Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

e

G

=

NLR TP 96251

Parallel machine scheduling by column generation

J.M. van den Akker, J.A. Hoogeveen, S.L. van de Velde

DOCUMENT CONTROL SHEET

ORIGINATOR'S REF. SECURITY CLASS.
NLR TP 96251 U Undlassified

ORIGINATOR
National Aerospace Laboratory NLR, Amsterdam, The Netherlands

TITLE . . .
Parallel machine scheduling by column generation

PRESENTED AT . .
Fifth international workshop on project management en scheduling
held at 11-13 April 1996, in Poznan, Poland

AUTHORS DATE pp ref
J.M. van den Akker, J.A. Hoogeveen, 960506 28 20
S.L. van de Velde

DESCRIPTORS

Air traffic control Parallel processing (computers)
Air traffic Run time (computers)
Algorithms Scheduling

Arrivals Tasks

Cost reduction Weighting functions

Linear programming

ABSTRACT

Parallel machine scheduling problems concern the scheduling of n jobs on
m machines to minimize some function of the job completion times. If
preemption is not allowed, then most problems are not only NP-hard, but
also very hard from a practical point of view. In this paper, we show

that strong and fast linear programming lower bounds can be computed for
an important class of machine scheduling problems with additive objective
functions. Characteristic of these problems is that on each machine the
order of the jobs in the relevant part of the schedule is obtained

through some priority rule. To that end, we formulate these parallel
machine scheduling problems as a set covering problems with an
exponential number of binary variables, n covering constraints, and a
single side constraint. We show that the linear programming relaxation
can be solved efficiently by column generation, since the pricing problem
is solvable in pseudo-polynomial time. We display this approach on the
problem of minimizing total weighted completion time on m identical
machines. Our computational results show that the lower bound is
singularly strong and that the outcome of the linear program is often
integral. Moreover, they show that our branch-and-bound algorithm that
uses the linear programming lower bound outperforms the previously best
algorithm. We elaborate on the application of the presented approach to
parallel machine scheduling problems other than that of minimizing total
weighted completion time on identical machines. Moreover, we discuss the
occurrence of parallel machine scheduling problems in the field Air

Traffic Management (ATM) and investigate the applicability of the
approach to problems in this field.

217-02

-3-
TP 96251

Summary

Parall el machine scheduling problemsconcern the scheduling of » jobson m machinesto minimize
some function of the job completion times. If preemption is not alowed, then most problems
are not only AP-hard, but also very hard from a practical point of view. In this paper, we show
that strong and fast linear programming lower bounds can be computed for an important class of
machine scheduling problems with additive objective functions. Characteristic of these problems
isthat on each machinethe order of thejobsin the relevant part of the schedul e is obtained through
some priority rule. To that end, we formulate these paralel machine scheduling problems as a
set covering problems with an exponential number of binary variables, n covering constraints,
and a single side constraint. We show that the linear programming relaxation can be solved
efficiently by column generation, since the pricing problem is solvable in pseudo-polynomial
time. We display this approach on the problem of minimizing total weighted completion time
on m identical machines. Our computationa results show that the lower bound is singularly
strong and that the outcome of the linear program is often integral. Moreover, they show that
our branch-and-bound algorithm that uses the linear programming lower bound outperforms the
previously best algorithm. We elaborate on the application of the presented approach to parallel
machine scheduling problems other than that of minimizing total weighted completion time on
identical machines. Moreover, wediscussthe occurrence of parallel machine scheduling problems
in the field Air Traffic Management (ATM) and investigate the applicability of the approach to
problemsin thisfield.

-4-

TP 96251

Contents
List of tables
1 Introduction
2 Column generation for P[|5°7_; w;C;
21 Problem description
22 Mathematical formulation
2.3 The pricing algorithm
24 The branch-and-bound algorithm
3 Computational experiments
3.1 Implementation
3.2 Computational results
4 Extensions
41 Complementary objectives
4.2 Non-identical machines
5 Application to Air Traffic Management
6 Conclusion
3 Tables
Appendices
A Implementation of the pricing algorithm

(28 pagesin total)

10
10
10
12
13

16

16

16

21

21

22

23

24

27

27

-5-
TP 96251

List of tables

Table 1 Results for randomly generated instances.
Table 2 Results for instances with large processing times.

Table 3 Results for instances with homogeneous w; /p; ratios.

18
19
20

-6-
TP 96251

This pageisintentionally left blank.

)
Az

-7-
TP 96251

1 Introduction

Parallel machine scheduling problems concern the scheduling of » jobs on m parallel machines
to minimize some function of the job completion times. Problems in which preemption of jobsis
not alowed decompose into two subproblems. assigning jobs to machines and then sequencing
the jobs on each machine. We consider the class of problems with additive objective functions
that have all jobsin the relevant part of the schedule sequenced according to some priority rule —
werefer to it asclass (A). Thedifficult part liesthen mainly in the assignment of jobsto machines,
because for a given assignment we can find the optimal schedule by sequencing the jobs in the
relevant part of the schedule according to the priority rule, after which the non-relevant jobs are
scheduled after the other jobs.

Class (A) contains important objective functions like total weighted completion time, for which
the whole schedule is relevant, and objective functions like the weighted number of tardy jobs
and total weighted late work, for which only the on-time part of the schedule is relevant. All
these problems are unary AP-hard but solvable in pseudo-polynomial timefor afixed number of
machines m by applying the dynamic programming technigues of Rothkopf [15] and Lawler and
Moore[11]. These pseudo-polynomia algorithms, however, areimpractical unlessm = 2 for the
processing times are (very) small.

Additive objectivefunctions pose a computational chalenge, sinceitisdifficult to compute strong
lower bounds. Thisis nicely witnessed by the research effort that the problem of minimizing
the total weighted completion on m identical parallel machines has attracted since the early days
of machine scheduling research; see for instance Eastman, Evan, and Issacs [7], Elmaghraby
and Park [8], Barnes and Brennan [1], Sarin, Ahn, and Bishop [16]. Using the notation scheme
of Graham, Lawler, Lenstra, and Rinnooy Kan [9], we refer to this problem as P|| >~7_ 1 w;C;
or as P[] >°7-1 w;C’; when the number of machines m is fixed. The lower bounds developed
by Webster [19, 20], which require pseudo-polynomial time, and Belouadah and Potts [3] are a
big leap forward. Belouadah and Potts also report on the performance of a branch-and-bound
agorithmthat usestheir bound; itiscapable of solvinginstanceswith upto 20jobsand 5 machines.

It is also remarkable that other parallel machine scheduling problems with additive objective
functions have not received any attention yet. For instance, no one ventured at the pardlé
machine problem of minimizing the weighted number of tardy jobs or tota late work, although
their single-machine counterparts, which are binary AP-hard, attracted considerable interest; see
for instance Potts and Van Wassenhove [13, 14] and Hariri, Potts, and Van Wassenhove [10].

-8-
TP 96251

In this paper, we present a methodol ogy that can be used to deal with the problem P|[3°7_; w;C;
and the other problems in class (A); we describe the approach in detail for the former problem
and indicate how it can be modified to deal with the latter problems. The approach is based on
formulating the problem P[] 5°7_,; w;C’; as a set covering problem with an exponential number
of binary variables, n covering constraints, and a single side constraint. We then solve the
linear programming relaxation of this formulation by a column generation approach that uses an
O(n 71 p;) dgorithm to solve the corresponding pricing problem. Obviously, if the optimal
solution for the linear programming relaxation happens to be integral, then we have identified
an optimal solution for the problem P[| 5°7_; w;C;. If not, then we apply a branch-and-bound
a gorithm to determine an optimal solution. Our computational results show the compelling quality
of the linear programming bound, which makes branching often unnecessary, and the superiority
of our branch-and-bound agorithm to the algorithms presented before.

We aso study the application of the presented approach to problems in the area of Air Traffic
Management. We show that the scheduling of arrival aircraft on runways of an airport can be
viewed as a parallel machine scheduling problem and we discuss the application of the presented
column generation algorithm to this problem.

When we were conducting this research, Chan, Kaminsky, Muriel, and Simchi-Levi [5] as well
as Chen and Powell [6] independently proposed and analyzed the column generation approach
to this formulation of the problem P|| Z;?:le(]j. Chan, Kaminsky, Muriel, and Simchi-Levi
emphasized on worst-case performance analysisand probabilistic analysis. They have established
two main results. Thefirst oneisthat thelinear programming bound is asymptotically optimal for
any number of machines; if m = 2, then these values always coincide. Their second main result
is that the value of the optimal solutionisat most equal to (1 + v/2)/2 timesthe value of the linear
programming bound; thisbound isstrengthenedto 1.04incasew; = p; forall j = 1,...,n. Chen
and Powell show how the formulation can be obtained by Dantzig Wolfe decomposition. They
a so propose a branch-and-bound a gorithm in which lower bounds are computed by solving the
linear programming relaxation through column generation. They do not branch on the completion
times, but on the original z;; variables that indicate that job 7 is processed immediately before
job j on some machine. As a consequence, they cannot use the O(n 3" p;) agorithm to solve
the pricing problem after the branching has started, but have to resort to an O(n?3 p;) time
agorithm.

This paper is organized as follows. In Chapter 2, we present the column generation approach for
the problem P[] 3°%_; w;C;. In Chapter 3, we report on our computational experiments for this

-9-
TP 96251

)
Az

problem. In Chapter 4, we discuss the adaptations of the formulation and the pricing algorithm
necessary to apply them to other prominent problemsin the class (A). In Chapter 5, we discussan
applicationinthe field of Air Traffic Management. Chapter 6 concludes the paper.

)
Az

-10 -
TP 96251

2 Column generation for P||>>7_; w;C;

2.1 Problem description

There are m identical machines, M, ..., M,,, avalable for processing » independent jobs,
Ji,...,J,. Job J; (7 = 1,...,n) has a processing requirement of length p; and a weight w;.

Each machineis available from time zero onwards and can handle no more than onejob at atime.
Preemption of jobs is not allowed. A feasible schedule is a specification of the job completion
times C'q, ..., C', such that no machine processes more than one job a atimeand C'; — p; > O.
The objective is to find a schedule with minimum total weighted completion time >~7_; w;C’;.
The problem is A"P-hard in the strong sense when the number of machinesis part of the problem
instance.

There are two important observations that we can make with respect to the form of any optimal
schedule. First, on each machine the jobs need to be processed contiguously from time zero
onwards, and no machine should be idle before al jobs have been started. From this, it follows
that thelast job on any machineis completed between time Hmin = 3°7_1 p;/m — (m — 1)pmax/m
and Hmax = >_7—1pj/m + (m — 1)pmax/m, Where pmax = MaXi<;<, p;. Second, jobs that
are processed by the same machine are scheduled in order of non-increasing w;/p; rétiosin any
optimal schedule; this follows directly from Smith’s rule for the single-machine version (Smith
[17]). Hence, the problem belongs to the class (A). In the remainder, we assume that the jobs
have been reindexed in order of non-increasing ratios, and to avoid trivialities, we also assume
that n > m. There exists a dynamic programming algorithm based on the observations made
abovethat runsin O(n(3"7_1 p; y"~1) time and space. Especially the space requirement becomes
unmanageabl e when m increases.

2.2 Mathematical formulation

The P|| 377_4 w;C'; problem can be mathematically formulated as a set covering problem withan
exponentia number of binary variables, n covering constraints, and a single side constraint. We
define a machine schedule as a string of jobsthat can be assigned together to any single machine.
Let a;, beaconstant that isequal to 1if job J; isincluded in machine schedule s and O otherwise.
Accordingly, the column (ays, . . ., a,s)T represents the jobsin machine schedule s. Let C;(s) be
the completiontime of job .J; ins; C;(s) isdefined only if ¢;; = 1. Note that since thejobsin s
appear in order of their indiceswe havethat C;(s) = Zi:l arspi. Hence, the cost ¢, of machine

-11 -
TP 96251

schedule s isreadily computed as

n n J
Cs = ijCj(s) = ijajs Z AksPk | -
j=1 j=1 k=1

Let S be the set containing al feasible machine schedules. We introduce variables =, (s =
1,...,|9|) that assumevaue 1 if machine schedule s is selected and O otherwise. The problemis
then to select m machine schedules, one for each machine, such that together they contain each
job exactly once and minimizetotal cost. Mathematically, the problem isthen to determine vaues
z that minimize

§ Css

SES
subject to

Zws =m, (1)

SES
Zajsxszl, foreachj =1,...,n, 2
SES
xzs € {0,1}, foreach s € §. (3)

Condition (1) together with theintegrality conditions(3) ensure that exactly m machine schedules
are selected. The conditions (2) ensure that each job is executed exactly once. Note that the
equality sign in the conditions (1) and (2) can be changed into ‘smaller than’ and ‘larger than’,
respectively, without loosing the validity of the formulation.

The number of columnsinvolved in thisformulationis|S| = Z;{”“(Z). Neither the set cover-
ing problem, nor itslinear programming relaxation, which is obtained by replacing conditions (3)
by the conditions », > Ofor al s € 5, can therefore be solved by a method that first generates
al feasible columns explicitly. Instead, we resort to a method that considers the feasible columns
implicitly: column generation. Starting with a restricted linear programming problem in which
only a subset of the variables is available, the column generation method solves the linear pro-
gramming relaxation of the set covering formulation by adding new columns that may decrease
the solution value, if the optimal solution has not been determined yet; these new columns are
not obtained through enumeration, but by solving an optimization problem, which is called the

-12-
TP 96251

pricing problem. We discuss this problem in the next section.

2.3 Thepricing algorithm

From the theory of linear programming, we know that a solution to a minimization problem is
optimal if the reduced cost of each variable is non-negative. In our problem, the reduced cost ¢/,
of any machine schedule s is given by

e
!
Cs = Cs— Ao — Z Aja;s,
i=1

where \g is the given value of the dua variable corresponding to condition (1) and Ay, ..., A,
are the given vaues of the dua variables corresponding to conditions (2). To test whether the
current solution is optimal, we determine if there exists a machine schedule s € S with negative
reduced cost. Tothat end, we solvethe pricing problem of finding the machine schedulein S with
minimum reduced cost. Since A\g isaconstant that isincluded in thereduced cost of each machine
schedule, we essentially have to minimize

n

" i
cs = Y Ajajs = Y [wi(Y apspr) — Ajlajs.
7=1 k=1

7=1
Our agorithm, which we call the pricing agorithm, tests whether a feasible solution to the linear
programming relaxation is optimal; if the outcome is negative, then it outputs a set of machine
schedules s with ¢/, < 0 among which the machine schedule with minimum reduced cost.

Our pricing agorithmisbased on dynamic programming and usesaforward recursion that exploits
the property that on each machine the jobs are sequenced in order of increasing indices. Let /()
denote the minimum reduced cost for al machine schedules that consist of jobs from the set
{J1,...,J;} and complete their last job at time ¢. Furthermore, let P(j) = izlpk. For the
schedule that realizes F;(t), there are two decisions possible: either leave J; out of the machine
schedule, or include it. Asto the first possibility, we then select the best machine schedule with
respect to thefirst j — 1jobsthat finishes at time¢; the value of thissolutionis £;_1(t). Astothe
second possibility, we add .J; to the best machine schedule for the first j — 1 jobs that finishes at
timet — p;; thevalue of thissolutionis F;_1(t — p;) + w;t — A;. Theinitiaization isthen
Fift) = { o, ifj= Qandt -0,
oo, Otherwise.

Therecursionisthenforj =1,...,n,t=0,....mn{P(j), Hmax}

Fi(t) = mind{ Fj_1(1), Fj_a(t — pj) + wit — A;}. (4

-13-
TP 96251

The optima solution value is then found as

Fr = min_ F,(t).
Hin<t<Hmax n()

Accordingly, if #* > 0, thenthecurrent linear programming solutionisoptimal. If £* < 0, thenit
isnot, and we need to i ntroduce new columnsto the problem. Candidates are associated withthose
t for which F,(¢) < 0; they can befound by backtracing. Note that the pricing a gorithm requires
O(n "1 p;) timeand space. Thismeansthat our column generation approach isnot sensibleif
m = 2: the P,|| 3°7_, w;C; problem s better solved directly through dynamic programming.

2.4 Thebranch-and-bound algorithm

Let 2* denote the optimal solution to the linear programming relaxation of the set covering
formulation and let 5™ denote the set containing all columns s for which 2% > 0. If 2* isintegral,
then z* constitutesan optimal solutionfor P|| 5°7_; w;C;. If not, then wehavefractional machine
schedules. Wefirst discussaspecial case of afractional solution, namely the caseinwhich for each
job the completion timeis equal in each machine schedule in 5* in which it occurs. This special
case is less esoteric than it may seem on first sight; it occurred quite often in our computational
experiments. The next result is then a powerful tool to fathom the corresponding node in the
branch-and-bound tree.

Theorem 1 If C;(s) = C; for each job J; (7 = 1,...,n) and for each s with 27 > 0, then the
schedule obtained by processing J; in the timeinterval [C; — p;,C;] (7 = 1,...,n) isfeasible
and has minimum cost.

Proof. The scheduleinwhichjob J; (7 = 1,...,n) isprocessed fromtime C'; — p; totime C;
isfeasibleif and only if a most m jobs are processed at the same time and no job starts before
time zero. The second condition isobviously satisfied, sincethe C'; values originate from feasible
machine schedules. The first constraint is satisfied if we show that at most m jobs are started at
time zero and that the number of jobs started at any point intime¢ € [1, 7] is no more than the
number of jobs completed at that point in time, where 1" denotes the latest point in time that a
jobisstarted. Let A(t) C 5* bethe set of al machine schedules in which at least one job starts
a timet; similarly, let B(¢) C 5™ be the set of al machine schedules in which at least one job
completes at timet. AsC';(s) = C;, for any machine schedule containing ./;, the number of jobs
started at timet isequal to ZseA(t) 2%, similarly, the number of jobs completed at time+ is equal
to 3 ,en() ;- Because of condition (1), we know that at most m jobs are started at time zero.
Since each machine schedule s is constructed such that there is no idle time between the jobs,
therecan only beajobin s that startsat timet if some other jobin s iscompleted at timet. Hence,
A(t) C B(t), which means that the indicated schedule is feasible. It is readily checked that the
condition C';(s) = C; impliesthat the cost of this schedule is equal to the cost of the fractional

-14 -
TP 96251

solution, and hence minimal.]

If the optimal solution to the linear program neither is integral, nor satisfies the conditions of
Theorem 1, then abranch-and-bound a gorithmisrequired to find an optimal solution. From other
applications, we know that the branching strategy of fixing a variable at either zero or one does
not work in combination with column generation, as the pricing agorithm may come up with this
column again, even though we fixed the variable at zero. Our branching strategy is based upon
splitting the set of possible completion times.

If we have a fractional optimal solution that does not satisfy the conditions of Theorem 1, then
thereis at least onejob J; for which

Z Ci(s)zy > min{C;(s)|z; > 0};

SES*
we call such ajob J; a fractional job. Our partitioning strategy reflects this property. We

design abinary branch-and-bound tree for which in each node we first identify the fractional job
with smallest index, and, if any, then create two descendant nodes: one for the condition that
C; <min{C;(s)|z% > 0} and onefor the conditionthat C'; > min{C;(s)| 2% > 0} + 1. Thefirst
condition essentially specifies adeadline d_] at which .J; must be completed; the second condition
specifiesareleasedate r; = min{C;(s) | 25 > 0} + 1 — p; before which .J; cannot be started.

The nicething of thispartitioning strategy isthat either type of condition can easily beincorporated
in the pricing agorithm without increasing its time or space requirement. In fact, we simply have
to replace equation (4) by
I min{Eia(0), Fioa(t = pj) + wit = A}, if v+ py <0< d,
(1) = {Fj_l(t), otherwise.

An additional convenient feature is that this partitioning strategy facilitates fast reoptimization,
because we can temporarily discard the columnsin 5™ that violate the new cut. Observethat itis
possiblethat the remai ning columnsdo not constituteafeasible solutionto the linear programming
relaxation anymore, athough this did not occur in our computational experiments. This problem
can be overcome by generating someadditional columnsthat satisfy all constraintsused to describe
the current node. We therefore have to find a solution to a parallel machine scheduling problem
inwhich dl jobs scheduled on the same machine are in order of nonincressing w; /p; ratioand all
rel ease dates and deadlines specified by the node are met. To find such a solution we use a greedy
heuristic. Before starting, wefirst compare r; to Z{f;ll p;/m for any job j with arelease date, and
we compare d_] to Zle p;/m for any job j that has adeadline. Thiscomparison provides uswith
an indication of whether we have to take special precautions in the form of machines with avery

)
Az

-15 -
TP 96251

high of very low workload asfar asthe distribution of thefirst jobsis concerned. We then add the
jobs to the current partial schedule in order of nonincreasing w;/p; ratio, where we try to meet
the release dates and deadlines. Jobs without rel ease date or deadline are added to create ahighly
loaded or underloaded machine, if such precautions are wanted.

If the greedy heuristic does not succeed in finding afeasible sol ution, then we apply a branch-and-
bound algorithm similar to the algorithm proposed by Carlier [4] for P|r;|Lmax.

)
Az

-16 -
TP 96251

3 Computational experiments

3.1 Implementation

In this section, we report on our computational results for the problem P|[>~"_; w;C;. The
agorithms were coded in the computer language C; the experiments were conducted on an
HPO000/710 machine. To solvethe linear programs, we used the package CPLEX.

To start the column generation method, we need some initial columns to compute the initial dual
variables. We use a simple randomized list scheduling heuristic, which is run severa times.
The heuristic generates a schedule by assigning the jobs in order of non-increasing values w; /p;
randomly to the machines, where an earlier available machine has a higher probability of getting
the next job on thelist.

We incorporated some speed-ups in the pricing algorithm to reduce the empirical running time.
Since these speed-ups are not of interest for the red line of the paper, we have included the details
in Appendix A.

3.2 Computational results

We first applied our agorithm to the fifteen instances given in Barnes and Brennan [1]. In these
instances, the number of jobs n varies form 5 to 20 and the number of machines m varies from
2 to 5. For thirteen of them, the linear program had an integral optimal solution, and hence no
branching was required. Problems #10 and #14 required one and six nodes, respectively, while
the solution value of the linear program was equal to the optimal solution value; it was hence only
aquestion of finding an integral solution. The computation time was negligiblefor each instance.

We then tested our algorithm on three classes of randomly generated instances:
(i) instances with processing times drawn from the uniform distribution [1, 10] and weights

from the uniform distribution [10, 100];
(i) instances with processing times and weights both drawn from the uniform distribution

[1,100];
(iii) instances with processing times and weights both drawn from the uniform distribution
[10, 20].

We tested our agorithm on instances with n = 20, 30, 40,50 jobs and m = 3, 4,5 machines.
As we will see, the performance of our algorithm increases with the number of machines for
fixed n, which contrasts with other branch-and-bound algorithms, including the one by Belouadah
and Potts [3]. For this reason, we did not consider instances with more than five machines.
Accordingly, problems with three machines are the hardest to solve for our algorithm, which is

-17 -
TP 96251

confirmed by our computational experiments. Recall that problemswith m = 2 are better directly
solved by dynamic programming than by our algorithm.

We divide these instances into ‘easy’ instances, for which no branching was required, and ‘hard’
instances, for which the branch-and-bound algorithm needed to beinvoked. For each combination
of n and m, we report on the number of easy instances out of 20 and the average time to solve
the linear programming problem for them. For the ‘hard’ instances, we report on the maximum
number of nodes in the branch-and-bound tree, the maximum computation time to solve a hard
instance, and the maximum gap between linear programming solution value and optimal solution
valuein absoluteterms. The maximum percent excess of the optimal solutionvalue over thelinear
programming solution was always smaller than 0.05%, and goes unreported. Finally, we report
the number of instances for which the gap is zero.

Tables 1-3 summarize our computational results. The headers of the columns are;

n = number of jobs;
m = number of machines;
NB = number of instances out of 20 for which branching

was not required;

ACT = average computation timein seconds for the ‘ easy’
instances,

MNN = maximum number of search tree nodes;

MCT = maximum computation time in seconds for the
‘hard’ instances;

MGAP = maximum gap between optimal solution value and

lower bound;
ILP=LP

number of instances out of 20 for which the optimal

solution value and lower bound concur.

Table 1 displays our results for instances belonging to class (i), which is used by Belouadah and
Potts [3] as well to test the performance of their branch-and-bound algorithm. They report that
their agorithm fails to solve instances within one minute of computation time on a CDC 7600
computer, which is about twice as slow as our machine, if » = 30 and m = 3 or m = 4, and if
n =20andm = 5.

First of al, Table 1 shows the quality of the linear programming lower bound: branching is often
not required, particularly for the instances with n» < 30, and the lower bound is tight for al 240
instances but 7. Accordingly, if the linear programming solution is not integral, then it is often a

-18 -

TP 96251
‘easy’ instances ‘hard’ instances
n m | NB ACT | MNN MCT MGAP | ILP=LP
20 3| 20 113 - - - 20
20 4| 17 0.72 4 1.59 3 18
20 5| 18 0.45 2 0.53 0 20
30 3| 14 8.67 2 2083 0 20
30 4| 11 4.99 2 7.33 0 20
30 5| 13 2.90 5 5.13 0 20
40 3 6 55.31 2 7360 0 20
40 4 9 23.84 12 70.20 3 16
40 5 4 14.60 3 2117 0 20
50 3 3 243.91 5 425.76 36 19
50 4 3 101.25 7 18143 0 20
50 5 2 49.73 6 8189 0 20

Tablel Resultsfor randomly generated instances.

question of finding an integral solution of the same value; thisisan important reason that the rule
stipulated in Theorem 1 isso useful. If branching isrequired, then we need few nodes only to find
and verify an optimal solution. Table 1 confirms the claim that we made earlier: for fixed n, the
instances grow easier withincreasing m. Thisisplausible: the more machinesinvolved, the fewer
jobs we may expect to appear in the optimal machine schedules, and accordingly the smaller the
relevant solution space will be. Also note that for n = 40 and » = 50 the linear programming
solution is fractiona more often than for n < 30, although the corresponding value is about
equally oftentight. A likely reason for this phenomenon is that the number of optimal fractiona
solutions grows with n and the chances of ‘hitting’ an integral one decreases accordingly.

Since the pricing agorithm requires pseudo-polynomial time, we may expect that the performance
of our agorithm deteriorates with the size of the processing times of the jobs. Table 2 displays
our results for instances belonging to class (ii), where the processing times are drawn from the
uniform distribution [1, 100].

Table 2 indicatesthat these instances are indeed harder to solve. Not only do we need moretimeto
solve the linear programs, which is entirely attributable to the pricing agorithm, but also slightly
more search nodes. The extra time effort is modest, however. Note that the maximum gap is
dlightly bigger in comparison with Table 1. Asawhole, the results remain satisfactory.

-19-

TP 96251
‘easy’ instances ‘hard’ instances
n m | NB ACT | MNN MCT MGAP | ILP=LP
20 3| 19 2.82 1 2.70 0 20
20 4| 20 1.87 - - - 20
20 5| 20 1.34 - - - 20
30 3| 17 15.87 6 2717 4 17
30 4| 18 9.79 10 1885 9 19
30 5| 18 6.80 14 15.07 10 18
40 3| 18 71.74 4 104.30 6 19
40 4| 12 36.42 10 72.09 11 14
40 5| 15 25.59 18 63.27 8 17
50 3| 16 314.33 10 462.47 5 17
50 4| 13 131.53 12 259.64 11 15
50 5| 13 78.89 18 211.92 18 15

Table2 Resultsfor instances with large processing times.

Finally, we may &l so expect that instances with fairly homogeneousratios w; /p; are hard to solve
aswell. After dl, if all ratios w; /p; are close to each other, then the number of relevant columns
will belarge. Thisintuitionis confirmed by our computational results for the instances belonging
to class (iii).

Indeed, Table 3 shows that the solution to the linear programming problem is seldom integral,
athough it is often tight. Apparently, many optimal solutionsare fractional. At the sametime, it
ismore difficult to find an integral solution: we need more search nodes than before. Thisisquite
plausible: sincetheratios w;/p; are close to each other, the position of ajob in the final schedule
is not so predetermined, and accordingly our branching rule will be less effective. Note that for
n = 50 and m = 3, there is only a single instance for which the linear programming bound is
tight, which contrasts with the other results.

Finally, wenotethat our algorithmisableto deal withinstanceswith» > 50aswell, aslong asthe
number of machinesis not too small. Also, but thisis a subjective feeling, the column generation
approach gives the idea that solving the parallel machine scheduling problem comes down to
cracking the linear programming relaxation: once you have done that, you only need a small
number of search nodes to find an optimal solution. Thiswould imply that you can really benefit
from faster computers. Thisis oppositeto our experience with most standard branch-and-bound

-20-

TP 96251
‘easy’ instances ‘hard’ instances

n m | NB ACT | MNN MCT MGAP | ILP=LP
20 3| 13 111 2 1.29 0 20
20 4| 13 0.74 2 1.07 0 20
20 5| 11 0.51 4 0.89 0 20
30 3 4 7.53 9 1917 0 20
30 4 2 354 9 10.69 0 20
30 5 2 3.53 9 6.64 0 20
40 3 0 - 15 170.75 0 20
40 4 2 16.96 17 5169 0 20
40 5 0 - 20 3425 0 20
50 3 0 - 32 622.46 41 1
50 4 0 - 40 584.15 1 18
50 5 0 - 56 306.90 2 19

Table3 Resultsfor instances with homogeneous w; /p; ratios.

agorithms, which may require an enormous number of nodes.

)
Az

-21-
TP 96251

4 Extensions

In this section, we briefly discusstwo other types of problemsin theclass (A) to which the column
generation approach applies:
¢ problemswith additive objectivefunctions for which only a part of the scheduleisrelevant,
like the weighted number of tardy jobs and total weighted late work;
¢ pardlel machine problemswith non-identical machines.

We indicate the major differences with the approach for the P|| 3~7_; w;C’; problem only.

4.1 Complementary objectives

The weighted number of late jobs and total weighted late work are two important objective
functions in which jobs are not penalized as long as they are completed at or before their due
dates. These objective functions are defined asfollows. A jobiscalledlateif C'; > d;, where d;
isthe due date of .J;. The weighted number of late jobsis denoted by =% ; w;U;, where U; = 1
if J; islate, and U; = O otherwise. Total weighted late work isdenoted by >°7_; w;V; where V;,
the late work of .J;, is defined as the portion of work of .J; that is performed after its due date d ;.
Accordingly, we havethat V; = min{p;, max{0, C'; —d; } }. In both cases, the objectivefunctions
are to be minimized.

For either problem, there is an optimal schedule in which each machinefirst performs the on-time
jobsin order of non-decreasing due dates and then the late jobs in any sequence (Potts and Van
Wassenhove [14]). The late jobs appear thusin the irrelevant part of the schedule, and in fact it
does not matter if, when, and by what machine the late jobs are executed. These problems are
therefore equivaent to maximizing 3~7_; w;(1 — U;), the weighted number of on-timejobs, and
> i1 wi(p; — V;), total weighted on-time work. These problems lend themselves much better
for the column generation approach, since the pricing algorithm needs to focus then only on the
on-time jobs. These complementary problems can then be formulated as maximizing

§ Css

SES
subject to

Zajsxsgl, foreachj =1,...,n, 5
SES

and conditions (1) and (3). Note the sense of condition (5): machine schedules contain on-time
jobs only. The pricing agorithm maximizes the reduced cost, which means that the initialization

-22.
TP 96251

of the recursion is different; apart from that, the recursion is essentialy the same as the one
described in Section 2.3, but ajob will only be included in a machine schedule if it is (partialy)
on-time.

4.2 Non-identical machines

If the machines are not identical, then the processing timeof .J; on M; isp;;, not p;, for each < and
4. Hence, the cost of a machine schedul e then depends on the choice of the machine aswell, and
we may even have that the priority ruleisnot equa for all machines. Thiscan be easily overcome
by associating a different set of machine schedules to each machine. Let 5(¢) denote the set of
feasible machine schedules for machine M; (¢ = 1,...,n). We need to adjust the formulation
given in Section 2.2 only slightly to accommodate non-identical machine problems. The problem
isformulated as minimizing

> Y

=1 5e5(1)

subject to
> wz,=1 foreechi=1,....,m, (6)
s€S(4)
Z Z a;sv, =1, foreachj =1,...,n, @)
i=1s5€5(3)
zs € {0,1}, foreachs € S(7),i=1,...,m. (8)

For the pricing algorithm, we need to perform the recursion m: times, one time for each machine
separately. Accordingly, the pricing agorithm runsin O(n Y7721 5774 pi;) time.

In addition, the partitioning strategy that we proposed in Section 2.4 does not apply in case of hon-
identical machines. An effective dternativeisavailablethough: simply useaforward partitioning
strategy where jobs are assigned to machines; this partitioning strategy can easily be combined
with column generation.

)
Az

-23-
TP 96251

5 Application to Air Traffic Management

Due to the continuing expansion of air traffic, Air Traffic Management (ATM) is confronted with
increasing problems in the safe and efficient handling of traffic. This causes a growth of delays,
especialy during peak hours or bad weather. Improvement of ATM planning can help to make
better use of the existing capacity of the air space and airports and therefore to reduce delays. For
thisreason alot of research is performed on the application of well-known optimization methods
to ATM planning problems, see for example Van Kemenade et al. [18] and Maugis[12].

As ATM planning includes scheduling, the application of optimization methods for scheduling
problems can be very beneficial inthearea. In thischapter, we show that the scheduling of arrival
aircraft on runways of an airport is a parallel machine scheduling problem, and we discuss the
application of the column generation approach to this problem.

Consider the runways of an airport as parallel machines. The jobs that have to be processed by
the machines are the aircraft arriving at the airport. Since alanding aircraft causes turbulence, we
have that after the landing of each aircraft it takes some time before the runway isfree for the next
aircraft. We consider the lengths of these waiting periods as processing times, and denote by p;
the timeuntil the runway isfree after the landing of aircraft 5. Now thelanding time of an aircraft
corresponds to the start time of ajob. Consequently, we denote the landing time of aircraft j by
S;. Each aircraft has a planned time of arrival. We consider thistime as a due date d;, and say
that aircraft j islateif 5; > d;. Notethat this notion of lateness differs from the one in Section
4.1. Itisnot hard to see that with this notion of |ateness the problem of minimizing the weighted
number of late jobs, i.e,, > ; w;U;, can be solved in the same way as the problem in Section
4.1, and hence by the column generation algorithm. The weighted number of late, i.e., delayed,
aircraft can hence be minimized with the column generation algorithm.

However, since aircraft approach the airport at different times, we have to deal with rel ease dates,
which complicates the problem. The algorithm can only be applied to groups of aircraft with
approximately the same release date. Consider a group of aircraft that are in the neighbourhood
of their arrival airport, i.e., that are either flying in circles in the holding area or are approaching
the airport. These aircraft can land within a short time from now, i.e., they have approximately
the same release date. For such a group of aircraft, the weighted number of delayed aircraft can
be minimized by the column generation agorithm.

-24 -
TP 96251

)
Az

6 Conclusion

Column generation algorithms have been shown to be useful for many intractable combinatoria
optimization problems; see for an overview Barnhart, Johnson, Nemhauser, Savelsbergh, and
Vance [2]. This paper shows that column generation is computationally attractive for paralléel
machine scheduling problems as well.

-25-
TP 96251

References

1. JW. BARNES AND J.J. BRENNAN (1977). An improved agorithm for scheduling jobs on
identical machines. AllE Transactions 9, 25-31.

2. C. BARNHART, E.L. JOHNSON, G.L. NEMHAUSER, M.W.P. SAVELSBERGH, AND PH. VANCE
(1994). Branch-and-price: column generation for solving huge integer programs, Report
COC-9403, Georgia Institute of Technology, Atlanta.

3. H.BELOUADAH AND C.N. POTTS (1994). Scheduling identical parallel machinesto minimize
total weighted completion time. Discrete Applied Mathematics 48, 201-218.

4, J. CARLIER (1987). Scheduling jobs with release dates and tails on identical machines to
minimize the makespan. European Journal of Operational Research 29, 298-306.

5. L.M.A.CHAN, P KAMINSKY, A. MURIEL, AND D. SIMCHI-LEVI (1995). Machine scheduling,
linear programming and list scheduling heuristics, Working paper, Northwestern University,
Chicago.

6. Z. CHEN AND W.B. POWELL (1995). Solving Parallel Machine Total Weighted Compl etion
Time Problems by Column Generation, Working paper, Princeton University.

7. W.L. EASTMAN, S. EVAN, AND |.M. Issacs (1964). Bounds for the optimal scheduling of ¥V
jobson M processors. Management Science 11, 268-279.

8. SE. ELMAGHRABY AND S.H. PARK (1974). Scheduling jobs on a number of identical ma
chines. AllE Transactions 6, 1-13.

9. R.L.GRAHAM, E.L. LAWLER, JK.LENSTRA, AND A.H.G. RINNOOY KAN (1979). Optimiza-
tion and approximation in deterministic sequencing and scheduling: a survey. Annals of
Discrete Mathematics 5, 287-326.

10. A.M.A.HARIRI, C.N. POTTSAND L.N. VAN WASSENHOVE (1995). Single machinescheduling
to minimizetota weighted late work. ORSA Journal on Computing 7, 232-242.

11. E.L.LAWLER AND JM. MOOCRE (1969). A functional equation and its application to resource
alocation and sequencing problems. Management Science 16, 77-84.

12. L. MaAuacis Mathematical Programming for the Air Traffic Flow Management Problemwith
en-route capacity. Technical Report CENA.

13. C.N.PoTTSAND L.N. VAN WASSENHOVE (1988). Algorithmsfor scheduling asinglemachine
to minimize the weighted number of |ate jobs. Management Science 34, 843-858.

14. C.N. PotTs AND L.N. VAN WASSENHOVE (1992). Single machine scheduling to minimize
total late work. Operations Research 40, 586-595.

15. M.H. ROTHKOPF (1966). Scheduling independent tasks on parallel processors. Management

Science 12, 437-447.

-26-
TP 96251

16.

17.

18.

19.

20.

S.C. SARIN, S. AHN, AND A.B. BisHoP (1988). An improved branching scheme for the
branch-and-bound procedure of scheduling » jobs on m paralel machines to minimizetotal
weighted flowtime. International Journal of Production Research 26, 1183-1191.

W.E. SMITH (1956). Various optimizersfor single-stage production. Naval Research Logistics
Quarterly 31, 325-333.

C.H.M. VAN KEMENADE, C.FW. HENDRIKS, J.N. KOK, AND H.H. HESSELINK (1995). Evo-
lutionary computation in air traffic control planning. Proceedings of the sixth Inter national
Conference of Genetic Algorithms, 611-616, editor: S. Forrest. Morgan, Kaufmann, San
Francisco, Cdifornia, also as NLR Technica Publication 94565.

S.T. WEBSTER (1992). New bounds for the identical parallel processor weighted flow time
problem. Management Science 38, 124-136.

S.T. WEBSTER (1995). Weighted flow time bounds for scheduling identical processors.
European Journal of Operational Research 80, 103-111.

-27-
TP 96251

Appendices
A Implementation of the pricing algorithm

In the previous, we took advantage of the property that there is an optimal schedule in which
no machine schedule finishes its last job before time Hn. Accordingly, we solved the pricing
problem by choosing the machine schedule s with smallest F, () value, where Hpin < t < Hmax.
To satisfy thislower bound on ¢, we may need to add ajob J; to s, although w;C;(s) — A; > 0
and we are minimizing.

If weignore the above property, then we know that there is a machine schedule s with minimum
cost inwhich all jobs J; have w;C’;(s) < A;. Weexploit this observation to reduce the empirical
running time of the pricing algorithm. DefineA; = [A;/w;] foreach j (j = 1,...,n); we have
that A; > 1, sincewecandiscard dl jobs./; with A; = 0. Accordingly, if A; < min{ Hmax, P(j)},
then equation (4) can be replaced by
Fift) = {min{Fj_l(t),Fj_l(t —p)+wit— A}, fort=0,...,4— 1,

Fi_1(t), fort =A;,...,mn{Hma, P(j)}.
Moreover, the optimal solution value is now found as

F*= min F,(t).
0<t< Hrmex n(t)

We like to avoid the explicit computation and storage of al values #;(¢) for ¢t > A;, sincethey are
al the same. On the other hand, the recurrence relation needs the value F;(¢) when computing
Fiya1(t)and F;41(t + p;j+1), SO we need a procedure to retrieve the proper value of F;(t) when it
isneeded. Note now that for any ¢ > A; wehavethat F(t) = F;_,(; (1), where j —a(j,) isthe
index of thelast job before J; that cannot be discarded from the machine schedul e with maximum
value beforehand, that is, a(j, ¢) isequal tothe smallest valuesuchthat t < A;_,(;) — 1. Hence,
we know that we did not exclude F;_,; ;(t) from the computation. In the same fashion, we have
forany ¢t > A; +p; that Fy(t —p;) = F;_y,(t — p;j), Wwhere j —b(j, t) istheindex of thelast job
before J; that may be included in the machine schedule with maximum value. Therefore, b(j,t)
isthesmallest valuesuchthat ¢ — p; < A;_y(; ;) — 1. Accordingly, the recurrence relation isthen

forj=1,...,n,t=0,....,mn{A; — 1, P(j), Hmax}

Fi(t) = mind F_ .0 (), Fi_pj(t — pj) + wit — Aj}. 9)

In order to make it work and to gain from this adjustment, we need to establish an efficient

-28-
TP 96251

procedure to find the a(4, ¢) and b(j,¢) valuesfor al j and the appropriate times ¢. Note we must
have a(j,0) = 1forany j (j = 1,...,n) and a(j,t) > a(j,t — 1). Hence, when computing
F;(t) wecheck firstif a(j,¢) = a(j,t — 1); if itisnot, then we increase thevalue a(j, t) in steps
of sizeoneuntil t < A;_,; ;). Accordingly, the computation of a(7,1) requires one check each
time we perform computation (9) plus O(n?) operations atogether to find the values a(j,) if
a(j,t) # a(j,t — 1). We can design a similar procedure to compute the values b(j, ¢). Hence,
the worst-case running time of the pricing algorithm remains the same. The average running time
has been reduced, however, since we have restricted the range of the state variable ¢ for which the

recursion needs to be performed.

