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Summary 

For the problem of tracking multiple targets the Joint Probabilistic Data Association (JPDA) 
approach has shown to be very effective in handling clutter and missed detections. The JPDA, 
however, tends to coalesce neighbouring tracks and ignores the coupling between those tracks. 
Fitzgerald has shown that hypothesis pruning may be an effective way to prevent track 
coalescence. Unfortunately, this process leads to an undesired sensitivity to clutter and missed 
detections, and it does not support any coupling. To improve this situation, the paper follows a 
novel approach to combine the advantages of JPDA, coupling and hypothesis pruning into new 
algorithms. First, the problem of multiple target tracking is embedded into one filtering for a 
linear descriptor system with stochastic coefficients. Next, for this descriptor system the exact 
Bayesian and new JPDA filters are derived. Finally, through Monte Carlo simulations, it is 
shown that these new PDA filters are able to handle coupling and are insensitive to track 
coalescence, to clutter and to missed detections. 
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Abbreviations 

ARTAS Advanced Surveillance Tracker and Server 
CPDA Coupled Probabilistic Data Association 
CPDA* Track-coalescence-avoiding Coupled Probabilistic Data Association  
EKF  Extended Kalman Filter 
ENNPDA Exact Nearest Neighbour Probabilistic Data Association 
IMM Interacting Multiple Model 
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MLE Maximum Likelihood Estimation 
MMSE Minimum Mean Square Error 
MR Mixture Reduction 
MTA Measurement to Track Association 
MTMR Multi Target Mixture Reduction 
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Probabilistic Data Association Avoiding Track
Coalescence

Henk A.P. Blom and Edwin A. Bloem

Abstract|For the problem of tracking multiple targets the
Joint Probabilistic Data Association (JPDA) approach has
shown to be very e�ective in handling clutter and missed de-
tections. The JPDA, however, tends to coalesce neighbour-
ing tracks and ignores the coupling between those tracks.
Fitzgerald has shown that hypothesis pruning may be an
e�ective way to prevent track coalescence. Unfortunately,
this process leads to an undesired sensitivity to clutter and
missed detections, and it does not support any coupling. To
improve this situation, the paper follows a novel approach to
combine the advantages of JPDA, coupling and hypothesis
pruning into new algorithms. First, the problem of multi-
ple target tracking is embedded into one �ltering for a linear
descriptor system with stochastic coe�cients. Next, for this
descriptor system the exact Bayesian and new JPDA �lters
are derived. Finally, through Monte Carlo simulations, it is
shown that these new PDA �lters are able to handle cou-
pling and are insensitive to track coalescence, to clutter and
to missed detections.

Keywords| Bayesian Filtering, Descriptor system, Joint
Probabilistic Data Association, Multi-target tracking

I. Introduction

F
OR the problem of tracking multiple targets, the Joint
Probabilistic Data Association (JPDA) �lter [1] has

shown to be very e�ective in handling clutter and missed
detections. The JPDA, however, tends to coalesce neigh-
bouring tracks. The aim of this paper is to develop prob-
abilistic �lters that both avoid JPDA's sensitivity to track
coalescence and preserve JPDA's resistance to clutter and
missed detections. This development forms a further elab-
oration of the new approach and �lters presented in [2] and
[3].

The Joint Probabilistic Data Association (JPDA) �lter
[1], [4] is the best known example of the Bayesian data as-
sociation paradigm. From this point of view, JPDA seems
to have a fundamental advantage over classical Measure-
ment to Track Association (MTA) approaches, such as a
single scan based Nearest Neighbour (NN) approach, or
the multi-scan based Multiple Hypothesis Tracking (MHT)
approach. Because of its appealing paradigm, JPDA has
stimulated further developments, many of which have been
directed to improving the stability or complexity of the nu-
merical evaluation of the JPDA equations. This research
has led to the development of several sub-optimal JPDA
weight evaluation schemes [5], [6], [7], [8], [9] and to the
Exact Nearest Neighbour version of the JPDA (ENNPDA)
of [6]. The latter uses the JPDA weight evaluation and sub-
sequently prunes all Gaussians from the conditional den-
sity, except the joint association hypothesis that has the
heighest weight. The resulting ENNPDA appeared to be
remarkably insensitive to track coalescence in case of no
clutter and no missed detections. The dramatic pruning

used for ENNPDA, however, leads to an undesired sensi-
tivity to clutter and missed detections [10]. From this point
of view, ENNPDA and JPDA seem to have complementary
qualities, both of which one would like to combine into a
new algorithm.

More fundamental studies have been directed toward the
development of new approaches in approximating the con-
ditional density. One direction is the approximation of the
conditional density for each target's state by a reduced mix-
ture of Gaussian densities, rather than by JPDA's single
Gaussian. Through the introduction of appropriate dis-
tance measures the single-target Mixture Reduction (MR)
scheme of [11] has been extended to a Multi Target Mixture
Reduction (MTMR) version [12]. Another fundamental ex-
tension over JPDA is the estimation of the joint targets
state. The underlying motivation is that the probabilistic
sharing of measurements by closely spaced targets results in
a correlation between the individual tracks [13]. Presently,
this idea has been elaborated along three di�erent direc-
tions, as follows.

� JPDA Coupled (JPDAC) �lter approach. Following the
JPDA derivation framework, a coupled �lter has been given
for the joint state (e.g. [14], pp. 328-329). During each
�lter cycle a single Gaussian replaces the Gaussian sum.
The e�ectiveness of the JPDAC approach in combination
with two other Bayesian approaches (Imaging sensor �lter
and IMM, respectively) has been demonstrated for closely
spaced target situations [15], [16]. Note, however, that a
direct comparison between JPDAC and JPDA has not been
made in these papers.
� Symmetric Measurement Equation (SME) approach.
Similar as JPDAC, SME yields a coupled �lter for the joint
state results. The novel idea is to transform the joint state
observation equation such that the data association un-
certainty disappears completely. The result of such trans-
formation is a nonlinear �ltering problem, which can be
approached by e.g. an Extended Kalman Filter (EKF) for
the joint target state. E�ective SME transformations have
been developed and some initial comparisons with JPDA
have shown the e�ectiveness of the approach [17], [18], [19],
[20], [21], [22]. Due to the nonlinear �ltering for the joint
targets' state, the SME approach evaluates the correlation
between close target tracks. SME is numerically less com-
plex than JPDA.
� Maximum Likelihood Estimation (MLE) approach. Here
the aim is to recursively evaluate the MLE of the targets'
joint state. By making use of a (single) Gaussian ap-
proximation around the maximum likelihood estimate of
the joint targets' state, recursive methods for MLE based
tracking have been developed [23], [24]. The most general
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recursive MLE �lter is based on a mean �eld approach to-
wards the evaluation of the maximum likelihood estimate
of the targets joint state [24]. The e�ectiveness of this re-
cursive MLE approach relative to JPDA has been shown in
[25], and two types of improvements over JPDA have been
reported: (1) improved resistance to track coalescence, and
(2) improved resistance to clutter measurements.

The JPDAC, the SME and the MLE developments all
point into the direction that a study towards combining
the complementary qualities of JPDA and ENNPDA into
a new algorithm deserves a broader setup, in order to also
try to combine the coupling between target tracks. To do
so, this paper explores two complementary directions, the
�rst of which provides a theoretical basis for incorporat-
ing coupling with JPDA, and the second exploits the EN-
NPDA advantages. The �rst direction starts by embed-
ding the problem of multi-target tracking, given unasso-
ciated measurements from clutter and randomly detected
targets, into one of �ltering for a well-de�ned system of
stochastic di�erence equations. The resulting embedding
is a linear descriptor system with stochastic i.i.d. coe�-
cients [2]. This representation forms the key to the de-
velopment of the exact Bayesian �lter equations for the
conditional density of the joint state of the multiple tar-
gets, and of the Gaussian approximation-based �lter algo-
rithm. The latter �lter algorithm appears to di�er signi�-
cantly from the JPDAC �lter in case of missed detections,
and is referred to as Coupled Probabilistic Data Associa-
tion (CPDA) �lter. The second, complementary direction
shows how the hypothesis pruning approach of ENNPDA
should be incorporated within the CPDA and JPDA �l-
ters. To do so, we �rst develop an ENNPDA-inspired track-
coalescence-avoiding hypothesis pruning strategy. Apply-
ing this to CPDA and JPDA results into new algorithms
called CPDA� and JPDA�, respectively, in which the * is
short for "Track-coalescence-avoiding". In order to com-
pare the newly developed CPDA, CPDA� and JPDA� �l-
ters versus each other and versus JPDAC, JPDA and EN-
NPDA, we subsequently run Monte Carlo simulations for
a basic example in which track coalescence plays a distinc-
tive role in JPDA. On the basis of these results, it appeared
possible to characterize the di�erences between the various
�lters, to show the distinct advantage of the CPDA� and
JPDA� algorithms over the other ones, and to identify the
cause of track coalescence.

The paper is organized as follows. In section II, we in-
troduce the multitarget tracking problem considered. In
section III, we embed this problem into one of �ltering
given measurements from a linear descriptor system with
stochastic coe�cients. In section IV, we develop the CPDA
�lter algorithm and explain its di�erence with JPDAC
and JPDA. In section V, we develop the track-coalescence-
avoiding �lter algorithms CPDA� and JPDA�. In section
VI, we evaluate all new developments through Monte-Carlo
simulations. Finally, in section VII, we summarize the re-
sults and draw more general conclusions.

II. The Stochastic Model

In this section we will describe the target model and the
measurement model.

A. The target model

We consider M targets and we assume that the state of
the ith target is modeled as follows :

xit+1 = aixit + biwit; i = 1; :::;M; (1)

where xit is the n-vectorial state of the i-th target, ai and
bi are (n� n)-matrices and wit is a sequence of i.i.d. stan-

dard Gaussian variables of dimension n with wit , w
j
t in-

dependent for all i 6= j and wit ,x
i
0; x

j
0 independent for all

i 6= j. Let xt
4
= Colfx1t ; :::; x

M
t g, A

4
= Diagfa1; :::; aMg,

B
4
= Diagfb1; :::; bMg, and wt

4
= Colfw1

t ; :::; w
M
t g. Then we

can model the state of our M targets as follows:

xt+1 = Axt + Bwt (2)

B. The measurement model

A set of measurements consists of two types of measure-
ments, namely measurements originating from targets and
measurements originating from clutter. First we will treat
the two types of measurements separately. Subsequently
we treat the random insertion of clutter measurements be-
tween the target measurements.

B.1 Measurements originating from targets

We assume that a potential measurement associated with
state xit (which we will denote by zit) is modeled as follows:

zit = hixit + givit ; i = 1; :::;M (3)

where zit is an m-vector, hi is an (m� n)-matrix and gi is
an (m�m)-matrix, and vit is a sequence of i.i.d. standard

Gaussian variables of dimension m with vit and v
j
t indepen-

dent for all i 6= j. Moreover vit is independent of xj0 and

wjt for all i,j .

With zt
4
= Colfz1t ; :::; z

M
t g, H

4
= Diagfh1; :::; hMg, G

4
=

Diagfg1; :::; gMg, and vt
4
= Colfv1t ; :::; v

M
t g, we obtain:

zt = Hxt +Gvt (4)

We next introduce a model that takes into account that
not all targets have to be detected at moment t, which
implies that not all potential measurements zit have to be
available as true measurements at moment t. To this end,
we de�ne the following variables: Let P id be the detection
probability of target i and let �i,t 2f0,1g be the detection
indicator for target i, which assumes the value one with
probability P id > 0, independently of �j;t, j 6= i. This
result yields the following detection indicator vector �t:

�t
4
= Colf�1;t; :::; �M;tg:

Thus, the number of detected targets is Dt
4
=
PM

i=1 �i;t.
Furthermore, we assume that f�tg is a sequence of i.i.d.
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vectors. In order to link the detection indicator vector with
the measurement model, we introduce the following opera-
tor �: for an arbitrary (0,1)-valued M 0-vector �0 we de�ne

D(�0)
4
=
PM 0

i=1 �
0
i and the operator � producing �(�0) as

a (0; 1)-valued matrix of size D(�0) �M 0 of which the ith
row equals the ith non-zero row of Diagf�0g. Hence by
de�ning, for Dt > 0,

~zt
4
= �(�t)zt; where �(�t)

4
= �(�t)
 Im;

with Im a unit-matrix of size m, and 
 denoting the tensor
product

�
a b
c d

�

 Im =

2
664
aIm

... bIm
. . . . . .

cIm
... dIm

3
775

we get the vector that contains all measurements originat-
ing from targets at moment t in a �xed order. In reality,
however, we do not know the order of the targets. Hence,
we introduce the stochastic Dt � Dt permutation matrix
�t, which is conditionally independent of f�tg. We also
assume that f�tg is a sequence of independent matrices.
Hence, for Dt > 0,

~~zt
4
= �

t
~zt; where �

t

4
= �t 
 Im;

is a vector that contains all measurements originating from
targets at moment t in a random order.

B.2 Measurements originating from clutter

Let the random variable Ft be the number of false mea-
surements at moment t. We assume that Ft has Poisson
distribution:

pFt(F ) = exp
�
��V

� (�V )F
F ! , F = 0, 1, 2, . ..

= 0, else

where � is the spatial density of false measurements (i.e.
the average number per unit volume) and V is the volume
of the validation region. Thus, �V is the expected number
of false measurements in the validation gate. We assume
that the false measurements are uniformly distributed in
the validation region, which means that a column-vector
v�t of Ft i.i.d. false measurements is assumed to have the
following density:

pv�t jFt(v
�jF ) = V �F

where V is the volume of the validation region. Further-
more we assume that the process fv�t g is a sequence of inde-
pendent vectors, which are independent of fxtg; fwtg; fvtg
and f�tg.

B.3 Random insertion of clutter measurements

Let the random variable Lt be the total number of mea-
surements at moment t. Thus,

Lt = Dt + Ft

With ~yt
4
= Colf~~zt; v�t g, it follows with the above de�ned

variables that

~yt =

2
4 �

t
�(�t)zt

::::::::::::::
v�t

3
5 ; if Lt > Dt > 0 (5)

whereas the upper and lower subvector parts disappear for
Dt = 0 and Lt = Dt respectively. With this equation,
the measurements originating from clutter still have to be
randomly inserted between the measurements originating
from the detected targets. To do so, we �rst introduce the
following target indicator and clutter indicator processes,
denoted by f tg and f �t g, respectively: Let the random
variable  i,t 2f0,1g be a target indicator at moment t for
measurement i, which assumes the value one if measure-
ment i belongs to a detected target and zero if measure-
ment i comes from clutter. This result yields the following
target indicator vector  t of size Lt:

 t
4
= Colf 1;t; :::;  Lt,tg:

Let the random variable  �i,t 2f0,1g be a clutter indicator
at moment t for measurement i, which assumes the value
one if measurement i comes from clutter and zero if mea-
surement i belongs to an aircraft (thus  �i,t = 1 �  i,t).
This result yields the following clutter indicator vector  �t
of size Lt:

 �t
4
= Colf �1;t; :::;  

�
Lt,tg:

In order to link the target and clutter indicator vectors
with the measurement model, we make use of the operator
� introduced before. With this the measurement vector
with clutter inserted reads as follows:

yt =

�
�( t)

T
... �( �t )

T

�
~yt if Lt > Dt > 0 (6)

Substituting (5) into (6) yields the following model for the
observation vector yt at moment t:

yt =

�
�( t)

T
... �( �t )

T

�24 �
t
�(�t)zt

::::::::::::::
v�t

3
5 if Lt > Dt > 0

(7)
This, together with equation (2), forms a complete char-
acterization of our tracking problem in terms of stochastic
di�erence equations.

III. Embedding into a descriptor system with
stochastic coefficients

Because

�
�( t)

T
... �( �t )

T

�
is a permutation matrix for

Lt > Dt > 0, its inverse satis�es

�
�( t)

T
... �( �t )

T

�T
=

2
4 �( t)

::::
�( �t )

3
5 (8)

Premultiplying (7) by such inverse yields2
4 �( t)

::::
�( �t )

3
5 yt =

2
4 �

t
�(�t)zt

::::::::::::::
v�t

3
5 if Lt > Dt > 0 (9)
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From (9), it follows that

�( t)yt = �
t
�(�t)zt if Dt > 0 (10)

Substitution of (4) into (10) yields:

�( t)yt = �
t
�(�t)Hxt + �

t
�(�t)Gvt if Dt > 0 (11)

Notice that (11) is a linear Gaussian descriptor system [26]
with stochastic i.i.d. coe�cients �( t) and �

t
�(�t). Be-

cause �t has an inverse, (11) can be transformed into

�T
t
�( t)yt = �(�t)Hxt +�(�t)Gvt if Dt > 0 (12)

Next we introduce an auxiliary indicator process ~�t as fol-
lows:

~�t
4
= �Tt �( t) if Dt > 0:

With this we get a simpli�ed version of (12):

~�
t
yt = �(�t)Hxt +�(�t)Gvt if Dt > 0 (13)

Remark 1: For the development of the JPDA, [1, p. 224]
makes use of an Lt � (M + 1) dimensional measurement-
target association matrix 
t = [!ij;t] with !ij;t = 1 if the
ith measurement belongs to target j (with target 0 meaning
clutter) and !ij;t = 0 otherwise. In our setup 
t satis�es,
for Lt > 0:


t = [ �t �( t)
T�t�(�t)], if Dt > 0

= [ �t ;Lt�M ], if Dt = 0
(14)

where ;Lt�M denotes an Lt�M -dimensional zero-matrix.

IV. Development of the Coupled PDA (CPDA)
filter

Let Yt denote the �-algebra of measurements yt up to and
including moment t. In this section we develop Bayesian
characterizations of the conditional density pxtjYt(x). From
(13), it follows that all relevant associations and permu-
tations can be covered by (�t; ~�t)-hypotheses. Hence,
through de�ning the weights

�t(�; ~�)
4
= Probf�t = �; ~�t = ~� j Ytg;

the law of total probability yields:

pxtjYt(x) =
X
~�;�

�t(�; ~�)pxtj�t;~�t;Yt(x j �; ~�) (15)

And thus, our problem is to characterize the terms in the
last summation. This problem is solved in two steps, the
�rst of which is the following proposition.

Proposition 1: For any � 2f0; 1gM , such that D(�)
4
=PM

i=1 �i � Lt, and any ~�t matrix realization ~� of size
D(�) � Lt, the following holds true:

pxtj�t;~�t;Yt(x j �; ~�) =
p~ztjxt;�t(~�yt j x; �) � pxtjYt�1(x)

Ft(�; ~�)
(16)

�t(�; ~�) = Ft(�; ~�)�
(Lt�D(�))[

MY
i=1

(1� P id)
(1��i)(P id)

�i ]=ct

(17)

where ~�
4
= ~�
 Im , and Ft(�; ~�) and ct are such that they

normalize pxtj�t;~�t;Yt(x j �; ~�) and �t(�; ~�) respectively.
Proof: see Appendix A. The specialty of this proof

is because of the derivation of Bayesian equations for the
descriptor system (13).

Our next step is given by the following Theorem.

Theorem 1: Let pxtjYt�1(x) be Gaussian with mean �xt
and covariance �Pt and let Ft(�; ~�) be de�ned by Proposi-
tion 1. Then Ft(0; ~�) = 1, whereas for � 6= 0:

Ft(�; ~�) = expf� 1
2�

T
t (�; ~�)Qt(�)

�1�t(�; ~�)g�

�[(2�)mD(�)DetfQt(�)g]�
1

2

(18)

where

�t(�; ~�)
4
= ~�yt ��(�)H�xt

Qt(�)
4
= �(�)(H �PtH

T +GGT )�(�)T

Moreover, pxtjYt(x) is a Gaussian mixture, whereas its over-

all mean x̂t and its overall covariance P̂t satisfy

x̂t = �xt +
X
�

�6=0

Kt(�)

�X
~�

�t(�; ~�)�t(�; ~�)

�
(19)

P̂t = �Pt �
X
�

� 6=0

Kt(�)�(�)H �Pt

�X
~�

�t(�; ~�)

�
+

+
X
�

�6=0

Kt(�)

�X
~�

�t(�; ~�)�t(�; ~�)�
T
t (�; ~�)

�
KT
t (�) +

�

0
BB@X

�

�6=0

Kt(�)

�X
~�

�t(�; ~�)�t(�; ~�)

�1CCA �

�

0
BB@X

�0

�0 6=0

Kt(�
0)

�X
~�0

�t(�
0; ~�0)�t(�

0; ~�0)

�1CCA
T

(20.a)

with:

Kt(�)
4
= �PtH

T�(�)TQt(�)
�1 if � 6= 0; and

Kt(0)
4
= 0

(20.b)

Proof: (Outline) If pxtjYt�1(x) is Gaussian with mean
�xt and covariance �Pt , then the density pxtj�t;~�t;Yt(x j �; ~�)
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is Gaussian with mean x̂t(�; ~�) and covariance P̂t(�) satis-
fying

x̂t(�; ~�) = �xt +Kt(�)[~�yt � �(�)H�xt] if � 6= 0 ,
= �xt if � = 0

P̂t(�) = �Pt �Kt(�)�(�)H �Pt if � 6= 0 ,
= �Pt if � = 0

Hence, pxtjYt(:) is a Gaussian mixture, and all equations
follow from a lengthy but straightforward evaluation of this
mixture.

Theorem 1 implies that we get a recursive algorithm if the
conditional density pxtjYt�1(x), is approximated by a Gaus-
sian shape. We refer to this recursive algorithm as the
CPDA �lter. It consists of evaluating the following three
subsequent steps:

CPDA Step 1 - Prediction:

�xt = Ax̂t�1 (21)

�Pt = AP̂t�1A
T +BBT (22)

CPDA Step 2 - Gating:
For each prediction (�xit;

�P it ), de�ne a gate Git 2 IRm as
follows:

Git
4
= fy0 2 IRm; (y0 � hi�xit)

T (hi �P ith
iT + gigiT )�1 �

�(y0 � hi�xit) � 
g

with 
 the gate size.
If the j-th measurement yjt falls outside gate Git, i.e.

yjt =2 Git, then the i-th component of the j-th column of
~�t is assumed to equal zero. This reduces the set of pos-
sible detection/permutation hypotheses to be evaluated at
moment t to, say, ~Xt.

CPDA Step 3 - Evaluation of the Detection/Permutation
Hypotheses, by Using (16) as Approximation:

�t(�; ~�)
�
= Ft(�~�)�

(Lt�D(�))�

�
hQM

i=1(1� P id)
(1��i)(P id)

�i

i
=ct for ~� 2 ~Xt,

�t(�; ~�)
�
= 0 else

(23)
with Ft(�; ~�) satisfying equation (18) and ct a normalizing
constant.

CPDA Step 4 - Measurement-Based Update Equations, Us-
ing (19) and (20) as Approximations:

x̂t
�
= �xt +

X
�

�6=0

Kt(�)

�X
~�

�t(�; ~�)�t(�; ~�)

�
(24)

P̂t
�
= �Pt �

X
�

�6=0

Kt(�)�(�)H �Pt

�X
~�

�t(�; ~�)

�
+

+
X
�

�6=0

Kt(�)

�X
~�

�t(�; ~�)�t(�; ~�)�
T
t (�; ~�)

�
KT
t (�) +

�

0
BB@X

�

�6=0

Kt(�)

�X
~�

�t(�; ~�)�t(�; ~�)

�1CCA �

�

0
BB@X

�0

�0 6=0

Kt(�
0)

�X
~�0

�t(�
0; ~�0)�t(�

0; ~�0)

�1CCA
T

(25)

with Kt(�) de�ned in (20.b)

Remark 2: Note that the CPDA algorithm has similari-
ties with the JPDA Coupled (JPDAC) �lter of [14, ch.6.2,
pp. 328-329]: Steps 1 and 3 are equivalent, Step 2 dif-
fers slightly only. For the evaluation of Step 4, however,
JPDAC uses the additional approximations

Kt(�)
�
= �PtH

T (H �PtH
T +GGT )�1�(�)T (26.a)

in (24) and in the 2nd and 3rd term of (25), and

Kt(�)�(�)
�
= �PtH

T (H �PtH
T +GGT )�1 (26.b)

in the �rst term of (25).
Strict equality of the latter approximation will hold true
in exceptional cases only, e.g., when �Pt is block-diagonal
(i.e., targets far apart), or when �(�) = I (i.e., detection
probability is unity).

Remark 3: The well-known JPDA �lter equations [1] can
be obtained from the CPDA equations under the following
additional approximate assumption:

P̂ ijt
�
= 0 for all i 6= j

In addition, CPDA's gating Step 2 simpli�es for JPDA,
the e�ect of which is that JPDA's gating approach may
eliminate some (�t; ~�t)-hypotheses that are considered by
CPDA.

Remark 4: For M > 1 the CPDA algorithm obviously
is more complex than the JPDA algorithm. If � = 0
and P id = 1 for all i, and m � n, then the number
of scalar computations for one �lter cycle is of the order
O(M2n3 +M3n2m+M !M2m2) for the CPDA and of the
order O(Mn3 +Mn2m+M !M +M2m2) for the JPDA.

Remark 5: The ENNPDA equations [6] can be obtained
from the CPDA equations through pruning all, except the
most likely (�; ~�)-hypothesis before executing CPDA step
4, i.e., the weights after pruning become

�0t(�; ~�) = 1 if (�; ~�) = Argmax
(�0; ~�0)

�t(�
0; ~�0)

= 0 else

The e�ect of this dramatic pruning is that the summations
in (24) and (25) actually select a single value of � only.
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As a result of this, the cross-covariance terms of P̂t stay
zero. The diagonal terms of P̂t equal the measurement-
based update equations of ENNPDA.

V. Track-Coalescence-Avoidance through
Hypothesis Pruning

With its ENNPDA approach, [6] has shown that hy-
pothesis pruning can provide an e�ective approach to-
ward track-coalescence avoidance (see remark 5 of Section
IV). The ENNPDA �lter equations can be obtained from
the CPDA algorithm by pruning all less likely (�t; ~�t)-
hypotheses before measurement updating (CPDA step 4).
Obviously, ENNPDA's resistance to track coalescence is
caused by this pruning, and its sensitivity to missed detec-
tions and clutter is also caused by this pruning. Obviously
the latter does not occur if � = 0 and P id = 1 for all i, be-
cause in that case Lt = Dt =M and �( t) = �(�t) = IM .
Hence, to reduce the CPDA in that case to the ENNPDA,
it is su�cient to prune all less likely �t-hypotheses only.
Thus, from ENNPDA we know that track-coalescence can
be avoided by pruning �t-hypotheses. From PDA we know
that sensitivity to missed detections and clutter can be
avoided by not pruning any  t or �t hypothesis. Combin-
ing these two �ndings leads to the following new hypoth-
esis pruning strategy: evaluate all (�t;  t) hypotheses and
prune per (�t;  t)-hypothesis all less-likely �t-hypotheses.
To do this, we de�ne for every � and  satisfying D( ) =
D(�) �MinfM;Ltg, a mapping �̂t(�;  ):

�̂t(�;  )
4
= Argmax

�
�t
�
�; �T�( )

�
where the maximization is over all permutation matrices �
of size D(�) �D(�).
The pruning strategy of evaluating all (�;  )-hypotheses
and only one �-hypothesis per (�;  )-hypothesis implies
that we get the following approximated weights �0t(�; ~�)

�
=

�t(�; ~�):

�0t
�
�; �T�( )

�
= �t

�
�; �T�( )

�
ĉt if � = �̂t(�;  )

= 0 else

with ĉt a normalization constant for �0t; i.e.,X
�;�; 

D( )=D(�)

�0t
�
�; �T�( )

�
= 1

Obviously, this allows for a shorter notation, and we de�ne:

�̂t(�;  )
4
= �t

�
�; �̂(�;  )T�( )

�
=ĉt

for all (�;  ) satisfying D(�) = D( ) �MinfM;Ltg.
This approach yields a track-coalescence-avoiding Coupled
PDA �lter, which we refer to as CPDA�.

CPDA� Step 1 - Prediction:
Equivalent to CPDA step 1: (21) and (22)

CPDA� Step 2 - Gating:

Equivalent to CPDA step 2

CPDA� Step 3 - Evaluation of the Detection/Permutation
Hypotheses:
Equivalent to CPDA step 3: equations (23) and (18)

CPDA� Step 4 - Track-Coalescence Hypothesis Pruning:
First, evaluate for every (�;  ) such that D( ) =
D(�) �MinfM;Ltg:

�̂t(�;  )
4
= Argmax

�
�t
�
�; �T�( )

�
Next, evaluate all �̂t(�;  ) hypothesis weights

�̂t
�
�;  ) = �t(�; �̂

T
t (�;  )�( )

�
=ĉt

where ĉt is a normalizing constant satisfying

ĉt =
X
�; 

�t
�
�; �̂Tt (�;  )�( )

�
CPDA� Step 5 - Measurement-Based Update Equations:

x̂t
�
= �xt +

X
�

� 6=0

Kt(�)

�X
 

D( )=D(�)

�̂t(�;  )�t
�
�; �̂Tt (�;  )�( )

� �

(27)

P̂t
�
= �Pt �

P
�

� 6=0

Kt(�)�(�)H �Pt

�P
 

D( )=D(�)

�̂t(�;  )

�
+

+
P
�

� 6=0

Kt(�)

�P
 

D( )=D(�)

�̂t(�;  )�t
�
�; �̂Tt (�;  )�( )

�
�

��Tt
�
�; �̂Tt (�;  )�( )

� �
KT
t (�)+

�

0
B@P

�

�6=0

Kt(�)

�P
 

D( )=D(�)

�̂t(�;  )�t
�
�; �̂Tt (�;  )�( )

� �
1
CA �

�

0
B@ P

�0

�0 6=0

Kt(�
0)

�P
 0

D( 0)=D(�0)

�̂t(�
0;  0)�t

�
�0; �̂Tt (�

0;  0)�( 0)
��
1
CA
T

(28)

with �t(:) and Kt(:) satisfying equations (18) and (20.b) of
CPDA.

The computational complexity of CPDA� is similar to that
of CPDA. Hence, our next step is to develop a JPDA� �lter
from the CPDA� �lter in a similar way as the JPDA �lter
follows from the CPDA �lter (see Remark 3). To do so, we
�rst prove the following Theorem:

Theorem 2: Let pxtjYt�1(x) be Gaussian with mean �xt =

Colf�x1t ; :::; �x
M
t g and covariance �Pt = Diagf �P 1

t ; :::;
�PMt g,

then �t(�; ~�) of Proposition 1 satis�es:

�t(�; ~�) = �(Lt�D(�))

"
MY
i=1

f it (�; ~�)(1� P id)
(1��i)(P id)

�i

#
=ct

(29)
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with:

f it (�; ~�) = expf�
1

2

LtX
k=1

�
[�(�)]T�i ~��k�

ikT
t [Qit]

�1�ikt
�
g �

�[(2�)mDetfQitg]
� 1

2
�i (30.a)

where:

�ikt
4
= ykt � hi�xit (30.b)

Qit
4
= hi �P ith

iT + gigiT (30.c)

whereas [�(�)]�i and ~��i are the ith columns of �(�) and
~�, respectively. Moreover, pxi

t
jYt(x

i), i 2 f1; :::;Mg, is a

Gaussian mixture, while its overall mean x̂it and its overall

covariance P̂ it satisfy:

x̂it = �xit + W i
t

 
LtX
k=1

�ikt �
ik
t

!
(31.a)

P̂ it = �P it � W i
t h

i �P it

 
LtX
k=1

�ikt

!
+

+ W i
t

 
LtX
k=1

�ikt �
ik
t �

ikT
t

!
W iT
t +

� W i
t

 
LtX
k=1

�ikt �
ik
t

! 
LtX
k=1

�ikt �
ik
t

!T
W iT
t

(31.b)

with:

W i
t

4
= �P it h

iT [Qit]
�1

�ikt
4
= Probf[�(�)]T�i;t ~��k;t = 1 j Ytg =

=
X
�;~�

�6=0

�t(�; ~�)[�(�)]
T
�i ~��k

Proof: see Appendix B. The novel part of this proof
consists of non-trivial matrix manipulations. Following
this, the remaining part is similar to the JPDA derivations
and therefore omitted.

By combining Theorem 2 with the CPDA� steps, we arrive
at the JPDA� �lter algorithm.

JPDA� Step 1 - Prediction for all i 2 f1; :::;Mg:

�xit = aix̂it�1 (32.a)

�P it = aiP̂ it�1a
iT + bibiT (32.b)

JPDA� Step 2 - Gating:
Equivalent to CPDA� step 2

JPDA� Step 3 - Evaluation of the Detection/Evaluation
Hypotheses, by Adopting (29) as Approximation:

�t(�; ~�)
�
= �Lt�D(�)[

MY
i=1

f it (�; ~�)(1� P id)
(1��i)(P id)

�i ]=ct

(33)

with f it (�; ~�), �
ik
t and Qit satisfying (30.a,b,c).

JPDA� Step 4 - Track-coalescence hypothesis pruning:
Equivalent to CPDA� step 4.

JPDA� Step 5- Measurement-Based Update Equations for
all i 2 f1; :::;Mg:

x̂it
�
= �xit + W i

t

 
LtX
k=1

�̂ikt �
ik
t

!
(34.a)

P̂ it
�
= �P it � W i

t h
i �P it

 
LtX
k=1

�̂ikt

!
+

+ W i
t

 
LtX
k=1

�̂ikt �
ik
t �

ikT
t

!
W iT
t +

� W i
t

 
LtX
k=1

�̂ikt �
ik
t

! 
LtX
k0=1

�̂ik
0

t �ik
0

t

!T
W iT
t

(34.b)

with

W i
t = �P it h

iT [Qit]
�1 (34.c)

�̂ikt =
X
�; 

�6=0

�̂t(�;  )[�(�)]
T
�i [�̂

T
t (�;  )�( )]�k (34.d)

with [:]�k the kth column of [:].

Note that the JPDA� �lter simpli�es to the well-known
JPDA by omitting Step 4 and slightly simplifying the gat-
ing mechanism of Step 2. This also implies that the nu-
merical complexity of JPDA� is similar to that of JPDA.

VI. Monte Carlo simulations

In this section, the new �lters (CPDA, JPDA� and
CPDA�) are evaluated and compared with the existing �l-
ters (ENNPDA, JPDA, and JPDAC). In case of a single
target, all except the ENNPDA are equal to the ordinary
PDA. Obviously, in case of a single target (M = 1) and
no clutter (i.e., � = 0), the ENNPDA is equivalent to the
PDA �lter as well. In case of multiple targets (i.e.,M > 1),
all six �lters di�er, unless � = 0 or P id = 1 for all i. If
P id = 1, then JPDAC equals CPDA if the same gating is
being used, and if both P id = 1 and � = 0, then JPDA�

equals ENNPDA if the same gating is being used. In order
to compare the performance of all �lters in multiple target
situations, Monte Carlo simulations have been performed.
In order to simplify the comparisons for all �lters, the same
gating procedure is used (CPDA Step 2).
The simulations we used are based on a simple crossing

target scenario, similar to the one used by [6]: two targets
modeled as constant velocity objects that move towards
each other with a given relative velocity Vrel, cross at a
certain moment in time and then move away from each
other with the same relative velocity. Each simulation that
starts with perfect estimates is run for 50 scans, with the
crossover point at scan 10.
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For each target, the underlying model of the potential
target measurements is given by (1) and (3)

xit+1 = aixit + biwit (1)

zit = hixit + givit (3)

Furthermore, for i = 1; 2:

ai =

�
1 Ts
0 1

�
; bi = �ia �

�
1
2T

2
s

Ts

�
;

hi =
�
1 0

�
; gi = �im

where �ia represents the standard deviation of acceleration
noise and �im represents the standard deviation of the mea-
surement error. For simplicity we consider the situation of
similar targets only; i.e., �ia = �a, �

i
m = �m, P

i
d=Pd.

Following [6] and [27], we de�ne the tracking index �
4
=

T 2
s �a=�m and the normalized relative velocity V normrel =

VrelTs=�m. With this, the scenario parameters are Vnormrel ,
�, Ts, �m, �, Pd and the gate size 
. Table I gives the
scenario parameter values that are being used.

TABLE I

Scenario parameter values.

Scenario Pd � �m � 
 Ts V normrel
1 1 0 30 3 13 25 10 Variable
2 0.9 0 30 3 13 25 10 Variable
3 1 0.001 30 3 13 25 10 Variable
4 0.9 0.001 30 3 13 25 10 Variable
5 0.9 0.001 30 1 25 10 Variable

During our simulations we counted track i \O.K." if

j hix̂iT � hixiT j� 9�m

and we counted track i 6= j \Swapped" if

j hix̂iT � hjxjT j� 9�m

Furthermore, two tracks i 6= j are counted \Coalescing" at
scan t, if

j hix̂it � hj x̂jt j� �m^ j hixit � hjxjt j> �m

For each of the scenarios in table 1, Monte Carlo simula-
tions containing 100 runs of the crossing trajectories have
been performed for each of the tracking �lters. To make
the comparisons more meaningful, for all tracking mecha-
nisms the same random number streams were used. To rule
out possible CPDA covariance matrix singularities, such as
reported by [24], the simulations were performed in double
precision and it was veri�ed that the ratio between largest
and smallest eigenvalues of the covariance matrices stayed
low enough.
For scenario 1, results similar to [6] were obtained. Re-

sults of the Monte Carlo simulations for the other scenarios

1a. Both tracks \O.K." percentage

1b. Both tracks \O.K." or \Swapped" percentage

Fig. 1. Simulation results for scenario 2, with Pd = 0:9, � = 0 and
� = 3 1

3
.

are depicted as function of the normalized relative veloci-
ties in three types of �gures, showing respectively:

� The percentage of Both tracks \O.K. " (�gures
1a,2a,3a,4a).
� The percentage of Both tracks \O.K." or \Swapped" (�g-
ures 1b,2b,3b,4b).
� The average number of \Coalescing" scans (�gures
5a,5b).

For the scenarios considered, the simulation results show
a superior performance of the JPDA� and CPDA� �lters
above the other �lters. They also show that CPDA per-
forms less than JPDAC, which on its turn may be competi-
tive with JPDA. Scenario 4 results show that there are also
cases in which none of the algorithms considered perform
really satisfactorily, although JPDA� and CPDA� perform
best. In addition to this, more detailed observations have
been made for the following comparisons:

� JPDA outperforms CPDA,
� JPDAC outperforms CPDA if Pd < 1,
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2a. Both Tracks \O.K." percentage

2b. Both Tracks \O.K." or \Swapped" percentage

Fig. 2. Simulation results for scenario 3, with Pd = 1, � = 0:001 and
� = 3 1

3
.

� JPDA� outperforms JPDA and JPDAC,
� JPDA� outperforms ENNPDA,
� CPDA� may perform marginally better than JPDA�.

JPDA outperforms CPDA
CPDA appears to be a case where the optimal Gaussian
approximation of the exact Bayesian �lter equations for
the conditional density leads to worse performance than a
non-optimal Gaussian approximation of JPDA. The expla-
nation for this phenomenon is that the conditional density
for the joint state of slowly crossing targets has a multi-
modality of a particular form: apart from the target iden-
tity the joint state is almost known. For slowly crossing tar-
gets this may result into a strong coupling between the two
tracks through the cross-covariance terms, which supports
CPDA's strong preference for keeping both tracks in be-
tween competing measurements. Because of JPDA's neg-
ligence of these cross-covariance terms, the latter e�ect is
less strong for JPDA. This explains why CPDA degrades in

3a. Both Tracks \O.K." percentage

3b. Both Tracks \O.K." or \Swapped" percentage

Fig. 3. Simulation results for scenario 4, with Pd = 0:9, � = 0:001
and � = 3 1

3
.

performance at signi�cantly higher relative velocities than
JPDA.

JPDAC outperforms CPDA if Pd < 1
If Pd = 1, JPDAC and CPDA perform equally. For Pd =
0:9, however, JPDAC outperforms CPDA. The explanation
is that because of the approximation adopted, JPDAC's
�lter gain (26) varies signi�cantly less than CPDA's �lter
gain (20.b) if Pd < 1. As a consequence, JPDAC tends
to neglect cross-covariance terms during the measurement-
based track update, in case of missed detections. As such
JPDAC becomes competitive with JPDA if Pd < 1 .

JPDA� outperforms JPDA and JPDAC
For the examples considered, JPDA� clearly retains
JPDA's insensitivity to clutter and missed detections for
the full range of relative velocities. At the same time,
JPDA� clearly outperforms JPDA and JPDAC when the
relative velocities become small enough. This indeed ap-
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4a. Both Tracks \O.K." percentage

4b. Both Tracks \O.K." or \Swapped" percentage

Fig. 4. Simulation results for scenario 5, with Pd = 0:9, � = 0:001
and � = 1.

pears to be caused by JPDA�'s avoidance of track coales-
cence. Instead of coalescing tracks, JPDA� either performs
O.K. or may swap tracks. For a better understanding of
this di�erence, consider the situation � = 0 and Pd = 1
(scenario 1). Then at each scan only two hypotheses ex-
ist with non-zero probability. JPDA and JPDAC use both
hypotheses for track updating, while JPDA� uses the most
likely hypothesis only for track updating. If the probabili-
ties of the two hypotheses become almost the same and the
measurements are clearly separated (which is very likely at
low relative velocities), then JPDA and JPDAC tend to
update both tracks somewhere in between the two mea-
surements, and JPDA� updates the tracks at separate po-
sitions as indicated by the two separated measurements. In
this simple example, JPDA and JPDAC tend to coalesce
both tracks, and JPDA� has a probability of about 50%
both tracks \O.K", about 50% to swap both tracks and no
track coalescence or track loss. Similar �ndings also apply
to scenarios 2-5.

5a. Scenario 2, Pd = 0:9, � = 0 and � = 3 1
3

5b. Scenario 4, Pd = 0:9, � = 0:001 and � = 3 1
3

Fig. 5. Typical results in terms of average number of \coalescing"
scans

JPDA� outperforms ENNPDA
If Pd = 1 and � = 0, then JPDA� and ENNPDA perform
equally well. For � = 0:001, however, JPDA� performs sig-
ni�cantly better than ENNPDA. Track coalescence is not
observed. If the detection probability Pd < 1 or � > 0 then
JPDA� clearly outperforms ENNPDA. The di�erences also
appear when the relative velocities are large. This simply
illustrates that JPDA� indeed avoids ENNPDA's sensitiv-
ity to clutter and missed detections.

CPDA� may perform marginally better than JPDA�

CPDA� and JPDA� hardly show di�erence in performance.
For small relative velocities only, CPDA� may perform only
marginally better than JPDA�. Thus in this case, memo-
rizing cross-covariance between crossing tracks does neither
lead to a worse performance nor to a really improved per-
formance. It means that because of the track-coalescence-
avoiding hypothesis pruning method of Section V, the prac-
tical use of memorizing cross-covariance between crossing
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tracks seems to disappear.

VII. Concluding remarks

In this paper, new directions in PDA development have
been explored. First, in sections II and III, the multi-
target tracking problem has been embedded into a problem
of �ltering for a linear descriptor system with stochastic
i.i.d. coe�cients. Subsequently, in section IV, the exact
Bayesian and Gaussian approximated �lter equations have
been developed. The resulting �lter algorithm has been
named CPDA, and appeared to di�er signi�cantly from
the JPDA �lter and, if detection probability is not unity,
also from the more recent JPDAC �lter. Then, in sec-
tion V, an hypothesis pruning strategy has been developed
that allows both to avoid JPDA's sensitivity to track co-
alescence, and to preserve JPDA's insensitivity to clutter
and missed detections. Application of this new pruning
strategy to JPDA and CPDA resulted into two new algo-
rithms that have been named JPDA� and CPDA�, respec-
tively. Finally, in section VI, the new developments have
been evaluated through Monte Carlo simulations for some
characteristic multitarget tracking scenarios. Both JPDA
and JPDAC appeared to outperform CPDA. On their turn,
however, JPDA� and CPDA� appeared to outperform them
all, simply due to their ENNPDA inherited insensitivity to
track coalescence. Moreover, JPDA� and CPDA� appeared
to perform similarly.

On the basis of the results obtained, it is also possible to
draw some more general conclusions. First, the commonly
established approach of approximating exact Bayesian �l-
ter equations, by assuming a centred Gaussian approxima-
tion for the conditional density, appears to lead to a �lter
(CPDA) that performs less good than those based on other
Gaussian approximations (i.e. JPDA, JPDAC, JPDA� and
CPDA�). In order to identify a logical explanation for this
phenomenon, we notice that the conditional density of the
targets' joint state has a particular multi-modality: in ad-
dition to the local optimum for the non-swapped tracks,
often other local optima exist for track swap possibilities.
The approach of centering a Gaussian optimally (in MMSE
sense) between these local optima implies a preference to
track coalescence over track swap. For tracking applica-
tions, however, it is better to accurately know the target
locations while being uncertain about the track identities
because of possible track swap, than to know the identities
and be uncertain about the target locations because of pos-
sible track coalescence; thus, track swap is preferred over
track coalescence. This preference implies that a straight-
forward application of an MMSE sense optimality crite-
rion is not so practical when it comes to tracking closely
spaced targets. Obviously, ENNPDA, JPDA� and CPDA�

avoid track coalescence through centering a Gaussian den-
sity around one of the local optima (which need not be the
global optimum), which appears to be so e�ective that the
need for remembering the coupling between tracks practi-
cally disappears. The optimal centering of JPDA, JPDAC
and CPDA in MMSE sense, simply prefers track coales-
cence over track swap, which is a less good choice from a

practical tracking point of view.

Having identi�ed the elementary practical problem that
comes with adopting an MMSE optimality criterion, it is
interesting to see what this practically means for Kastella's
MLE, for Kamen's SME, and for Pao's MTMR:

� For the SME approach of Kamen, it is clear that due
to the one-to-one SME transformation of the measurement
equation [19]-[21], the data association problem seems to-
tally avoided. Since this SME transformation is one-to-one
and it does not change the targets' joint state space, it
has no in
uence at all on the exact conditional density.
In addition to its transformation, the SME approach uses
the EKF approach towards approximately evaluating the
conditional density. Since an EKF is based on optimality
in MMSE sense, one may expect that Kamen's SME �lter
will prefer track coalescence above track swap, similarly to
JPDA. The latter agrees well with the �ndings in [20] that
an SME �lter performs similarly to a JPDA �lter, thus
preferring track coalescence over track swap.
� Kastella's MLE approach tries to center a Gaussian den-
sity around the global optimum. As such, we should expect
that MLE will neither swap nor coalesce tracks as long as
the local optima, representing track swap possibilities, stay
su�ciently apart. During the period that those local op-
tima do not stay su�ciently apart, however, the MLE ap-
proach also prefers track coalescence over track swap. The
memorization during such period of the coupling (nonzero
cross-covariance terms) between individual target tracks,
however, allows Kastella's MLE approach to react very
e�ectively as soon as targets split. These considerations
correspond with the practically sound results reported for
Kastella's MLE approach [25].
� With the MTMR approach [12], the conditional density
is approximated by a sum of Gaussian densities, the co-
variances of which are not coupled, however. From a the-
oretical point of view, the latter seems an omission. On
the basis of our experience that CPDA� performs almost
equally well as JPDA�, however, we may expect that as
long as MTMR retains a Gaussian for each individual tar-
get and each relevant track swap possibility, then MTMR's
performance should not su�er from neglecting the coupling
between individual Gaussians. When, however, the targets
stay su�ciently long and close enough to each other, then
the latter condition is not satis�ed and MTMR might tend
to centre for each target a single Gaussian in between the
local optima, which implies track coalescence. Thus, when
targets cross at low relative velocities, Pao's MTMR is ex-
pected to perform similarly to JPDA.

Finally, the newly developed embedding of multitarget
tracking into �ltering for a linear descriptor system with
stochastic coe�cients, has shown to be of value in the
derivation of exact Bayesian and Gaussian approximate
multitarget tracking equations. This embedding for ex-
ample enabled us to avoid the heuristic reasoning such as
necessary at the time of JPDAC development. As such, this
new embedding formulates multitarget tracking problems
within the modeling framework of nonlinear �ltering the-
ory, which eventually may lead to the exploration of further
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developments in PDA, e.g., incorporating the crucial plot
resolution problem [28], [29]. Similarly, the new representa-
tion might support developments in e�ectively combining
multi-target probabilistic data association approaches with
other Bayesian solutions, e.g. with IMM [16], [30], [31],
with imaging sensor models [15], [32]. Presently, at NLR
good progress is made in e�ectively incorporating IMM,
plot resolution model, and imaging sensor models, the re-
sults of which have already been added to those of [31]
during the realization of Eurocontrol's multitarget multi-
sensor tracking system ARTAS.

APPENDIX A Proof of Proposition 1

If � = 0 we get pxtj�t;~�t;Yt(x j 0; ~�) = pxtjYt�1(x). Else

pxtj�t;~�t;Yt(x j �; ~�) =

= pxtj�t;~�t;yt;Lt;Yt�1(x j �; ~�; yt; Lt) =

= pxtj�t;~�t;yt;Lt;~zt;Yt�1(x j �; ~�; yt; Lt; ~�yt) =

= pxtj�t;~zt;Yt�1(x j �; ~�yt) =

= p~ztjxt;�t(~�yt j x; �)pxtjYt�1(x)=Ft(�; ~�)

with Ft(�; ~�)
4
= p~ztj�t;Yt�1(~�yt j �). Subsequently

�t(�; ~�)
4
= Probf�t = �; ~�t = ~� j Ytg =

= p�t;~�tjYt(�; ~�) =

= p�t;~�tjyt;Lt;Yt�1(�; ~� j yt; Lt) =

= pyt;~�tj�t;Lt;Yt�1(yt; ~� j �; Lt)p�tjLt;Yt�1(� j Lt)=c
0
t

If Dt > 0 we have

~�Tt ~�t = �( t)
T�t�

T
t �( t) =

= �( t)
T�( t) =

= Diagf tg

~�t�( t)
T = �Tt �( t)�( t)

T =

= �Tt

which means that the transformation from ( t; �t) into ~�t
has an inverse which implies

pyt;~�tj�t;Lt;Yt�1(yt; �
T�( ) j �; Lt) =

= pyt; t;�tj�t;Lt;Yt�1(yt;  ; � j �; Lt)

Furthermore, because the transformation from (yt;  t; �t)
into (~zt; v

�
t ;  t; �t) is a permutation, we get for Lt >

D(�) > 0

pyt; t;�tj�t;Lt;Yt�1(yt;  ; � j �; Lt) =

= p~zt;v�t ; t;�tj�t;Lt;Yt�1(�
T�( )yt;�( 

�)yt;  ; � j �; Lt)

Hence, for Lt > D(�) > 0, �t satis�es:

�t(�; �
T�( )) = Ft(�; �

T�( ))pv�
t
j�t;Lt(�( 

�)yt j �; Lt)�

p tj�t;Lt( j �; Lt)p�tj�t(� j �)pLtj�t(Lt j �)p�t(�)=c
00

Subsequently using the JPDA derivation [1] yields:

�t(�; �
T�( )) = Ft(�; �

T�( ))�(Lt�D(�))�

�[
MY
i=1

(P id)
�i(1� P id)

(1��i)]=ct

with ct a normalizing constant. It can be easily veri�ed that
the last equation also holds true if Lt = D(�) or D(�) = 0.

APPENDIX B Proof of Theorem 2

Because �Pt is block-diagonal, (H �PtH
T + GGT ) and

�(�)(H �PtH
T+GGT )�(�)T are block-diagonal too. Hence,

it can be shown that

�(�)T
�
�(�)(H �PtH

T +GGT )�(�)T
��1

=

= �(�)T�(�)(H �PtH
T +GGT )�1�(�)T

Because of the form of �(:), we know �(�)T�(�) =
Diagf�1; :::; �Mg. Hence, the former simpli�es to

�(�)T
�
�(�)(H �PtH

T +GGT )�(�)T
��1

=

= (H �PtH
T +GGT )�1�(�)T

Because Qt(�) = �(�)(H �PtH
T + GGT )�(�)T is block-

diagonal, we get

DetfQt(�)g = Detf�(�)(H �PtH
T +GGT )�(�)T g =

=

MY
�i 6=0

i=1

Detfhi �P ith
iT + gigiT g =

=

MY
i=1

�
DetfQitg

��i
(B.1)

and

�t(�; ~�)
TQt(�)

�1�t(�; ~�) =

= �t(�; ~�)
T
�
�(�)(H �PtH

T +GGT )�(�)T
��1
�t(�; ~�) =

= �t(�; ~�)
T�(�)

�
H �PtH

T +GGT
��1
�(�)T �t(�; ~�) =

=
MX
i=1

��
�t(�; ~�)

T�(�)
�i�

hi �P ith
iT + gigiT

��1
�

�
�
�(�)T �t(�; ~�)

�i�
=

=

MX
i=1

�
�(�)T�t(�; ~�)

�iT�
Qit

��1�
�(�)T�t(�; ~�)

�i �
=

=
MX
i=1

�� LtX
k=1

[�(�)]T�i ~��k�
ik
t

�T�
Qit

��1
�

�
� LtX
k0=1

[�(�)]T�i ~��k0�
ik0

t

��
=

=

MX
i=1

LtX
k=1

� LtX
k0=1

[�(�)]T�i ~��k[�(�)]
T
�i �
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�~��k0
�
�ikt

�T�
Qit

��1
�ik

0

t

�
=

=

MX
i=1

LtX
k=1

[�(�)]T�i ~��k[�(�)]
T
�i ~��k

�
�ikt

�T�
Qit

��1
�ikt =

=

MX
i=1

LtX
k=1

[�(�)]T�i ~��k

�
�ikt

�T�
Qit

��1
�ik (B.2)

where for
�
= use is made of�

�(�)T�t(�; ~�)
�i

=

=
�
�(�)T ~�yt � �(�)T�(�)H�xt

�i
=

=

LtX
k=1

 �
�(�)T ~�

�ik
ykt

!
�
�
�(�)T�(�)

�ii
hi�xit =

=

LtX
k=1

 �
�(�)T ~�

�ik
ykt �

�
�(�)T ~�

�ik
�

�
�
�(�)T�(�)

�ii
hi�xit

!
=

=

LtX
k=1

 �
�(�)T ~�

�ik
ykt �

�
�(�)T ~�

�ik
hi�xit

!
=

=

LtX
k=1

�
�(�)T ~�

�ik
�ikt =

=

LtX
k=1

[�(�)]T�i ~��k�
ik
t

Substituting (B.1) and (B.2) into (18) yields

Ft(�; ~�) =

MY
i=1

f it (�; ~�) (B.3)

with f it (�; ~�) as given by (30). Substituting (B.3) into (16)
yields (29), and (31.a) and (31.b) follow as for JPDA [1].

Acknowledgments

The authors would like to thank the anonymous re-
viewers for their stimulating comments, which signi�cantly
helped in improving the paper.

References

[1] Y. Bar-Shalom and T.E. Fortmann, Tracking and Data Associa-
tion, Academic Press, 1988

[2] H.A.P. Blom and E.A. Bloem, Joint Probabilistic Data Associa-
tion Avoiding Track Coalescence, IEE Colloquium on Algorithms
for Target Tracking, Savoy Place, London, 16 May 1995, IEE
Digest No: 1995/104, pp. 1/1-1/3.

[3] E.A. Bloem and H.A.P Blom, Joint Probabilistic Data Associ-
ation Methods Avoiding Track Coalescence, Proc. 34th IEEE
Conference on Decision and Control, 1995, pp. 2752-2757.

[4] T.E. Fortmann, Y. Bar-Shalom and M. Sche�e, Sonar tracking of
multiple targets using Joint Probabilistic Data Association, IEEE
J. of Oceanic Engineering, Vol. 8 (1983), pp. 173-183.

[5] V. Nagarajan, M.R. Chidambara, R.N. Sharma, Combinatorial
problems in multitarget tracking data association problems, IEEE

Tr. on Aerospace and Electronic systems, Vol. 23 (1987) pp. 260-
263.

[6] R.J. Fitzgerald, Development of practical PDA logic for multitar-
get tracking by microprocessor, Ed: Y. Bar-Shalom, Multitarget-
multisensor tracking: advanced applications, Artech House, 1990,
pp. 1-23.

[7] B. Zhou, N.K. Bose, Multitarget tracking in clutter: fast algo-
rithms for data association, IEEE Tr. on Aerospace and Elec-
tronic Systems, Vol. 29 (1993) pp. 352-363.

[8] J.A. Roecker and G.L. Phillis, Suboptimal Joint Probabilistic
Data Association, IEEE Tr. on Aerospace and Electronic Sys-
tems , Vol. 29 (1993) pp. 510-517.

[9] J.A. Roecker, A class of near optimal JPDA algorithms, IEEE Tr.
on Aerospace and Electronic Systems, Vol. 30 (1994) pp. 504-510.

[10] X.R. Li and Y. Bar-Shalom, Tracking in clutter with Nearest
Neighbour �lters: analysis and performance, IEEE Tr. on AES,
Vol. 32 (1996), pp. 995-1009.

[11] D.J. Salmond, Mixture reduction algorithms for target track-
ing in clutter, SPIE Proc. Signal and Data Processing of Small
Targets in Clutter, 1990 Vol. 1305, pp. 434-445.

[12] L.Y. Pao, Multisensor Multitarget Mixture Reduction algo-
rithms for tracking, J. of Guidance, Control and Dynamics, Vol.
17 (1994), pp. 1205-1211.

[13] S. Blake and S.C.Watts, A Multitarget Track-White-Scan Filter,
Proc. IEE Radar 87 Conf, London, October 1987.

[14] Y. Bar-Shalom and X.R. Li, Multitarget-Multisensor Tracking:
Principles and Techniques, 1995, (ISSN 0895-9110).

[15] H.M. Shertukde and Y. Bar-Shalom, Tracking crossing targets
with imaging sensors, IEEE Transactions on Aerospace and Elec-
tronic Systems, Vol. 27 (1991), pp. 582-592.

[16] Y. Bar-Shalom, K.C. Chang and H.A.P. Blom, Tracking split-
ting targets in clutter by using an Interacting Multiple Model
Joint Probabilistic Data Association �lter, Ed. Y. Bar-Shalom,
Multitarget multisensor tracking: applications and advances, Vol.
II, Artech House, 1992, pp. 93-110

[17] E.W. Kamen, Multiple target tracking based on Symmetric Mea-
surement Equations, Proc. 1989 American Control Conf., pp.
263-268

[18] E.W. Kamen, Multiple target tracking based on Symmetric Mea-
surement Equations, IEEE Tr. on Automatic Control, Vol. 37
(1992) pp. 371-374.

[19] E.W. Kamen and C.R. Sastry, Multiple target tracking using
products of position measurements, IEEE Tr. on Aerospace and
Electronic Systems, Vol. 29 (1993) pp. 476-493.

[20] Y.J. Lee and E.W. Kamen, The SME �lter approach to multiple
target tracking with false and missing measurements, SPIE Proc.
Signal and data processing of small targets, 1993, Vol. 1305, pp.
574-585.

[21] E.W. Kamen, Y.J. Lee and C.R. Sastry, A parallel SME �lter for
tracking multiple targets in three dimensions, SPIE Proc. Signal
and data processing of small targets, 1994, pp. 417-428.

[22] F. Daum, A Cramer-Rao bound for multiple target tracking,
SPIE Proc. Signal and Data Processing of Small Targets, Vol.
1481, 1991, pp. 341-344.

[23] K. Kastella, A maximum likelihood estimator for report-to-track
association, SPIE Proc. Signal and Data Processing of Small
Targets, Vol. 1954, 1993, pp. 386-393.

[24] K. Kastella, Event-Averaged Maximum Likelihood Estimation
and Mean-Field Theory in Multitarget Tracking, IEEE Tr. on
Automatic Control, Vol. 40 (1995), pp. 1070-1074.

[25] K. Kastella and C. Lutes, Comparison of mean-�eld tracker and
joint probabilistic data association tracker in high-clutter environ-
ments, SPIE Proc. Signal and data processing of small targets,
1995, SPIE Vol. 2561, pp. 489-495.

[26] L. Dai, Singular control systems, Lecture notes in Control and
information sciences, Vol. 118, Springer, 1989.

[27] P.R. Kalata, The Tracking Index: A Generalized Parameter for
�-� and �-�-
 Target Trackers, IEEE Tr. on Aerospace and
Electronic Systems, Vol. 20 (1984), pp. 174-182.

[28] F.E. Daum, A system approach to multiple target tracking, Ed.
Y. Bar-Shalom, Multitarget multisensor tracking: applications
and advances, Vol. II, Artech House, 1992, pp. 149-181.

[29] F.E. Daum and R.J. Fitzgerald, The importance of resolution in
multiple target tracking, SPIE Proc. Signal and data processing
of small targets, 1994, pp. 329-338.

[30] H.A.P. Blom and Y. Bar-Shalom, The Interacting Multiple
Model algorithm for systems with Markovian switching coe�-



  
 -18- 
 NLR-TP-2001-625 
 

  

 
 

 
cients, IEEE Tr. on Automatic Control, Vol. 33 (1988) pp.
780-783.

[31] H.A.P. Blom, R.A. Hogendoorn and B.A. van Doorn, Design of a
multisensor tracking system for advanced Air Tra�c Control, Ed.
Y. Bar-Shalom, Multitarget multisensor tracking: applications
and advances, Vol. II, Artech House, 1992, pp. 31-63.

[32] D.D. Sworder, J.E. Boyd and G.A. Clapp, Image fusion for track-
ing manoeuvering targets, Int. J. of Systems Sience, Vol. 28
(1997), pp. 1-14.




