization

and any monotone and consistent (approximate) Riemann solver for the Euler equations of gas

dynamics can be used as numerical flux. In the present research we use the HLLC flux proposed

by Toro et al. (Ref. 2, 6), see also Toro (Ref. 7). This is motivated by the fact that this approximate

Riemann solver combines good accuracy with a low computational cost. In addition, the HLLC

flux combines well with the Taylor quadrature rule for the fluxes to be discussed in the next section.

The HLLC flux in a form suitable for the Taylor quadrature integration can be summarized as:

³ � 
 ´ � 
 µ � � ¹ ´ }� � 
 ´ � � ¹ µ }� � 
 µ � e � ¹ ´ � ¹ µ e > � Q ¼ ½ ¾ �

f�  � ¶ ´ � e ¶ ´ � ¶ ´ � e � ¶ À �¶ ´ e ¶ À ° 
 ´ e f�  � ¶ µ � e ¶ µ � ¶ µ � e � ¶ À �¶ µ e ¶ À ° 
 µ �

with }� � Ã � � � 3 � j 8 � 9
the normal flux vector and

Ã 3 � j 8 � �
the unit outward normal

vector at
� j . The coefficients

¹ ´ ¥ µ  �
are defined as:

¹ ´ � f� Ä > � � ¶ ´ � e � ¶ À �¶ ´ e ¶ À Å � ¹ µ � f� Ä > e � ¶ µ � e � ¶ À �¶ µ e ¶ À Å �

The intermediate pressure
Q ¼  � Z

is equal to:

Q ¼ � D ´ � ¶ ´ e }E ´ � � ¶ À e }E ´ � � Q ´ �
with }E � Ã ¦ E the normal velocity, and the vector

½ ¾  � 9
is defined as

½ ¾ � � � � Ã � ¶ À � §
. The

wave speeds
¶ ´ and

¶ µ are defined as:

¶ ´ � È É � � }E ´ e Ê ´ � }E µ e Ê µ � � ¶ µ � È � Ë � }E ´ � Ê ´ � }E µ � Ê µ �

with Ê � Ì d Q Î D the speed of sound. The contact wave speed
¶ À

is equal to:

¶ À � D µ }E µ � ¶ µ e }E µ � e D ´ }E ´ � ¶ ´ e }E ´ � � Q ´ e Q µD µ � ¶ µ e }E µ � e D ´ � ¶ ´ e }E ´ � �

The suffices Ï and Ð refer to the internal and external flow states at the element boundary, respec-

tively.
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5 Flux quadrature

An important aspect in the discontinuous Galerkin discretization is the calculation of the flux in-

tegrals in (6). This influences both the accuracy and efficiency of the method. In general these

integrals are computed with product Gauss quadrature rules, with two quadrature points in each

coordinate direction. This ensures a sufficiently accurate evaluation of the integrals, but also re-

quires the evaluation of the numerical flux function at each quadrature point. Especially in three-

dimensions and for the space-time discontinuous Galerkin finite element method this quickly be-

comes computationally very expensive. In order to alleviate this problem the Taylor quadrature

rule was proposed and analyzed by Van der Ven and Van der Vegt (Ref. 10). The Taylor quadrature

rule has as main benefit that it requires only one flux evaluation per element face or volume inte-

gral. Apart from being computationally more efficient it was also observed in (Ref. 10) that this

integration technique results in a smaller error at solid walls with a slip flow boundary condition. In

this and the remaining sections we will further investigate this and propose further improvements

to the numerical discretization of slip flow boundary conditions.

The first step in the evaluation of the integrals in (6) is to transform the integrals on the righthand

side into integrals over the reference element:

¢ ² k   F � � � ³ F � 
 ´ � 
 µ � £ ¶ � 9�Ñ � f ¢ ÒÓ Ô }  F � � � ³ F � 
 ´ � 
 µ � ÕÕÕ � ~ � k� � Ö ÕÕÕ £ � Ö �
¢ k �   F� � � � � � 
 i � £ j � ¢ Òk � }  F� � � � � � 
 i � � Ø Ú Û Ü � £ � f £ � � �

with Þ � >
if à � > � ? and Þ � ? if à � á � â ; }  F � � � �   F � ~ � k � � � �

and }ã Ñ � � }j one of the four

faces of the reference element }j .

The Gauss quadrature rule now approximates the surface flux integrals as:

¢ ÒÓ Ô }  F � � � ³ F � 
 ´ � 
 µ � ÕÕÕ � ~ � k� � Ö ÕÕÕ £ � Ö ä� å æ ç è é é�ë � f ì ë }  F � � ë � ³ F � 
 ´ � � ë � � 
 µ � � ¼ë � � ÕÕÕ � ~ � k � � ë �� � Ö ÕÕÕ �
with ì ë  � Z

the quadrature weights, ï Ú ð ñ ò ò  ó
the number of Gauss quadrature points, and� ë � � ¼ë  � e > � > �

the quadrature points at both sides of the element face. Note, � ë and � ¼ë are not

necessarily the same since the elements at both sides of the face might have a local coordinate sys-

tem with a different orientation. The evaluation of the volume integrals is completely analogous.

For the Taylor quadrature rule we split the numerical flux function ³ � 
 ´ � 
 µ �
into two parts:

³ � 
 ´ � 
 µ � � f� � Ã � � � � 
 ´ � � Ã � � � � 
 µ � � e ô � 
 ´ � 
 µ � �
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where ô � 
 ´ � 
 µ �
represents the numerical dissipation of the HLLC scheme. The integrals are

now evaluated using a Taylor series expansion of the flux at the element face center:

¢ ÒÓ Ô }  F � � � � � � 
 � £ ¶ � ä� � � � 
 � 2� � � ¢ ÒÓ Ô }  F � � � £ ¶ � � � � � � 
 �� 
 Ñ � 
 Ñ � 2� �� � ¾ ¢ ÒÓ Ô � ¾ }  F � � � £ ¶ � � (7)

with
£ ¶ 3 }ã Ñ 8 � �

a vector measure which is defined as:
£ ¶ � Ã ÕÕÕ ² Ú Û Ü² õ ö ÕÕÕ £ � Ö , and 
 � 
 ´ or 
 µ .

The integrals on the righthand side of (7) can be evaluated analytically and result in simple ex-

pressions, see (Ref. 10). The derivatives of the flow state 
 i in (7) can be computed directly from

the polynomial representation of 
 i given by (4), and are equal to:
² ÷ r² õ ö � }
 Ö . The discontinuous

Galerkin discretization therefore automatically provides the necessary data for the Taylor quadra-

ture. The integrals containing the dissipative part of the HLLC flux are evaluated analogously. It

is, however, not necessary to compute exact derivatives of
² ø² õ ö to preserve accuracy and stability

and we assume that
¶ ´ and

¶ µ are constant during the integration process, see (Ref. 10) for more

details. The evaluation of the volume integrals is analogous to the flux integrals and not further

discussed.
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6 Slip flow boundary

At a slip flow boundary we impose the boundary condition:

E ¦ Ã � � � at
� � ò ù � � �

This implies that the pressure is the only non-zero contribution in the flux at the domain boundary� � ò . The zero normal velocity at
� � ò can be imposed using ghostcells at the wall, where the

velocity is equal to: D µ E µ � D ´ E ´ e ? D ´ � E ´ ¦ Ã � Ã �
and is used in the Gauss quadrature of the flux at the domain boundary faces. This has as main

benefit that the same HLLC flux function can be used both for faces in the interior and at the

domain boundary. The straightforward implementation of the Taylor flux quadrature requires,

however, derivatives
² ÷ ú² ÷ û , since 
 µ � 
 µ � 
 ´ �

, and this results in a flux at the wall which does

not only depend on the pressure, as is required by the exact boundary condition. In order to

remove this inconsistency we use at the boundary faces the pressure which is obtained from the

exact solution of the Riemann problem for a reflective wall. This solution is relatively simple and

consists either of two rarefaction or two shock waves, see Toro (Ref. 7), and can be summarized

as:

If E ´ � �
(rarefaction wave):

Q ¼ � Q ´ ü > � � d e > � E ´? Ê ´ þ ÿ �� � � � with Ê ´ � � d Q ´D ´ �
If E ´ � �

(shock wave):

Q ¼ � Q ´ � E ´? � ´ 
 E ´ � � E �´ � â � ´ � Q ´ � � ´ � � �
with:

� ´ � ?� d � > � D ´ � � ´ � � d e > �
� d � > � Q ´ �

Here the suffix Ï refers to the internal flow state at the wall at the initial time of the Riemann

problem. The pressure
Q ¼

in the Riemann problem ensures that slip flow boundary conditionE ¼ ¦ Ã � �
is satisfied, with E ¼

the velocity at the wall in the exact Riemann problem. The

evaluation of the boundary flux integral � ÒÓ Ü Q ¼ Ã � � ~ � k Î � � Ö � £ � Ö with the Taylor quadrature rule is

now straightforward and significantly improves the accuracy in the near wall region when it is

combined with a sufficiently accurate representation of the boundary geometry.
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The integration of the boundary flux
� � 
 . � � � � � Q ¼ Ã � � �

with the Gauss quadrature rule does

not give any noticeable difference in comparison with the use of the pressure in the star region

obtained from the HLLC flux using ghostcells.
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7 Effect of wall curvature on the accuracy of the discontinuous Galerkin discretiza-
tion

The accuracy in the near wall region of the discretization of the slip flow boundary condition does

not only depend on the evaluation of the boundary integrals, but also on the representation of the

surface geometry. This was noticed by Bassi and Rebay (Ref. 1), where they showed that the use

of superparametric elements improved the accuracy in the near wall region. In this section we

will analyze the effect of the boundary representation on the accuracy of the domain boundary

integrals when they are evaluated with the Taylor quadrature rule. If we expand the flux function�� � � � � � � � � 
 � ~ � k � � � � �
and the mapping ~ � k � � �

in a Taylor series terms of � around the point
2� ,

with � � � f or � � depending on the index à of }ã Ñ
, then we obtain:

¢ ÒÓ Ô }  F � � � � � � 
 � £ ¶ � ä�  �� � � 2� � ¶ � � 2� � ° ¢ ÒÓ Ô }  F � � � £ � � Ä � �� � � 2� �� � ¶ � � 2� � � �� � � 2� � � ¶ � � 2� �� � Å ¢ ÒÓ Ô � }  F � � � £ � �
with

¶ � � Ã � � ² Ú Û Ü² õ � . Introduce the arclength � � � � 3 � � õ� f � ² Ú Û Ü² õ w � £ � { , and use the relations:¶ � � � � Ã ¾ � � � £ �£ � �£ ¶ � � �£ � � e � � � � � � � � 

£ �£ � � � � Ã ¾ � � � £ � �£ � � �

with
� 3 6 e > � > ( 8 � �

the tangential vector at the boundary curve � � � � � � � �� � � � � � j , which

is defined as
� � � � � � �� � ò �� ò , � 3 6 e > � > ( 8 � Z \ ] � _

the boundary curvature à � � � � � � ÿ ��� ò ÿ � , andÃ ¾ 3 6 e > � > ( 8 � �
the principal normal vector

Ã ¾ � � � � f � ÿ ��� ò ÿ . The boundary flux integrals can

now be expressed as:

¢ ÒÓ Ô }  F � � � � � � 
 � £ ¶ � ä �  �� � � 2� � Ã ¾ � � 2� � ° £ � � 2� �£ � ¢ ÒÓ Ô }  F � � � £ � � Ä � �� � � 2� �� � Ã ¾ � � 2� � £ � � 2� �£ � �
�� � � 2� �  e � � 2� � � � � 2� � 


£ � � 2� �£ � � � � Ã ¾ � � 2� � £ � � � 2� �£ � � ° Å ¢ ÒÓ Ô � }  F � � � £ � �
with 2� � � � 2� �

. This expression shows that for a consistent boundary treatment in a discontinuous

Galerkin discretization it is necessary to take the boundary curvature also into account. If we use

linear elements, generated with the mapping ~ fk
, then the contribution e � � � � � � � � � � ò� õ � � � Ã ¾ � � � � ÿ ò� õ ÿis zero, but depending on the curvature � this contribution can be large and non-negligible. For

superparametric elements, generated with the mapping ~ � k
, it is possible to take the boundary

curvature into account and it can be expected that this results in a more accurate discretization at

the boundary. This confirms the result from Bassi and Rebay (Ref. 1), which showed that using

superparametric elements significantly improved the accuracy near the boundary. The use of su-
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Fig. 1 Maximum residual for all equations of the expansion coefficients }
 � � j �
, � � � � � > � ? �

for the flow about a circular cylinder at " # � � � á %
using a Gauss flux quadrature rule

and linear isoparametric elements (
á ? " â %

mesh).

perparametric elements requires, however, significant modifications to a general three-dimensional

DGFEM code. An alternative is provided by using linear elements, generated with the mapping~ fk
, and use local mesh refinement based on the local boundary curvature. This can effectively

reduce the contribution e � � � � � � � � Ä � ò� õ Å � � Ã ¾ � �
� �

ÿ
ò

� õ
ÿ

to such a small value that the element cur-

vature becomes negligible. In the next section we will investigate both the use of superparametric

elements and local mesh refinement.
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Fig. 2 Pressure field and Mach number contours for the flow about a circular cylinder at " #
�

� � á %
using a Gauss flux quadrature rule and linear isoparametric elements (

á ? " â %
mesh).
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8 Results

In order to investigate the effect of the different numerical discretizations for a slip flow boundary

we consider the flow about a circular cylinder with a radius of one at the Mach number " # �
� � á %

. This is the same problem as considered by Bassi and Rebay (Ref. 1) and is a good test case

since it is very sensitive to the correct treatment of the slip flow boundary condition. If " # 8 �
the solution is equal to the classical potential flow around a circular cylinder. The Mach number

0.38 is chosen in this study in order to avoid the well known difficulties of computing low Mach

number flows which are not relevant for the present study. At the inflow we use the conditions

D µ E µ � D # E # , t µ � t # and
Q µ � Q ´ , with t the specific total enthalpy, t � H � Q Î D . At

the outflow boundary we use the conditions D µ E µ � D ´ E ´ , t µ � t ´ and
Q µ � Q # . The suffix' refers to the free stream value and Ï to the internal flow state. For all calculations the residual

in each of the equations for the coefficients }
 � � j �
, � � � � � > � ? �

, was reduced to
> � � f f using a

multigrid convergence acceleration technique. Figure 1 shows the result for linear isoparametric

elements and Gauss flux quadrature. It should be noted that the results obtained by Bassi and

Rebay (Ref. 1) for this case did not converge, even after more than 100.000 Runge-Kutta steps.

In order to obtain converged solutions they had to use superparametric elements. As a measure

for the accuracy of the different boundary discretizations we use the total pressure loss, which is

defined as:

Q ( � Ö * ò ò � > e
Q

Q # ,
> � f� � d e > � " �

> � f� � d e > � " �# . ��
� � �

For subsonic inviscid flow the total pressure loss should be zero and is therefore a good indicator

for the numerical accuracy. It is also an important quantity in aerodynamic computational fluid

dynamics calculations, where it must be small otherwise the solution shows too much pollution

through numerical dissipation and spurious vorticity generation.

For the baseline solution we use
á ? " â %

linear isoparametric elements, generated with the mapping

~ fk
. The boundary flux integrals are evaluated with a two-point Gauss quadrature rule with unit

weights and quadrature points � ¼ë � 1 f3 4 , and a two-point product Gauss quadrature rule with

the same weights and quadrature points for the volume integration. Figure 2 shows the pressure

field and Mach number contours. For both quantities the contour lines are not very symmetric

with respect to the axis � � �
. This is particularly true for the Mach number which clearly shows

an artificial wake. The effect of the boundary condition becomes more pronounced when we look

at the total pressure loss shown in Figures 3 and 4. The maximum value of the total pressure

loss for linear isoparametric elements in combination with Gauss quadrature integration is
� � � 5 ? .

The use of quadratic superparametric elements in combination with Gauss quadrature reduces the
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Fig. 3 Comparison of the total pressure loss at the wall for the flow around a circular cylinder

( " #
� � � á %

) using Gauss and Taylor flux quadrature rules for isoparametric elements

on a coarse (
á ? " â %

elements) and fine mesh (
5 â " 6 5

elements) and superparametric

elements on a coarse mesh (
á ? " â %

elements).

maximum value of the total pressure loss to 0.049, see Figure 3, which also shows the result on

the fine
5 â " 6 5

mesh. The use of superparametric elements does reduce the total pressure loss for

a significant part of the boundary, which confirms the conclusion of Bassi and Rebay (Ref. 1) for

P1Q1 elements, but not sufficient near the rear stagnation line to remove the artificial wake. The

results on the
5 â " 6 5

mesh in Figures 3 and 4 also show that the solution using Gauss quadrature

in combination with linear isoparametric elements improves on a fine mesh. This contradicts the

conclusion of Bassi and Rebay that a higher-order geometric approximation of curved boundaries

is mandatory in DGFEM. The difference can probably be attributed to the convergence problems

Bassi and Rebay experienced for this case, which resulted on a fine mesh in an unsteady flow.

For linear isoparametric elements in combination with the Taylor quadrature rule the total pressure

loss reduces to a maximum of
� � � á ? , see Figures 3 and 4, which also show the result on the fine

5 â " 6 5
mesh. A comparison of Taylor and Gauss quadrature techniques in Figure 3 shows that

the Taylor quadrature rule with linear isoparametric elements on the coarse
á ? " â %

mesh has a

comparable total pressure loss as linear isoparametric elements on the fine
5 â " 6 5

mesh when
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Fig. 4 Total pressure loss for flow around a circular cylinder at " #
� � � á %

, using a Gauss

quadrature rule (left) and Taylor quadrature rule (right). Top: linear isoparametric elements

(
á ? " â %

mesh). Middle: quadratic superparametric elements (
á ? " â %

mesh). Bottom:

linear isoparametric elements (
5 â " 6 5

mesh).
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Fig. 5 Mach number contours for flow about a circular cylinder at " #
� � � á %

using Taylor

quadrature and quadratic superparametric elements, wall pressure from Riemann problem

(
á ? " â %

elements).

Gauss quadrature is used. This difference can be attributed to the fact that in the Gauss quadrature

rule the normal flux is computed at different locations in the element face. At each quadrature

point we consider a one-dimensional Riemann problem and neglect the tangential variation of the

solution in the element face. The tangential vectors at the quadrature points are slightly different

and this results in different shear wave contributions from the quadrature points, which manifest

themselves in spurious entropy generation near the wall. The Taylor quadrature rule considers the

Riemann problem only at one point and therefore results in a more consistent discretization when

combined with one-dimensional (approximate) Riemann solvers.

The use of quadratic superparametric elements in combination with the Taylor quadrature rule

further reduces the maximum total pressure loss to
� � � > %

, see Figures 3 and 4. Incorporating the

boundary curvature effects in combination with the Taylor quadrature rule also results in a signif-

icantly improved solution, see Figure 5 which shows the Mach number contours. The contours

are now nearly symmetric with respect to � � �
and do not show the pronounced wake visible in

Figure 2.
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Fig. 6 Comparison of the total pressure at the wall of a circular cylinder at " #
� � � á %

using

Taylor quadrature with locally refined linear isoparametric elements (meshes 1536, 1710,

2439, 8358 elements, pressure from Riemann problem).

Local mesh adaptation in the vicinity of the wall can also be a very efficient technique to reduce

the numerical error at slip flow boundaries. Especially, when it is related to the boundary curvature

as discussed in Section 7. Figure 6 shows three meshes obtained with local refinement of a
á ? " â %

mesh with linear isoparametric elements. The flux quadrature is done with the Taylor quadrature

rule. The adapted meshes contain 1536, 1710, 2439, 8358 elements. Refinement is based on the

generated vorticity, which should be zero in this subsonic inviscid flow. Also shown is the total

pressure loss on the adapted mesh, on the coarse mesh with isoparametric and superparametric

elements, and on the fine mesh with
5 â " 6 5

elements. Figure 6 shows that after three adaptations

the total pressure loss is nearly reduced to zero, except close to the rear stagnation point. The fine

grid result is nearly identical to the one-time adapted mesh but requires 3.6 times more elements

than the one-time adapted mesh. The Mach number contours on the fine mesh are shown in Figure

7 and are nearly symmetric with respect to the axis � � �
.
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Fig. 7 Mach contours for flow about a circular cylinder at " #
� � � á %

using Taylor quadrature on

a locally refined mesh with 8358 linear isoparametric elements, pressure from Riemann

problem.
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9 Conclusions

Discontinuous Galerkin finite element discretizations of the Euler equations of gas dynamics can

suffer from significant numerical errors due to slip flow boundary conditions at curved walls,

depending on the type of numerical quadrature and the representation of the domain boundary.

The newly presented Taylor flux quadrature rule results in a significant reduction of the total

pressure losses in comparison with a two-point (product) Gauss quadrature rule. A simple analysis

has shown that for a consistent boundary discretization in a discontinuous Galerkin finite element

method it is necessary to take the effect of the domain boundary curvature into account. This is

demonstrated with quadratic superparametric elements, which reduces the total pressure losses

both for Gauss and Taylor quadrature rules. Superparametric elements are the most effective for

Taylor quadrature rules where they result in more than a factor three reduction in total pressure

loss in comparison with isoparametric elements combined with Gauss quadrature. The effects of

boundary curvature can also be removed using mesh adaptation and it is demonstrated that it is not

necessary to use a higher-order boundary representation as was stated by Bassi and Rebay (Ref. 1).

Local mesh refinement of linear isoparametric elements is very effective in reducing the error at

slip flow boundaries and can provide an alternative to the use of superparametric elements.
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