
Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laborator y NLR

NLR TP 96251

Parallel machine scheduling by column generation

J.M. van den Akker, J.A. Hoogeveen, S.L. van de Velde

217-02

DOCUMENT CONTROL SHEET

ORIGINATOR'S REF. SECURITY CLASS.

 NLR TP 96251 U Unclassified

ORIGINATOR
National Aerospace Laboratory NLR, Amsterdam, The Netherlands

TITLE
Parallel machine scheduling by column generation

PRESENTED AT
Fifth international workshop on project management en scheduling
held at 11-13 April 1996, in Poznan, Poland

AUTHORS DATE pp ref
J.M. van den Akker, J.A. Hoogeveen,
S.L. van de Velde

960506 28 20

DESCRIPTORS
Air traffic control Parallel processing (computers)
Air traffic Run time (computers)
Algorithms Scheduling
Arrivals Tasks
Cost reduction Weighting functions
Linear programming

ABSTRACT
Parallel machine scheduling problems concern the scheduling of n jobs on
m machines to minimize some function of the job completion times. If
preemption is not allowed, then most problems are not only NP-hard, but
also very hard from a practical point of view. In this paper, we show
that strong and fast linear programming lower bounds can be computed for
an important class of machine scheduling problems with additive objective
functions. Characteristic of these problems is that on each machine the
order of the jobs in the relevant part of the schedule is obtained
through some priority rule. To that end, we formulate these parallel
machine scheduling problems as a set covering problems with an
exponential number of binary variables, n covering constraints, and a
single side constraint. We show that the linear programming relaxation
can be solved efficiently by column generation, since the pricing problem
is solvable in pseudo-polynomial time. We display this approach on the
problem of minimizing total weighted completion time on m identical
machines. Our computational results show that the lower bound is
singularly strong and that the outcome of the linear program is often
integral. Moreover, they show that our branch-and-bound algorithm that
uses the linear programming lower bound outperforms the previously best
algorithm. We elaborate on the application of the presented approach to
parallel machine scheduling problems other than that of minimizing total
weighted completion time on identical machines. Moreover, we discuss the
occurrence of parallel machine scheduling problems in the field Air
Traffic Management (ATM) and investigate the applicability of the
approach to problems in this field.

- 3 -
TP 96251

Summary

Parallel machine scheduling problems concern the scheduling ofn jobs onmmachines to minimize

some function of the job completion times. If preemption is not allowed, then most problems

are not only NP-hard, but also very hard from a practical point of view. In this paper, we show

that strong and fast linear programming lower bounds can be computed for an important class of

machine scheduling problems with additive objective functions. Characteristic of these problems

is that on each machine the order of the jobs in the relevant part of the schedule is obtained through

some priority rule. To that end, we formulate these parallel machine scheduling problems as a

set covering problems with an exponential number of binary variables, n covering constraints,

and a single side constraint. We show that the linear programming relaxation can be solved

efficiently by column generation, since the pricing problem is solvable in pseudo-polynomial

time. We display this approach on the problem of minimizing total weighted completion time

on m identical machines. Our computational results show that the lower bound is singularly

strong and that the outcome of the linear program is often integral. Moreover, they show that

our branch-and-bound algorithm that uses the linear programming lower bound outperforms the

previously best algorithm. We elaborate on the application of the presented approach to parallel

machine scheduling problems other than that of minimizing total weighted completion time on

identical machines. Moreover, we discuss the occurrence of parallel machine scheduling problems

in the field Air Traffic Management (ATM) and investigate the applicability of the approach to

problems in this field.

- 4 -
TP 96251

Contents

List of tables 5

1 Introduction 7

2 Column generation for P jjPn
j=1 wjCj 10

2.1 Problem description 10

2.2 Mathematical formulation 10

2.3 The pricing algorithm 12

2.4 The branch-and-bound algorithm 13

3 Computational experiments 16

3.1 Implementation 16

3.2 Computational results 16

4 Extensions 21

4.1 Complementary objectives 21

4.2 Non-identical machines 22

5 Application to Air Traffic Management 23

6 Conclusion 24

3 Tables

Appendices 27

A Implementation of the pricing algorithm 27

(28 pages in total)

- 5 -
TP 96251

List of tables

Table 1 Results for randomly generated instances. 18

Table 2 Results for instances with large processing times. 19

Table 3 Results for instances with homogeneouswj=pj ratios. 20

- 6 -
TP 96251

This page is intentionally left blank.

- 7 -
TP 96251

1 Introduction

Parallel machine scheduling problems concern the scheduling of n jobs on m parallel machines

to minimize some function of the job completion times. Problems in which preemption of jobs is

not allowed decompose into two subproblems: assigning jobs to machines and then sequencing

the jobs on each machine. We consider the class of problems with additive objective functions

that have all jobs in the relevant part of the schedule sequenced according to some priority rule –

we refer to it as class (A). The difficult part lies then mainly in the assignment of jobs to machines,

because for a given assignment we can find the optimal schedule by sequencing the jobs in the

relevant part of the schedule according to the priority rule, after which the non-relevant jobs are

scheduled after the other jobs.

Class (A) contains important objective functions like total weighted completion time, for which

the whole schedule is relevant, and objective functions like the weighted number of tardy jobs

and total weighted late work, for which only the on-time part of the schedule is relevant. All

these problems are unary NP-hard but solvable in pseudo-polynomial time for a fixed number of

machines m by applying the dynamic programming techniques of Rothkopf [15] and Lawler and

Moore [11]. These pseudo-polynomial algorithms, however, are impractical unless m = 2 for the

processing times are (very) small.

Additive objective functions pose a computational challenge, since it is difficult to compute strong

lower bounds. This is nicely witnessed by the research effort that the problem of minimizing

the total weighted completion on m identical parallel machines has attracted since the early days

of machine scheduling research; see for instance Eastman, Evan, and Issacs [7], Elmaghraby

and Park [8], Barnes and Brennan [1], Sarin, Ahn, and Bishop [16]. Using the notation scheme

of Graham, Lawler, Lenstra, and Rinnooy Kan [9], we refer to this problem as P jjPn
j=1 wjCj

or as Pmjj
Pn

j=1 wjCj when the number of machines m is fixed. The lower bounds developed

by Webster [19, 20], which require pseudo-polynomial time, and Belouadah and Potts [3] are a

big leap forward. Belouadah and Potts also report on the performance of a branch-and-bound

algorithm that uses their bound; it is capable of solving instances with up to 20 jobs and 5 machines.

It is also remarkable that other parallel machine scheduling problems with additive objective

functions have not received any attention yet. For instance, no one ventured at the parallel

machine problem of minimizing the weighted number of tardy jobs or total late work, although

their single-machine counterparts, which are binary NP-hard, attracted considerable interest; see

for instance Potts and Van Wassenhove [13, 14] and Hariri, Potts, and Van Wassenhove [10].

- 8 -
TP 96251

In this paper, we present a methodology that can be used to deal with the problem P jjPn
j=1 wjCj

and the other problems in class (A); we describe the approach in detail for the former problem

and indicate how it can be modified to deal with the latter problems. The approach is based on

formulating the problem P jjPn
j=1 wjCj as a set covering problem with an exponential number

of binary variables, n covering constraints, and a single side constraint. We then solve the

linear programming relaxation of this formulation by a column generation approach that uses an

O(n
Pn

j=1 pj) algorithm to solve the corresponding pricing problem. Obviously, if the optimal

solution for the linear programming relaxation happens to be integral, then we have identified

an optimal solution for the problem P jjPn
j=1 wjCj . If not, then we apply a branch-and-bound

algorithm to determine an optimal solution. Our computational results show the compelling quality

of the linear programming bound, which makes branching often unnecessary, and the superiority

of our branch-and-bound algorithm to the algorithms presented before.

We also study the application of the presented approach to problems in the area of Air Traffic

Management. We show that the scheduling of arrival aircraft on runways of an airport can be

viewed as a parallel machine scheduling problem and we discuss the application of the presented

column generation algorithm to this problem.

When we were conducting this research, Chan, Kaminsky, Muriel, and Simchi-Levi [5] as well

as Chen and Powell [6] independently proposed and analyzed the column generation approach

to this formulation of the problem P jjPn
j=1 wjCj . Chan, Kaminsky, Muriel, and Simchi-Levi

emphasized on worst-case performance analysis and probabilistic analysis. They have established

two main results. The first one is that the linear programming bound is asymptotically optimal for

any number of machines; if m = 2, then these values always coincide. Their second main result

is that the value of the optimal solution is at most equal to (1+
p

2)=2 times the value of the linear

programming bound; this bound is strengthened to 1.04 in casewj = pj for all j = 1; : : : ; n. Chen

and Powell show how the formulation can be obtained by Dantzig Wolfe decomposition. They

also propose a branch-and-bound algorithm in which lower bounds are computed by solving the

linear programming relaxation through column generation. They do not branch on the completion

times, but on the original xij variables that indicate that job i is processed immediately before

job j on some machine. As a consequence, they cannot use the O(n
P
pj) algorithm to solve

the pricing problem after the branching has started, but have to resort to an O(n2P pj) time

algorithm.

This paper is organized as follows. In Chapter 2, we present the column generation approach for

the problem P jjPn
j=1 wjCj . In Chapter 3, we report on our computational experiments for this

- 9 -
TP 96251

problem. In Chapter 4, we discuss the adaptations of the formulation and the pricing algorithm

necessary to apply them to other prominent problems in the class (A). In Chapter 5, we discuss an

application in the field of Air Traffic Management. Chapter 6 concludes the paper.

- 10 -
TP 96251

2 Column generation for P jj
Pn

j=1wjCj

2.1 Problem description

There are m identical machines, M1; : : : ;Mm, available for processing n independent jobs,

J1; : : : ; Jn. Job Jj (j = 1; : : : ; n) has a processing requirement of length pj and a weight wj .

Each machine is available from time zero onwards and can handle no more than one job at a time.

Preemption of jobs is not allowed. A feasible schedule is a specification of the job completion

times C1; : : : ; Cn such that no machine processes more than one job at a time and Cj � pj � 0.

The objective is to find a schedule with minimum total weighted completion time
Pn

j=1 wjCj .

The problem is NP-hard in the strong sense when the number of machines is part of the problem

instance.

There are two important observations that we can make with respect to the form of any optimal

schedule. First, on each machine the jobs need to be processed contiguously from time zero

onwards, and no machine should be idle before all jobs have been started. From this, it follows

that the last job on any machine is completed between timeHmin =
Pn

j=1 pj=m�(m�1)pmax=m

and Hmax =
Pn

j=1 pj=m + (m � 1)pmax=m, where pmax = max1�j�n pj . Second, jobs that

are processed by the same machine are scheduled in order of non-increasing wj=pj ratios in any

optimal schedule; this follows directly from Smith’s rule for the single-machine version (Smith

[17]). Hence, the problem belongs to the class (A). In the remainder, we assume that the jobs

have been reindexed in order of non-increasing ratios, and to avoid trivialities, we also assume

that n > m. There exists a dynamic programming algorithm based on the observations made

above that runs inO(n(
Pn

j=1 pj)
m�1) time and space. Especially the space requirement becomes

unmanageable when m increases.

2.2 Mathematical formulation

The P jjPn
j=1 wjCj problem can be mathematically formulated as a set covering problem with an

exponential number of binary variables, n covering constraints, and a single side constraint. We

define a machine schedule as a string of jobs that can be assigned together to any single machine.

Let ajs be a constant that is equal to 1 if job Jj is included in machine schedule s and 0 otherwise.

Accordingly, the column (a1s; : : : ; ans)
T represents the jobs in machine schedule s. Let Cj(s) be

the completion time of job Jj in s; Cj(s) is defined only if ajs = 1. Note that since the jobs in s

appear in order of their indices we have that Cj(s) =
Pj

k=1 akspk . Hence, the cost cs of machine

- 11 -
TP 96251

schedule s is readily computed as

cs =
nX
j=1

wjCj(s) =
nX

j=1

wjajs

2
4

jX
k=1

akspk

3
5 :

Let S be the set containing all feasible machine schedules. We introduce variables xs (s =

1; : : : ; jSj) that assume value 1 if machine schedule s is selected and 0 otherwise. The problem is

then to select m machine schedules, one for each machine, such that together they contain each

job exactly once and minimize total cost. Mathematically, the problem is then to determine values

xs that minimize
X
s2S

csxs

subject to

X
s2S

xs = m; (1)

X
s2S

ajsxs = 1; for each j = 1; : : : ; n; (2)

xs 2 f0; 1g; for each s 2 S: (3)

Condition (1) together with the integrality conditions (3) ensure that exactlymmachine schedules

are selected. The conditions (2) ensure that each job is executed exactly once. Note that the

equality sign in the conditions (1) and (2) can be changed into ‘smaller than’ and ‘larger than’,

respectively, without loosing the validity of the formulation.

The number of columns involved in this formulation is jSj =Pn�m+1
k=1

�n
k

�
. Neither the set cover-

ing problem, nor its linear programming relaxation, which is obtained by replacing conditions (3)

by the conditions xs � 0 for all s 2 S, can therefore be solved by a method that first generates

all feasible columns explicitly. Instead, we resort to a method that considers the feasible columns

implicitly: column generation. Starting with a restricted linear programming problem in which

only a subset of the variables is available, the column generation method solves the linear pro-

gramming relaxation of the set covering formulation by adding new columns that may decrease

the solution value, if the optimal solution has not been determined yet; these new columns are

not obtained through enumeration, but by solving an optimization problem, which is called the

- 12 -
TP 96251

pricing problem. We discuss this problem in the next section.

2.3 The pricing algorithm

From the theory of linear programming, we know that a solution to a minimization problem is

optimal if the reduced cost of each variable is non-negative. In our problem, the reduced cost c0s
of any machine schedule s is given by

c0s = cs � �0 �
nX

j=1

�jajs;

where �0 is the given value of the dual variable corresponding to condition (1) and �1; : : : ; �n

are the given values of the dual variables corresponding to conditions (2). To test whether the

current solution is optimal, we determine if there exists a machine schedule s 2 S with negative

reduced cost. To that end, we solve the pricing problem of finding the machine schedule in S with

minimum reduced cost. Since �0 is a constant that is included in the reduced cost of each machine

schedule, we essentially have to minimize

cs �
nX
j=1

�jajs =

nX
j=1

[wj(

jX
k=1

akspk)� �j]ajs:

Our algorithm, which we call the pricing algorithm, tests whether a feasible solution to the linear

programming relaxation is optimal; if the outcome is negative, then it outputs a set of machine

schedules s with c0s < 0 among which the machine schedule with minimum reduced cost.

Our pricing algorithm is based on dynamic programming and uses a forward recursion that exploits

the property that on each machine the jobs are sequenced in order of increasing indices. Let Fj(t)

denote the minimum reduced cost for all machine schedules that consist of jobs from the set

fJ1; : : : ; Jjg and complete their last job at time t. Furthermore, let P (j) =
Pj

k=1 pk. For the

schedule that realizes Fj(t), there are two decisions possible: either leave Jj out of the machine

schedule, or include it. As to the first possibility, we then select the best machine schedule with

respect to the first j � 1 jobs that finishes at time t; the value of this solution is Fj�1(t). As to the

second possibility, we add Jj to the best machine schedule for the first j � 1 jobs that finishes at

time t � pj ; the value of this solution is Fj�1(t� pj) + wjt � �j . The initialization is then

Fj(t) =

8<
:

��0; if j = 0 and t = 0;

1; otherwise:

The recursion is then for j = 1; : : : ; n, t = 0; : : : ;minfP (j); Hmaxg

Fj(t) = minfFj�1(t); Fj�1(t� pj) + wjt� �jg: (4)

- 13 -
TP 96251

The optimal solution value is then found as

F � = min
Hmin�t�Hmax

Fn(t):

Accordingly, ifF � � 0, then the current linear programming solution is optimal. IfF � < 0, then it

is not, and we need to introduce new columns to the problem. Candidates are associated with those

t for which Fn(t) < 0; they can be found by backtracing. Note that the pricing algorithm requires

O(n
Pn

j=1 pj) time and space. This means that our column generation approach is not sensible if

m = 2: the P2jj
Pn

j=1 wjCj problem is better solved directly through dynamic programming.

2.4 The branch-and-bound algorithm

Let x� denote the optimal solution to the linear programming relaxation of the set covering

formulation and let S� denote the set containing all columns s for which x�s > 0. If x� is integral,

then x� constitutes an optimal solution forP jjPn
j=1 wjCj . If not, then we have fractional machine

schedules. We first discuss a special case of a fractional solution, namely the case in which for each

job the completion time is equal in each machine schedule in S� in which it occurs. This special

case is less esoteric than it may seem on first sight; it occurred quite often in our computational

experiments. The next result is then a powerful tool to fathom the corresponding node in the

branch-and-bound tree.

Theorem 1 If Cj(s) = Cj for each job Jj (j = 1; : : : ; n) and for each s with x�s > 0, then the

schedule obtained by processing Jj in the time interval [Cj � pj ; Cj] (j = 1; : : : ; n) is feasible

and has minimum cost.

Proof. The schedule in which job Jj (j = 1; : : : ; n) is processed from time Cj � pj to time Cj

is feasible if and only if at most m jobs are processed at the same time and no job starts before

time zero. The second condition is obviously satisfied, since the Cj values originate from feasible

machine schedules. The first constraint is satisfied if we show that at most m jobs are started at

time zero and that the number of jobs started at any point in time t 2 [1; T] is no more than the

number of jobs completed at that point in time, where T denotes the latest point in time that a

job is started. Let A(t) � S� be the set of all machine schedules in which at least one job starts

at time t; similarly, let B(t) � S� be the set of all machine schedules in which at least one job

completes at time t. As Cj(s) = Cj , for any machine schedule containing Jj , the number of jobs

started at time t is equal to
P

s2A(t) x
�
s; similarly, the number of jobs completed at time t is equal

to
P

s2B(t) x
�
s. Because of condition (1), we know that at most m jobs are started at time zero.

Since each machine schedule s is constructed such that there is no idle time between the jobs,

there can only be a job in s that starts at time t if some other job in s is completed at time t. Hence,

A(t) � B(t), which means that the indicated schedule is feasible. It is readily checked that the

condition Cj(s) = Cj implies that the cost of this schedule is equal to the cost of the fractional

- 14 -
TP 96251

solution, and hence minimal. 2

If the optimal solution to the linear program neither is integral, nor satisfies the conditions of

Theorem 1, then a branch-and-bound algorithm is required to find an optimal solution. From other

applications, we know that the branching strategy of fixing a variable at either zero or one does

not work in combination with column generation, as the pricing algorithm may come up with this

column again, even though we fixed the variable at zero. Our branching strategy is based upon

splitting the set of possible completion times.

If we have a fractional optimal solution that does not satisfy the conditions of Theorem 1, then

there is at least one job Jj for which
X
s2S�

Cj(s)x
�
s > minfCj(s) j x�s > 0g;

we call such a job Jj a fractional job. Our partitioning strategy reflects this property. We

design a binary branch-and-bound tree for which in each node we first identify the fractional job

with smallest index, and, if any, then create two descendant nodes: one for the condition that

Cj � minfCj(s) jx�s > 0g and one for the condition thatCj � minfCj(s) j x�s > 0g+1. The first

condition essentially specifies a deadline d̄j at which Jj must be completed; the second condition

specifies a release date rj = minfCj(s) j x�s > 0g+ 1 � pj before which Jj cannot be started.

The nice thing of this partitioning strategy is that either type of condition can easily be incorporated

in the pricing algorithm without increasing its time or space requirement. In fact, we simply have

to replace equation (4) by

Fj(t) =

8<
:

minfFj�1(t); Fj�1(t� pj) + wjt� �jg; if rj + pj � t � d̄j ;

Fj�1(t); otherwise.

An additional convenient feature is that this partitioning strategy facilitates fast reoptimization,

because we can temporarily discard the columns in S� that violate the new cut. Observe that it is

possible that the remaining columns do not constitute a feasible solution to the linear programming

relaxation anymore, although this did not occur in our computational experiments. This problem

can be overcome by generating some additional columns that satisfy all constraints used to describe

the current node. We therefore have to find a solution to a parallel machine scheduling problem

in which all jobs scheduled on the same machine are in order of nonincreasing wj=pj ratio and all

release dates and deadlines specified by the node are met. To find such a solution we use a greedy

heuristic. Before starting, we first compare rj to
Pj�1

i=1 pi=m for any job j with a release date, and

we compare d̄j to
Pj

i=1 pi=m for any job j that has a deadline. This comparison provides us with

an indication of whether we have to take special precautions in the form of machines with a very

- 15 -
TP 96251

high of very low workload as far as the distribution of the first jobs is concerned. We then add the

jobs to the current partial schedule in order of nonincreasing wj=pj ratio, where we try to meet

the release dates and deadlines. Jobs without release date or deadline are added to create a highly

loaded or underloaded machine, if such precautions are wanted.

If the greedy heuristic does not succeed in finding a feasible solution, then we apply a branch-and-

bound algorithm similar to the algorithm proposed by Carlier [4] for P jrj jLmax.

- 16 -
TP 96251

3 Computational experiments

3.1 Implementation

In this section, we report on our computational results for the problem P jjPn
j=1 wjCj . The

algorithms were coded in the computer language C; the experiments were conducted on an

HP9000/710 machine. To solve the linear programs, we used the package CPLEX.

To start the column generation method, we need some initial columns to compute the initial dual

variables. We use a simple randomized list scheduling heuristic, which is run several times.

The heuristic generates a schedule by assigning the jobs in order of non-increasing values wj=pj

randomly to the machines, where an earlier available machine has a higher probability of getting

the next job on the list.

We incorporated some speed-ups in the pricing algorithm to reduce the empirical running time.

Since these speed-ups are not of interest for the red line of the paper, we have included the details

in Appendix A.

3.2 Computational results

We first applied our algorithm to the fifteen instances given in Barnes and Brennan [1]. In these

instances, the number of jobs n varies form 5 to 20 and the number of machines m varies from

2 to 5. For thirteen of them, the linear program had an integral optimal solution, and hence no

branching was required. Problems #10 and #14 required one and six nodes, respectively, while

the solution value of the linear program was equal to the optimal solution value; it was hence only

a question of finding an integral solution. The computation time was negligible for each instance.

We then tested our algorithm on three classes of randomly generated instances:

(i) instances with processing times drawn from the uniform distribution [1; 10] and weights

from the uniform distribution [10; 100];

(ii) instances with processing times and weights both drawn from the uniform distribution

[1; 100];

(iii) instances with processing times and weights both drawn from the uniform distribution

[10; 20].

We tested our algorithm on instances with n = 20; 30; 40; 50 jobs and m = 3; 4; 5 machines.

As we will see, the performance of our algorithm increases with the number of machines for

fixed n, which contrasts with other branch-and-bound algorithms, including the one by Belouadah

and Potts [3]. For this reason, we did not consider instances with more than five machines.

Accordingly, problems with three machines are the hardest to solve for our algorithm, which is

- 17 -
TP 96251

confirmed by our computational experiments. Recall that problems withm = 2 are better directly

solved by dynamic programming than by our algorithm.

We divide these instances into ‘easy’ instances, for which no branching was required, and ‘hard’

instances, for which the branch-and-bound algorithm needed to be invoked. For each combination

of n and m, we report on the number of easy instances out of 20 and the average time to solve

the linear programming problem for them. For the ‘hard’ instances, we report on the maximum

number of nodes in the branch-and-bound tree, the maximum computation time to solve a hard

instance, and the maximum gap between linear programming solution value and optimal solution

value in absolute terms. The maximum percent excess of the optimal solution value over the linear

programming solution was always smaller than 0:05%, and goes unreported. Finally, we report

the number of instances for which the gap is zero.

Tables 1-3 summarize our computational results. The headers of the columns are:

n = number of jobs;

m = number of machines;

NB = number of instances out of 20 for which branching

was not required;

ACT = average computation time in seconds for the ‘easy’

instances;

MNN = maximum number of search tree nodes;

MCT = maximum computation time in seconds for the

‘hard’ instances;

MGAP = maximum gap between optimal solution value and

lower bound;

ILP=LP = number of instances out of 20 for which the optimal

solution value and lower bound concur:

Table 1 displays our results for instances belonging to class (i), which is used by Belouadah and

Potts [3] as well to test the performance of their branch-and-bound algorithm. They report that

their algorithm fails to solve instances within one minute of computation time on a CDC 7600

computer, which is about twice as slow as our machine, if n = 30 and m = 3 or m = 4, and if

n = 20 and m = 5.

First of all, Table 1 shows the quality of the linear programming lower bound: branching is often

not required, particularly for the instances with n � 30, and the lower bound is tight for all 240

instances but 7. Accordingly, if the linear programming solution is not integral, then it is often a

- 18 -
TP 96251

‘easy’ instances ‘hard’ instances

n m NB ACT MNN MCT MGAP ILP=LP

20 3 20 1.13 - - - 20

20 4 17 0.72 4 1.59 3 18

20 5 18 0.45 2 0.53 0 20

30 3 14 8.67 2 20.83 0 20

30 4 11 4.99 2 7.33 0 20

30 5 13 2.90 5 5.13 0 20

40 3 6 55.31 2 73.60 0 20

40 4 9 23.84 12 70.20 3 16

40 5 4 14.60 3 21.17 0 20

50 3 3 243.91 5 425.76 36 19

50 4 3 101.25 7 181.43 0 20

50 5 2 49.73 6 81.89 0 20

Table 1 Results for randomly generated instances.

question of finding an integral solution of the same value; this is an important reason that the rule

stipulated in Theorem 1 is so useful. If branching is required, then we need few nodes only to find

and verify an optimal solution. Table 1 confirms the claim that we made earlier: for fixed n, the

instances grow easier with increasingm. This is plausible: the more machines involved, the fewer

jobs we may expect to appear in the optimal machine schedules, and accordingly the smaller the

relevant solution space will be. Also note that for n = 40 and n = 50 the linear programming

solution is fractional more often than for n � 30, although the corresponding value is about

equally often tight. A likely reason for this phenomenon is that the number of optimal fractional

solutions grows with n and the chances of ‘hitting’ an integral one decreases accordingly.

Since the pricing algorithm requires pseudo-polynomial time, we may expect that the performance

of our algorithm deteriorates with the size of the processing times of the jobs. Table 2 displays

our results for instances belonging to class (ii), where the processing times are drawn from the

uniform distribution [1; 100].

Table 2 indicates that these instances are indeed harder to solve. Not only do we need more time to

solve the linear programs, which is entirely attributable to the pricing algorithm, but also slightly

more search nodes. The extra time effort is modest, however. Note that the maximum gap is

slightly bigger in comparison with Table 1. As a whole, the results remain satisfactory.

- 19 -
TP 96251

‘easy’ instances ‘hard’ instances

n m NB ACT MNN MCT MGAP ILP=LP

20 3 19 2.82 1 2.70 0 20

20 4 20 1.87 - - - 20

20 5 20 1.34 - - - 20

30 3 17 15.87 6 27.17 4 17

30 4 18 9.79 10 18.85 9 19

30 5 18 6.80 14 15.07 10 18

40 3 18 71.74 4 104.30 6 19

40 4 12 36.42 10 72.09 11 14

40 5 15 25.59 18 63.27 8 17

50 3 16 314.33 10 462.47 5 17

50 4 13 131.53 12 259.64 11 15

50 5 13 78.89 18 211.92 18 15

Table 2 Results for instances with large processing times.

Finally, we may also expect that instances with fairly homogeneous ratioswj=pj are hard to solve

as well. After all, if all ratios wj=pj are close to each other, then the number of relevant columns

will be large. This intuition is confirmed by our computational results for the instances belonging

to class (iii).

Indeed, Table 3 shows that the solution to the linear programming problem is seldom integral,

although it is often tight. Apparently, many optimal solutions are fractional. At the same time, it

is more difficult to find an integral solution: we need more search nodes than before. This is quite

plausible: since the ratios wj=pj are close to each other, the position of a job in the final schedule

is not so predetermined, and accordingly our branching rule will be less effective. Note that for

n = 50 and m = 3, there is only a single instance for which the linear programming bound is

tight, which contrasts with the other results.

Finally, we note that our algorithm is able to deal with instances withn > 50 as well, as long as the

number of machines is not too small. Also, but this is a subjective feeling, the column generation

approach gives the idea that solving the parallel machine scheduling problem comes down to

cracking the linear programming relaxation: once you have done that, you only need a small

number of search nodes to find an optimal solution. This would imply that you can really benefit

from faster computers. This is opposite to our experience with most standard branch-and-bound

- 20 -
TP 96251

‘easy’ instances ‘hard’ instances

n m NB ACT MNN MCT MGAP ILP=LP

20 3 13 1.11 2 1.29 0 20

20 4 13 0.74 2 1.07 0 20

20 5 11 0.51 4 0.89 0 20

30 3 4 7.53 9 19.17 0 20

30 4 2 3.54 9 10.69 0 20

30 5 2 3.53 9 6.64 0 20

40 3 0 - 15 170.75 0 20

40 4 2 16.96 17 51.69 0 20

40 5 0 - 20 34.25 0 20

50 3 0 - 32 622.46 41 1

50 4 0 - 40 584.15 1 18

50 5 0 - 56 306.90 2 19

Table 3 Results for instances with homogeneouswj=pj ratios.

algorithms, which may require an enormous number of nodes.

- 21 -
TP 96251

4 Extensions

In this section, we briefly discuss two other types of problems in the class (A) to which the column

generation approach applies:

� problems with additive objective functions for which only a part of the schedule is relevant,

like the weighted number of tardy jobs and total weighted late work;

� parallel machine problems with non-identical machines.

We indicate the major differences with the approach for the P jjPn
j=1 wjCj problem only.

4.1 Complementary objectives

The weighted number of late jobs and total weighted late work are two important objective

functions in which jobs are not penalized as long as they are completed at or before their due

dates. These objective functions are defined as follows. A job is called late if Cj > dj , where dj

is the due date of Jj . The weighted number of late jobs is denoted by
Pn

j=1 wjUj , where Uj = 1

if Jj is late, and Uj = 0 otherwise. Total weighted late work is denoted by
Pn

j=1 wjVj where Vj ,

the late work of Jj , is defined as the portion of work of Jj that is performed after its due date dj .

Accordingly, we have that Vj = minfpj ;maxf0; Cj�djgg. In both cases, the objective functions

are to be minimized.

For either problem, there is an optimal schedule in which each machine first performs the on-time

jobs in order of non-decreasing due dates and then the late jobs in any sequence (Potts and Van

Wassenhove [14]). The late jobs appear thus in the irrelevant part of the schedule, and in fact it

does not matter if, when, and by what machine the late jobs are executed. These problems are

therefore equivalent to maximizing
Pn

j=1 wj(1 � Uj), the weighted number of on-time jobs, and
Pn

j=1 wj(pj � Vj), total weighted on-time work. These problems lend themselves much better

for the column generation approach, since the pricing algorithm needs to focus then only on the

on-time jobs. These complementary problems can then be formulated as maximizing
X
s2S

csxs

subject to

X
s2S

ajsxs � 1; for each j = 1; : : : ; n; (5)

and conditions (1) and (3). Note the sense of condition (5): machine schedules contain on-time

jobs only. The pricing algorithm maximizes the reduced cost, which means that the initialization

- 22 -
TP 96251

of the recursion is different; apart from that, the recursion is essentially the same as the one

described in Section 2.3, but a job will only be included in a machine schedule if it is (partially)

on-time.

4.2 Non-identical machines

If the machines are not identical, then the processing time of Jj onMi is pij , not pj , for each i and

j. Hence, the cost of a machine schedule then depends on the choice of the machine as well, and

we may even have that the priority rule is not equal for all machines. This can be easily overcome

by associating a different set of machine schedules to each machine. Let S(i) denote the set of

feasible machine schedules for machine Mi (i = 1; : : : ; n). We need to adjust the formulation

given in Section 2.2 only slightly to accommodate non-identical machine problems. The problem

is formulated as minimizing
mX
i=1

X
s2S(i)

csxs

subject to

X
s2S(i)

xs = 1; for each i = 1; : : : ; m; (6)

mX
i=1

X
s2S(i)

ajsxs = 1; for each j = 1; : : : ; n; (7)

xs 2 f0; 1g; for each s 2 S(i); i= 1; : : : ; m: (8)

For the pricing algorithm, we need to perform the recursion m times, one time for each machine

separately. Accordingly, the pricing algorithm runs in O(n
Pm

i=1
Pn

j=1 pij) time.

In addition, the partitioning strategy that we proposed in Section 2.4 does not apply in case of non-

identical machines. An effective alternative is available though: simply use a forward partitioning

strategy where jobs are assigned to machines; this partitioning strategy can easily be combined

with column generation.

- 23 -
TP 96251

5 Application to Air Traffic Management

Due to the continuing expansion of air traffic, Air Traffic Management (ATM) is confronted with

increasing problems in the safe and efficient handling of traffic. This causes a growth of delays,

especially during peak hours or bad weather. Improvement of ATM planning can help to make

better use of the existing capacity of the air space and airports and therefore to reduce delays. For

this reason a lot of research is performed on the application of well-known optimization methods

to ATM planning problems, see for example Van Kemenade et al. [18] and Maugis [12].

As ATM planning includes scheduling, the application of optimization methods for scheduling

problems can be very beneficial in the area. In this chapter, we show that the scheduling of arrival

aircraft on runways of an airport is a parallel machine scheduling problem, and we discuss the

application of the column generation approach to this problem.

Consider the runways of an airport as parallel machines. The jobs that have to be processed by

the machines are the aircraft arriving at the airport. Since a landing aircraft causes turbulence, we

have that after the landing of each aircraft it takes some time before the runway is free for the next

aircraft. We consider the lengths of these waiting periods as processing times, and denote by pj

the time until the runway is free after the landing of aircraft j. Now the landing time of an aircraft

corresponds to the start time of a job. Consequently, we denote the landing time of aircraft j by

Sj . Each aircraft has a planned time of arrival. We consider this time as a due date dj , and say

that aircraft j is late if Sj > dj . Note that this notion of lateness differs from the one in Section

4.1. It is not hard to see that with this notion of lateness the problem of minimizing the weighted

number of late jobs, i.e.,
Pn

j=1 wjUj , can be solved in the same way as the problem in Section

4.1, and hence by the column generation algorithm. The weighted number of late, i.e., delayed,

aircraft can hence be minimized with the column generation algorithm.

However, since aircraft approach the airport at different times, we have to deal with release dates,

which complicates the problem. The algorithm can only be applied to groups of aircraft with

approximately the same release date. Consider a group of aircraft that are in the neighbourhood

of their arrival airport, i.e., that are either flying in circles in the holding area or are approaching

the airport. These aircraft can land within a short time from now, i.e., they have approximately

the same release date. For such a group of aircraft, the weighted number of delayed aircraft can

be minimized by the column generation algorithm.

- 24 -
TP 96251

6 Conclusion

Column generation algorithms have been shown to be useful for many intractable combinatorial

optimization problems; see for an overview Barnhart, Johnson, Nemhauser, Savelsbergh, and

Vance [2]. This paper shows that column generation is computationally attractive for parallel

machine scheduling problems as well.

- 25 -
TP 96251

References

1. J.W. BARNES AND J.J. BRENNAN (1977). An improved algorithm for scheduling jobs on

identical machines. AIIE Transactions 9, 25-31.

2. C. BARNHART, E.L. JOHNSON, G.L. NEMHAUSER, M.W.P. SAVELSBERGH, AND P.H. VANCE

(1994). Branch-and-price: column generation for solving huge integer programs, Report

COC-9403, Georgia Institute of Technology, Atlanta.

3. H. BELOUADAH AND C.N. POTTS (1994). Scheduling identical parallel machines to minimize

total weighted completion time. Discrete Applied Mathematics 48, 201-218.

4. J. CARLIER (1987). Scheduling jobs with release dates and tails on identical machines to

minimize the makespan. European Journal of Operational Research 29, 298-306.

5. L.M.A. CHAN, P. KAMINSKY, A. MURIEL, AND D. SIMCHI-LEVI (1995). Machine scheduling,

linear programming and list scheduling heuristics, Working paper, Northwestern University,

Chicago.

6. Z. CHEN AND W.B. POWELL (1995). Solving Parallel Machine Total Weighted Completion

Time Problems by Column Generation, Working paper, Princeton University.

7. W.L. EASTMAN, S. EVAN, AND I.M. ISSACS (1964). Bounds for the optimal scheduling of N

jobs on M processors. Management Science 11, 268-279.

8. S.E. ELMAGHRABY AND S.H. PARK (1974). Scheduling jobs on a number of identical ma-

chines. AIIE Transactions 6, 1-13.

9. R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, AND A.H.G. RINNOOY KAN (1979). Optimiza-

tion and approximation in deterministic sequencing and scheduling: a survey. Annals of

Discrete Mathematics 5, 287-326.

10. A.M.A. HARIRI, C.N. POTTS AND L.N. VAN WASSENHOVE (1995). Single machine scheduling

to minimize total weighted late work. ORSA Journal on Computing 7, 232-242.

11. E.L. LAWLER AND J.M. MOORE (1969). A functional equation and its application to resource

allocation and sequencing problems. Management Science 16, 77-84.

12. L. MAUGIS Mathematical Programming for the Air Traffic Flow Management Problem with

en-route capacity. Technical Report CENA.

13. C.N. POTTS AND L.N. VAN WASSENHOVE (1988). Algorithms for scheduling a single machine

to minimize the weighted number of late jobs. Management Science 34, 843-858.

14. C.N. POTTS AND L.N. VAN WASSENHOVE (1992). Single machine scheduling to minimize

total late work. Operations Research 40, 586-595.

15. M.H. ROTHKOPF (1966). Scheduling independent tasks on parallel processors. Management

Science 12, 437-447.

- 26 -
TP 96251

16. S.C. SARIN, S. AHN, AND A.B. BISHOP (1988). An improved branching scheme for the

branch-and-bound procedure of scheduling n jobs on m parallel machines to minimize total

weighted flowtime. International Journal of Production Research 26, 1183-1191.

17. W.E. SMITH (1956). Various optimizers for single-stage production. Naval Research Logistics

Quarterly 31, 325-333.

18. C.H.M. VAN KEMENADE, C.F.W. HENDRIKS, J.N. KOK, AND H.H. HESSELINK (1995). Evo-

lutionary computation in air traffic control planning. Proceedings of the sixth International

Conference of Genetic Algorithms, 611-616, editor: S. Forrest. Morgan, Kaufmann, San

Francisco, California, also as NLR Technical Publication 94565.

19. S.T. WEBSTER (1992). New bounds for the identical parallel processor weighted flow time

problem. Management Science 38, 124-136.

20. S.T. WEBSTER (1995). Weighted flow time bounds for scheduling identical processors.

European Journal of Operational Research 80, 103-111.

- 27 -
TP 96251

Appendices

A Implementation of the pricing algorithm

In the previous, we took advantage of the property that there is an optimal schedule in which

no machine schedule finishes its last job before time Hmin. Accordingly, we solved the pricing

problem by choosing the machine schedule s with smallest Fn(t) value, where Hmin � t � Hmax.

To satisfy this lower bound on t, we may need to add a job Jj to s, although wjCj(s) � �j > 0

and we are minimizing.

If we ignore the above property, then we know that there is a machine schedule s with minimum

cost in which all jobs Jj have wjCj(s) < �j . We exploit this observation to reduce the empirical

running time of the pricing algorithm. Define ∆j = d�j=wje for each j (j = 1; : : : ; n); we have

that ∆j � 1, since we can discard all jobs Jj with�j = 0. Accordingly, if ∆j � minfHmax; P (j)g,

then equation (4) can be replaced by

Fj(t) =

8<
:

minfFj�1(t); Fj�1(t� pj) + wjt� �jg; for t = 0; : : : ;∆j � 1;

Fj�1(t); for t = ∆j ; : : : ;minfHmax; P (j)g:
Moreover, the optimal solution value is now found as

F � = min
0�t�Hmax

Fn(t):

We like to avoid the explicit computation and storage of all values Fj(t) for t � ∆j , since they are

all the same. On the other hand, the recurrence relation needs the value Fj(t) when computing

Fj+1(t) and Fj+1(t+ pj+1), so we need a procedure to retrieve the proper value of Fj(t) when it

is needed. Note now that for any t � ∆j we have that Fj(t) = Fj�a(j;t)(t), where j�a(j; t) is the

index of the last job before Jj that cannot be discarded from the machine schedule with maximum

value beforehand, that is, a(j; t) is equal to the smallest value such that t � ∆j�a(j;t) � 1. Hence,

we know that we did not exclude Fj�a(j;t)(t) from the computation. In the same fashion, we have

for any t � ∆j+pj that Fj(t�pj) = Fj�b(j;t)(t�pj), where j�b(j; t) is the index of the last job

before Jj that may be included in the machine schedule with maximum value. Therefore, b(j; t)

is the smallest value such that t� pj � ∆j�b(j;t) � 1. Accordingly, the recurrence relation is then

for j = 1; : : : ; n, t = 0; : : : ;minf∆j � 1; P (j); Hmaxg

Fj(t) = minfFj�a(j;t)(t); Fj�b(j;t)(t� pj) + wjt� �jg: (9)

In order to make it work and to gain from this adjustment, we need to establish an efficient

- 28 -
TP 96251

procedure to find the a(j; t) and b(j; t) values for all j and the appropriate times t. Note we must

have a(j; 0) = 1 for any j (j = 1; : : : ; n) and a(j; t) � a(j; t � 1). Hence, when computing

Fj(t) we check first if a(j; t) = a(j; t� 1); if it is not, then we increase the value a(j; t) in steps

of size one until t � ∆j�a(j;t). Accordingly, the computation of a(j; t) requires one check each

time we perform computation (9) plus O(n2) operations altogether to find the values a(j; t) if

a(j; t) 6= a(j; t � 1). We can design a similar procedure to compute the values b(j; t). Hence,

the worst-case running time of the pricing algorithm remains the same. The average running time

has been reduced, however, since we have restricted the range of the state variable t for which the

recursion needs to be performed.

