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ABSTRACT
Aero-structural coupling methods suitable for aeroelastic simulation
involving large time steps are presented. Two methods are introduced and
applied which are based on the extrapolation of the aerodynamic state and
the structural state, both using gradient information from the equations
and from the previous time steps, respectively. A new method is proposed
based on  the prognostication from a time-analysis of the time traces.
Comparison of the methods with existing methods for several two-
dimensional and three-dimensional cases show the supriority of the
current schemes.
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Summary

Aero-structural coupling methods suitable for aeroelastic simulation involving large time steps are

presented. Two methods are introduced and applied which are based on the extrapolation of the

aerodynamic state and the structural state, both using gradient information from the equations and

from the previous time steps, respectively. A new method is proposed based on the prognostication

from a time-analysis of the time traces. Comparison of the methods with existing methods for

several two-dimensional and three-dimensional cases show the superiority of the current schemes.

Keywords Structural Dynamics, Aeroelasticity, CFD, Euler/ Navier-Stokes Equations, Fluid-

Structure Interaction, Coupling Procedure, Time-Analysis
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1 Introduction

Methods for transonic aeroelastic simulation are being developed at the Delft University of

Technology and the National Aerospace Laboratory in a joint research activity. Driven by the

requirement of future industrial applications of these methods, special attention is devoted not

only to a proper modeling of the physics but also to their efficiency and robustness. Consequently,

an important practical aspect is the capability to march accurately at a large time step, thereby

reducing the overall turn-around time. However, this implies that all components of the aeroelastic

simulation methodology should possess a large time step capability.

In the past three years, the research was mainly focused on the development of an efficient

time-accurate aerodynamic method for solving Euler/Thin-Layer Navier-Stokes equations. The

resulting methods were reported in [1] and [2]. It was demonstrated that adequate results can

be obtained using a time step of O(10)
cycle

, even for highly nonlinear flow conditions, involving

significant shock trajectories and partly separated flow. A dynamic mesh algorithm suitable for

large time step simulation which implies also large amplitude motion was also reported in [2].

For the robust transfer of data at the interface between aerodynamic and structural domains, a

volume spline method was introduced in [3]. At present the attention is concentrated mainly on

aero-structural coupling procedures.

The commonly used aero-structural method of [4] based on a simple extrapolation of aerodynamic

forces turned out to be inadequate in the current research unless relatively small time steps are used.

Therefore, an improvement of the coupling method is necessary to benefit from the large time

step allowed by the current aerodynamic methods. Two coupling methods have been studied: an

improved aerodynamic extrapolation method and a structural extrapolation method. Also a third

one is introduced: the prognostic method. The latter is an extension of the structural extrapolation

method and uses results of the time analysis to guess the new states.

In this paper the three coupling methods will be presented in detail. Results obtained for the NACA

64A010 in aeroelastic simulations are discussed. The results for the three-dimensional AGARD

standard aeroelastic case of the 445.6 wing will also be presented to show the straightforward

extension of the methods to more general n-DOF cases. The new methods turn out to improve the

common method.
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2 Aerodynamic Method

The aerodynamic model of the aeroelastic simulation method employs Euler/Thin-Layer Navier-

Stokes equations. This model is suitable for the current study which concentrates on transonic

flow. This section presents a short review of the method. More detailed descriptions of the present

methods may be found in [1] and [2] for two-dimensional and three-dimensional configurations,

respectively.

The governing equations are transformed from the Cartesian physical domain to a uniform com-

putational domain as � = �(x; y; z; t); � = �(x; y; z; t); � = �(x; y; z; t) and � = t to facilitate the

discretization. The conservative form of the Thin-Layer Navier-Stokes equations in a curvilinear

coordinate system reads:

@ bQ
@�

+
@ bE
@�

+
@ bF
@�

+
@ bG
@�

=
@ bGv

@�
; (1)

where bQ = hQ is the conservative variable and ( bE; bF; bG) are the inviscid fluxes in �; �; �

directions. bGv is the viscous term compatible with the thin-layer assumption. Closed with the

equation of state and Fourier law of heat conduction, these equations can be solved for the flow

variables. For turbulent flows the eddy viscosity concept is adopted and the algebraic turbulence

model of Baldwin-Lomax is used to model the turbulent viscosity.

Eq.1 is spatially discretized using a cell-centered finite-volume method. Upwind methodology

employing Roe’s Flux Difference Splitting is applied for the inviscid flux. The viscous flux is

discretized as usual in a central manner. An implicit multi-step method is employed for the

temporal integration. Second or third order accurate backward differences are applied for the time

derivative. The resulting discretized equations are solved using relaxation methods: symmetric

line relaxation for two-dimensional cases and symmetric plane relaxation for three-dimensional

cases. These methods are efficient and accurate for unsteady flow problems as was shown in [1]

and [2].

The mesh deformation is handled using the spring analogy of Batina [5] employing an implicit

method to solve the balance equation. The evaluation of the metrics is consistent with the geometric

conservation law.

The parallelization of the three-dimensional aerodynamic method follows the domain decompo-
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sition approach where each domain is assigned to a processor. Parallel Virtual Machine (PVM

3.3.11) routines are applied for communications among the processors. The parallel version of the

code has been ported to a cluster of workstations and to MPP machines. The mesh is mapped to

the processors in a two-dimensional way without decomposing the mesh in the normal direction.

The effort to perform the parallelization was minor since the code running in each processor is

essentially the serial code. The explicit part of this procedure somewhat slows down the conver-

gence of the relaxation. So far this has not presented serious problems for the small to moderate

number of processors (up to 32) applied in this study. Analysis is underway to asses this matter

further.
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3 Aeroelastic Method

In general the equation of motions for the aeroelastic system can be written as:

M
d2x

dt2
+ C

dx

dt
+Kx = q1SCA(t;x); (2)

where M , C, and K are mass, damping and stiffness matrices, respectively. x represents a vector

of natural coordinates, q1 is the freestream dynamic pressure, S is a reference area and CA is the

aerodynamic force coefficient which is governed by Eq.1. Eq.2 can be brought into a standard

state space form:

Ẋ = AX +BU (3)

A =

2
4 0 I

�M�1K �M�1C

3
5 , B =

2
4 0

q1S

3
5

where X = [x; ẋ]T and U = [CA]. When the aerodynamic forces do not depend on x, a standard

method can be use to solve Eq.3:

Xn+1 = ΦX0 +

Z t(n+1)

0
Φ(t� �)BU(�)d�

� Φ(∆t)Xn + Θ(∆t)Ū; (4)

where Ū is a representative value of U(t) between time level (n) and (n + 1). Calculation

of Φ and Θ can be found in e.g.[2][4]. To take into account the motion-dependent part of the

aerodynamic forces many methods have been developed. Bendiksen [6] solved the aeroelastic

equations in a fully coupled way using an explicit Runge-Kutta method. This is probably the

ideal way according to the physical modeling. The main drawback is the small time step which

has to be taken due to stability limits of the explicit method. This also has repercussions for the

mesh to be regenerated/deformed and subsequently the calculation of metrics. The turn-around

time of this method might be prohibitive for practical problems. An implicit method is rather

difficult to construct since the gradient matrix has an unfavorable form, which might also lead to

ill-conditioning [7]. A more recent method is due to Alonso and Jameson [8] who use an explicit

method to drive a fully implicit method into convergence in each time step. This method needs

mesh updates during the explicit iterations in each time step. This reduces the advantage of this

method. The so-called loosely coupled method, or staggered method, or partitioned method is
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more popular in solving Eq.2 due to the separation of the solution of aerodynamic and structural

equations. The latter method has the advantage that it is suited for most of the methods developed

for the flow and structural parts and in each time step a limited number of meshes have to be

regenerated/deformed (in most cases only one). This is the main reason to employ the method

in the present work. In the method an approximation of the aerodynamic force is constructed

and used to evaluate the nonhomogeneous part of Eq.4. After the approximate position and the

velocity on the surface have been obtained, these are used to enforce boundary conditions to

the flow solver. The commonly used loosely coupled method can be found in [4], where the

aerodynamic force is assumed to be U = U(t). The aerodynamic force at time level (n + 1
2) is

then extrapolated as:

Un+ 1
2 � 3

2
Un � 1

2
Un�1: (5)

This value is used to represent the value of U between time step (n) and (n + 1). As mentioned

previously this method fails to give good results for large time step simulations. Two approaches

have been studied to improve the method:

Aerodynamic extrapolation The aerodynamic force is expressed as: U = U(Q;X) and the

extrapolation to time level (n+ 1
2) is:

Un+ 1
2 � Un + (

@U

@Q

@Q

@t
+
@U

@X

@X

@t
)

∆t
2
: (6)

The @Q=@t and @X=@t are readily available data while @U=@Q and @U=@X have to be

calculated.

Structural extrapolation The reason for this method is the fact that the structural part behaves

smoother than the aerodynamic forces. Thus a better result may be expected from extrapo-

lating the structural state. To obtain the aerodynamic force at time level (n+ 1
2), the state

of the mesh is first approximated as:

Xn+ 1
2 � Xn + Ẋn∆t

2
: (7)

The ẋ in the second term is readily available while the ẍ is approximated simply as (ẋn �
ẋn�1)=∆t. Using this data a mesh is generated and the surface velocity is used to enforce

the boundary condition. Thus the aerodynamic part of the method marches at a time

level between the structural states. This method is more efficient than the first one since all

quantities needed for extrapolation are readily available or can be easily calculated. It should

be noted that a similar method was introduced in [7] for a different reason, namely to satisfy
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the GCL on the fluid-structure interface. It was concluded in [7] that the surface velocities

had to be taken constant from time step (n) otherwise high frequency oscillation would

occur due to violation of the GCL. In the present study, the velocity is linearly extrapolated

from the former time steps. So far high frequency oscillation is not experienced. This may

be explained from the fact that the GCL is satisfied by the aero solver, see [2].

Finally a prognostic method is proposed which is a refinement/generalization of the previous ex-

trapolation methods and might be regarded as a high-order extrapolation using transfer functions1.

In each time step the structural or aerodynamic part is extrapolated to the next time level by:

X(n+ 1
2 ) � P (X;U; tn+

1
2 ) or U (n+ 1

2 ) � P (U;X; tn+
1
2 ):

Here P (#; t) denotes the approximation of the time trace f#n; #n�1:::::::#n�mg at t which should

be obtained by performing one of the analysis methods as presented in [9]. m denotes the number

of retarded time steps in the time domain. It is obvious that as soon as the function P is not

changing anymore the simulation can be stopped since the following time steps will not present

any additional information. In fact this means the time step is virtually infinite.

3.1 Two-Dimensional Method

The motion of an rigid airfoil can be fully represented by two coordinates: (h; �)T , denoting

the heave displacement of the elastic axis and rotation about the elastic axis, respectively. The

formulation can be found in e.g. [1],[4]. Assuming that the h direction is parallel to z direction

and pointing downward, the aerodynamic force coefficients are calculated as:

Ch = � 2
M2
1

Z
pdSz � � 2

M2
1

X
i

pi�̂z;i;

C� = � 2
M2
1

Z
p(r� rEA)� dS

� � 2
M2
1

X
i

pi[(z � zEA)�̂x � (x� xEA)�̂z ]i;

where p is the surface pressure nondimensionalized using �1a
2
1

. To obtain the relation of

aerodynamic forces to the state variables, the coordinate on the surface is written as:

xt = xEA + (x0 � xEA) cos�+ (z0 � zEA) sin�

zt = zEA � (x0 � xEA) sin� + (z0 � zEA) cos� � h=2; (8)

1Results of this method will be presented in a forthcoming publication
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where superscript 0 represent mean steady position. Instead of using Q, p is used directly for the

extrapolation of the aerodynamic forces. The required data for the extrapolation are:

@Ch

@p

@p

@t
=

@Ch

@t

����
h;�

= � 2
M2
1

X
i

@pi
@t

�̂z;i;

@Ch

@�
= � 2

M2
1

X
i

pi(��̂0
z sin�� �̂0

x cos�)i;

@Ch

@h
=

@Ch

@ḣ
=
@Ch

@�̇
= 0:

The gradient of the moment C� is calculated in a similar manner except:

@C�

@p

@p

@t
=

@C�

@t

����
h;�

= � 2
M2
1

X
i

@pi
@t

[(z � zEA)�̂x � (x� xEA)�̂z ]i;

@C�

@�
= � 2

M2
1

X
i

pi[(z � zEA)
@�̂x
@�

+
@z

@�
�̂x�(x� xEA)

@�̂z
@�

� @x

@�
�̂z]i;

@C�

@h
=

@C�

@ḣ
=
@C�

@�̇
= 0:

@�̂x=@�; @�̂z=@�; @x=@� and @z=@� can be easily calculated from Eq.8. Inserting these formula

in Eq.6 the aerodynamic forces can then be predicted using X and ṗ data.

3.2 Three-Dimensional Method

The structural part in the three-dimensional method is represented by a finite number of approxi-

mate modes. These modes are obtained from equation:

M
d2x

dt2
+Kx = 0;

which is solved using a finite element package to obtain the mode shapes �i and eigenfrequencies

!i. The resulting mode shapes are normalized w.r.t. the mass matrix. Substitution of:

x = �q, �TM� = I , �TK� = !i,

results in an independent set of equations (neglecting the stuctural damping):

d2qi
dt2

+ !2
i qi = q1SQi; i = 1::N;

where Qi is the nondimensional generalized force defined as:

Qi =
1
S

Z
S

p�dS:
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N represents a limited number of modes which are employed in the computation. Most of the

time N is much smaller than the number of degrees of freedom employed in the finite element

calculation. In the present work only the z displacement of the mode shape � is used since in

practice the displacement in the other directions are usually very small. This leaves the calculation

of the generalized forces independent from the generalized coordinates implying that the present

aerodynamic extrapolation method is equal to the original method of [4]. Thus for the three-

dimensional case only the structural extrapolation method is considered. The CPU time used for

the calculation of the structural part is small compared to the one for the aerodynamic part. This is

mainly due to the relatively small number of DOF’s taken for the analysis. In the present version

of the method, the calculation of the structural part is carried out in the coordinating processor.
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4 Results

The applicability range of the method is directed to two-dimensional and three-dimensional cases.

In the present paper only results employing Euler equations are considered, since from accuracy

reasons these allow the largest time steps to be taken. The examples in this paper focus on

aeroelastic applications in 2-D and 3-D and demonstrate the status of the CAS method.

4.1 Two-dimensional

The well-known Isogai case A [10] is considered for the two-dimensional test case. The structural

parameters are a=-2.00, x�=1.80, r2
�=3.48 �=60.00 and the ratio of the uncoupled frequency

!h=!�=1.00. The flutter boundaries of this case using the present method, compared to some

other methods, have already been shown in [1]. The result presented here will concentrate on

the large time step aspect of the method. A mesh consisting of 140�32 points was applied. The

simulation is started from a steady condition with an initial ẋ. The small time step simulation uses
32 time steps

cycle
of the uncoupled mode while the large time step simulation applies 8 time steps

cycle
.

Two cases are considered, the first one is a supercritical condition at M1=0.775 with V � =

U1=(!�b
p
�)=1.00 and the second one is a subcritical condition at M1=0.80 with V �=0.53.

Applying the small time step for the supercritical case, the common aerodynamic extrapolation

of [4], the present aerodynamic extrapolation and the present structural extrapolation methods

converge to the same results.

The comparison of simulation results using small and large time steps are presented in Fig. 1–3.

Fig. 1 reveals clearly the inadequacy of the common method for large time step simulations. On

the other hand the results of the present aerodynamic extrapolation method, depicted in Fig. 2,

show a good agreement with the small time step simulations. Fig. 3 shows that similar good

comparisons are obtained using the structural extrapolation method. After analyzing the time

traces using the fitting method of [9], a more obvious comparison can be observed:

method �̄ V � CPU (mins) time step

present aerodynamic 0.00616 0.942 46 small ( 32

cycle
)

present aerodynamic 0.00617 0.942 15 large ( 8

cycle
)

present structural 0.00679 0.938 15 large ( 8

cycle
)

classical 0.01270 0.911 15 large ( 8

cycle
)

where �̄ is the damping decay coefficient. Note that the classical method eventually produces
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flutter speed which is about 5% lower than the rest.

The simulations using small time step needed 46 minutes of CPU time on a SGI R8000 workstation,

while large time step simulations needed 15 minutes, which is a significant saving of turn-around

time. It should be noted that although the time step is four times larger, the speed-up of the large

time step simulation is less than four because more subiterations are required per time step.

A similar exercise has been performed for the subcritical case where a strong shock wave is present.

The results are shown in Fig. 4–6. Similar observations can be made as for the supercritical

example. At the large time step the current methods are superior to the common aerodynamic

extrapolation method of [4] ,although the latter performs much better in this case. A more detail

comparison after analysis of the time traces is:

method � V � CPU (mins) time step

present aerodynamic -0.00167 0.541 46 small ( 32

cycle
)

present aerodynamic -0.00167 0.541 15 large ( 8

cycle
)

present structural -0.00146 0.540 15 large ( 8

cycle
)

classical +0.00172 0.528 15 large ( 8

cycle
)

Note that the classical method produces unstable result while the rest produce stable ones.

4.2 Three-dimensional

The well-known three-dimensional AGARD standard aeroelastic configuration is considered. This

configuration is described in [11]. The configuration for dynamic response I wing 445.6 model

weakened no.3 is selected. The grid applied for this calculation consists of 121�29�24 mesh

points. The case at M1=0.96 with � = 225:820 is considered. It should be noted that this value

of � is only consistent at the experimental flutter point which was obtained at V �=0.3076. In the

present calculation it is used for the whole simulation. To show the applicability of the present

aerodynamic method for large time step simulations a forced vibration case is first considered.

The second mode of 445.6 wing is excited in a sinusoidal motion with reduced frequency k=0.10,

based on root semi-chord, and an amplitude of 0.005. Fig. 7 shows the response of the first

two vibration modes using a small time step ( 48

cycle
) and a large time step ( 10

cycle
). No significant

differences have been found . The CPU time for the small time step simulation is about 120

minutes/cycle using one processor of the CRAY J90 or 20 minutes/cycle, using a cluster of 4 SUN

ULTRA SPARC workstations. The large time step simulation on the CRAY and the SUN takes

about 60 and 12.5 minutes/cycle, respectively. Next the validation of the structural extrapolation

method is presented. For this purpose the first 2 vibration modes are used, namely the first bending
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and first torsion modes. These modes are primarily involved in the flutter mechanism [12]. To

cross-check the methods, simulations with the aerodynamic extrapolation method of [4] and the

present structural extrapolation method were applied using a small time step ( 48

cycle
) of the second

mode. The results of both methods showed an excellent agreement.

For the large time step simulation 8steps
cycle

of the second mode is employed. The comparison of the

results for the aerodynamic extrapolation method of [4] is shown in Fig. 8. As already noted for

the two-dimensional case the method is not adequate for large time step simulations. The results

obtained with the current structural extrapolation method at the large time step show in general a

good agreement with the results obtained with the of small time step simulation. The comparison

of the value of damping decay coefficients is:

method �̄ CPU (mins) time step

present structural 0.0040 40 small ( 48

cycle
)

present structural 0.0042 25 large ( 8

cycle
)

classical 0.0102 25 large ( 8

cycle
)

Finally the present structural extrapolation method is employed for a simulation involving 4

vibration modes. The time step is set at 8

cycle
of the highest modes. Three runs were made at

V �=0.253, V �=0.266 and V �=0.293. The time response of the first 2 modes is depicted in Fig. 10.

The flutter speed index is calculated from the interpolation of damping data. The comparison with

data available from other references is shown in the table below:

Method V �

Experiment [11] 0.3076

CFL3D (EE-NS) [12] 0.256-0.287

AESIM (FP) [13] 0.303

Present (EE) 0.279

Is should be noted that the result of CFL3D was estimated from [12]. The CPU time for each

simulation is about 18 minutes/cycle on a cluster of 4 SUN ULTRA SPARC workstations.

4.3 Work in progress

The present method has been applied to a more realistic configuration for aerospace applications.

Fig. 11 shows a mesh with about 200,000 points around a fighter-type configuration. The inlet

of the engine has been smoothed. The case considered is a transonic condition at M1=0.92 and

�mean=6.00. All results were obtained using the Euler mode. Fig. 12 shows the pressure contour

on the surface of the aircraft.
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The comparison of the pressure on the upper surface of the wing between the present result and the

experimental data is presented in Fig. 13. The overall agreement is good except at the shock and

tip region. The latter may be explained by the fact that the experimental result was obtained using

a wind tunnel model having a tip-launcher, while the present calculation was carried out without

one. The shock which is too strong may be improved by using the Navier-Stokes equations.

An unsteady case is considered which is a torsion mode oscillation with an amplitude of

�amp=0.50. Fig. 14 and Fig. 15 show the real and imaginary part of of the pressure on the

upper surface of the wing compared to the experimental results obtained in the NLR High Speed

Tunnel. Two runs were made employing small and large time steps on a SUN MP using 6 proces-

sors out of maximum 8. The small time step ( 64

cycle
) required 3 hours/cycle of wall-clock time and

the large time step ( 8

cycle
) required 25 minutes/cycle of wall-clock time. In general the small time

step results as well as the large time step results show a good agreement with the experimental

data.
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5 Concluding Remarks

In this paper the status of the TU Delft system for aeroelastic simulation has been presented and

demonstrated.

Attention has been given to simple and fast fluid structure coupling procedures. The procedures

are based on the extrapolation of the aerodynamic state, the structural state and/or both using

gradient information from the equations, from the previous time steps or from the prognostics

obtained from a time-analysis of the time traces.

The parallelization of the three-dimensional aerodynamic solver has been described.

The two-dimensional and three-dimensional applications have led to the following observa-

tions:

� Accurate results can be obtained with time steps as large as 8

cycle
.

� Flutter boundaries can be obtained in acceptable turn-around times on a cluster of current

workstations.

� Flutter boundaries compare fairly well with data provided by other methods and the experiment.

� A significant computer cost reduction of more than 60% is obtained by the embedding of the

current extrapolation schemes which allow for the large time step simulations.

Finally it can be concluded that the affordability of the present method is increased.
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Fig. 1 Comparison of time responses between small ( 32

cycle
) and large ( 8

cycle
) time steps simu-

lation for extrapolation method of [4], Isogai case A at M1=0.775
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Fig. 2 Comparison of time responses between small ( 32

cycle
) and large ( 8

cycle
) time steps simula-

tion for the present aerodynamic extrapolation method, Isogai case A at M1=0.775
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Fig. 3 Comparison of time responses between small ( 32

cycle
) and large ( 8

cycle
) time steps simula-

tion for the present structural extrapolation method, Isogai case A at M1=0.775
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Fig. 4 Comparison of time responses between small ( 32

cycle
) and large ( 8

cycle
) time steps simula-

tion for aerodynamic extrapolation method of [4], Isogai case A at M1=0.85
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Fig. 5 Comparison of time responses between small ( 32

cycle
) and large ( 8

cycle
) time steps simula-

tion for the present aerodynamic extrapolation method, Isogai case A at M1=0.85
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Fig. 6 Comparison of time responses between small ( 32

cycle
) and large ( 8

cycle
) time steps simula-

tion for the present structural extrapolation method, Isogai case A at M1=0.85
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Fig. 7 Comparison of forced vibration case of 445.6 wing at M1=0.96 between small ( 48

cycle
)

and large ( 10

cycle
) time steps runs
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Fig. 8 Comparison of time responses between small ( 48

cycle
) and large ( 8

cycle
) time steps simula-

tion for aerodynamic extrapolation method of [4], 445.6 wing at M1=0.96
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Fig. 9 Comparison of time responses between small ( 48

cycle
) and large ( 8

cycle
) time steps simula-

tion for the present structural extrapolation method, 445.6 wing at M1=0.96
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Fig. 10 Time responses of the first two modes of 445.6 wing atM1=0.96 for three speed indices
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Fig. 11 Mono-block HO topology mesh around wing-body-tail fighter type configuration, number

of points �200,000.
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Fig. 12 Steady pressure contour on fighter type configuration at M1 =0.92, � =6.00
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Fig. 13 Comparison of experimental and calculated mean steady pressure distributions on wing

of fighter type configuration at M1 =0.92, � =6.00, �amp =0.50
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Fig. 14 Comparison of real part of experimental and calculated first harmonic pressure distribu-

tions on wing of fighter type configuration at M1 =0.92, � =6.00, �amp =0.50
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Fig. 15 Comparison of imaginary part of experimental and calculated first harmonic pressure

distributions on wing of fighter type configuration at M1 =0.92, � =6.00, �amp =0.50


