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Abstract

This paper develops a mathematical model for cognitive performance of a tactical air traffic

controller in an en-route air traffic context. The aim of this model-based approach is to enable

the evaluation of both accident risk and aspects like cognitive workload and effectiveness in

managing air traffic safely. Use is made of human error modelling, Hollnagel’s cognitive mode

model and Wicken’s Multiple Resources model. The paper describes how these psychological

sub-models are combined into a single model of controller cognitive performance, and how the

interaction of these human sub-models with the technical sub-systems is brought into account.

The approach is applied to evaluate safe spacing for a conventional air traffic control example.

The evaluation includes a bias and uncertainty assessment, and a safety criticality analysis.
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1 Introduction

1.1 Safety based air traffic management design

Over decades, the aviation industry has been able to compensate the increase in traffic with a

decrease in accident risk per flight hour. In view of the rapid growth of air traffic and the

technological and organisational complexity of it, this has been a major accomplishment.

Unfortunately, the point has been reached where it is unclear how to continue such

compensation. The reason is that in the past the decrease in risk per flight hour has come in

large part from technology driven improvements of safety. The effect of this technology-driven

approach is shown through the accident statistics; they reveal that the relative share of human

related causes is some eighty percent. This means that the historical air traffic safety

compensation process can be continued if one learns to understand how the human and

procedure related accident risk could be mitigated. This should be accomplished by learning the

principles behind human related accident risk in aviation.

If we try to understand these principles on the basis of an evaluation of incidents and accidents

alone, then several difficulties arise. The number of incidents and accidents is limited, while the

situations that caused them are quite complex (e.g. Rodgers et al., 1998). Moreover a

retrospective learning approach does not work for advanced air traffic management concepts.

By now there is a broad consensus that appropriate prospective safety models are needed to

assess accident risk in relation to separation criteria and near-misses (Cohen and Hockayday,

1998) with the aim to optimise advanced air traffic operations (Haraldsdottir et al., 2001; Odoni

et al., 1997; Wickens et al., 1998).

1.2 Air traffic safety modelling

In air traffic there are various human operators: a crew in each aircraft and ground sector air

traffic controllers, who all have an active role in maintaining air traffic safety. In comparison

with other safety critical operations the safety of air traffic is by its very nature highly

distributed. This is depicted in Figure 1. Because of the distributed control nature of air traffic,

established techniques fall short in performing accident risk assessment. Blom et al. (2001a)

addressed this problem by developing a stochastic analysis based methodology that takes an

integral approach towards accident risk assessment for air traffic. It has also been studied how

this approach effectively supports safety management and the building of modern Safety Cases

for advanced operations in air traffic (Blom et al., 1999).

1.3 Human performance modelling

A crucial issue in air traffic safety evaluation is how the human factor is incorporated into the

risk model. Hence there is a clear need for a modelling approach to assess and understand
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accident risk in relation to the performance of the human operators involved. This means that

appropriate human performance models are required that describe human responsibility and

cognitive principles up to the level of accident risk. This paper aims to present the developments

of such a human cognition performance model for a tactical controller within the context of

conventional en-route Air Traffic Control (ATC). This development is based on the following

three complementary psychological models:

•  Multiple Resources Model (Wickens, 1992)

•  Human Error Modelling (e.g. Kirwan, 1994)

•  Contextual Control Mode Model (Hollnagel, 1993)

The first two of these three psychological models are well known in aviation (e.g. AGARD,

1998; Corker, 2000; Isaac and Ruitenberg, 1999; Kilner et al., 1997). The development of

Hollnagel’s control mode model for controller cognitive performance and air traffic safety is

novel.

Figure 1 Potential fatalities and level of distributed interactions of air traffic and other safety
critical activities.

At present, the view on human reliability has shifted from a context-free error centred approach,

in which unreliability is modelled as failures of human information processing, towards a



-7-

NLR-TP-2002-690

contextual perspective in which human actions are the product of human internal states,

strategies and the environment (Amalberti and Wioland, 1997; Hollnagel, 1993; Bainbridge,

1993). From this viewpoint, safety critical human actions should be modelled in their relation to

the other activities of the operator and the environment. Thus for a proper description of human

reliability it is necessary to include the cognitive processes that underlie the operator actions. As

a result, one obtains a comprehensive model of the operator performing his job.

1.4 Organisation of this paper

This paper is organised as follows. The following section provides the background of

psychological models used to model an air traffic controller. In the next section this

mathematical model is integrated with the other air traffic systems. This integrated model is

then used to assess an operational concept on controller performance and accident risk. Next, a

bias and uncertainty assessment is performed. In the final section we discuss the results

obtained.

2 Psychological modelling

The aim of this section is to show how the complementary psychological models are used to

develop a mathematical model of a tactical controller performing his job at a high (cognitive)

level in an en-route ATC environment.

2.1 Decomposition of the Controller’s task

The controller's task is decomposed into several subtasks. This decomposition has been carried

out along two dimensions: first a generic dimension, where the task is decomposed into

cognitive activities at a general level which is independent from the scenario and operational

concept. Secondly, the task is decomposed according to a scenario/concept specific dimension,

where the controller task is described at the level of operational functions in the scenario.

A task decomposition along the generic dimension originates in the work of Jackson (1989).

Subsequently, Buck et al. (1996) merged this with other task analyses (Ammerman et al., 1987;

Cox, 1994; EATCHIP, 1996; Endsley and Rodgers, 1994). The following subtasks resulted:

1. Sensing Gathering all information which is needed to get an overview over the air traffic

situation.

2. Integration Connecting the gathered information thus forming a more global air traffic

picture.

3. Prediction Using the global picture to anticipate future situations and events.

4. Complementary communication Passing the information to aircraft in order to improve the

pilots understanding of the situation.
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5. ATC problem solving and planning Using the understanding gained from the more global

perspective to plan and prioritise aircraft actions.

6. Executive action Communicating information and priorities as instructions to the aircraft in

the system.

7. Rule monitoring Ensuring that the active components of the system behave in accordance

with the ‘rules’; monitoring and taking corrective actions for exceptions.

8. Co-ordination Co-ordinating laterally with other parts of the ATC organisation).

9. Overall performance Ensuring that the objectives of the operation are achieved, and that the

infrastructure functions correctly.

10. Maintenance and monitoring of non-human part Ensuring that all systems supporting the

controller work correctly.

Secondly, following Daams et al. (2000), subtasks are also defined along the en-route ATC

specific dimensions, where attention is focused on safety critical actions in the definition of the

subtasks. This leads to the identification of three en-route context specific tasks:

A. Anticipate for aircraft deviating from intentions.

B. React to Automation alerts.

C. Perform other control activities.

Next, we identified the task overlap across the dimensions in Table 1. This leads to 19

combinations across the dimensions, and thus a decomposition into 19 combined controller

subtasks.

Table 1 Task overlap across the generic cognitive activities and the en-route ATC specific tasks

A

Anticipate

B

Alerts

C

Others

1. Sensing X X

2. Integration X X

3. Prediction X X

4. Complementary comm. X

5. Problem solving /planning X X X

6. Executive action X X X

7. Rule monitoring X X X

8. Co-ordination X

9. Overall performance X

10. Maintenance X
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2.2 Hollnagel’s control modes

Hollnagel (1993) developed an approach that is complementary to task modelling. It focuses on

different control modes of the human operator’s cognition, which reflect different control

strategies in operator behaviour.

The specific four control modes that are described by Hollnagel (1993) characterise in more

detail regions of the continuum of control and can be specified as follows:

Scrambled Scrambled control denotes the case where the choice of the next action is

completely unpredictable or random. The scrambled control mode includes the extreme

situation of zero control.

Opportunistic Opportunistic control corresponds to the case when the next action is chosen

from the current context alone, and mainly based on salient features rather than on more durable

intentions or goals. It is opportunistic in the sense that the operator takes a chance, not because

he is deliberately exploring an alternative, but because there is no time or possibility to do

anything better.

Tactical Tactical control is characteristic for situations where the operator’s performance is

based on some kind of planning. Hence, the operator more or less follows a known procedure or

rule. The planning is limited of scope and/or limited of range, and the needs taken into account

may sometimes be ad hoc.

Strategic Strategic control means that the operator is considering the global context, i.e.

using a wider event-horizon and looking ahead at higher level goals: either those which have

been suspended and have to be resumed or those which, according to experience and

expectations, may appear in the near future. This mode should provide a more efficient and

robust performance.

To model the influence of the context on performance, we follow Daams et al. (2000) and

incorporate two control modes: tactical control and opportunistic control. Table 2 describes the

characteristic influence of these control modes on the performance of the category A subtasks.

These characterizations appeared to be easily available from air traffic controllers. For the

category B subtasks a similar characterization applies. For category C subtasks it suffices to

describe differences in tactical and opportunistic control mode only at a general level. Table 2

illustrates that the quality of performing a subtask may vary significantly with the cognitive

control mode of the controller.
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Table 2 Control mode characteristics of subtasks related to anticipation

A1 Sensing

Tactical: Whenever possible the controller scans his display to detect possible

deviations from ATC intentions. The controller partitions the display into regions of

interest and assesses these regions in a particular order. If scanning is interrupted at

some time instant, the controller will resume scanning starting at the region that he was

scanning when the interruption took place. Further information may also be obtained

through R/T communication.

Opportunistic: Whenever possible the controller scans his display to detect possible

deviations. The controller scans in a random fashion.

A2 Integration

Tactical: The controller systematically integrates the information derived from

scanning to improve his mental picture of the traffic situation. When some relevant

information is not available, the controller may return to sensing to actively seek

information to improve his assessment of the situation.

Opportunistic: The controller integrates the randomly obtained information. An

incomplete or even distorted mental picture may develop.

A3 Prediction

Tactical: The controller extrapolates his mental picture to the future traffic situation.

On the basis of the assessment of the situation, the controller decides whether a

problem may occur in the mid-term future.

Opportunistic: The assessment of the future situation is restricted to a short time

horizon and is based on incomplete information. It is assessed whether a problem may

be expected in the short-term future.

A5 Problem solving/planning

Tactical: On the basis of the assessment of the (future) situation, the controller decides

a resolution to the expected problem. In principle, the resolution involves replanning

the aircraft trajectories in an optimal fashion with respect to safety, efficiency.

Opportunistic: The resolution is aimed at solving the imminent problem only.

A6 Executive action

Tactical: The controller gives a series of R/T instructions to the aircraft involved. He

verifies whether the pilot(s) readback these instructions correctly.

Opportunistic: The verification of correct readback may be omitted.

A7 Rule monitoring

Tactical: After the R/T communication the controller verifies whether the aircraft

comply to his clearances.

Opportunistic: This verification may be omitted or be performed less thoroughly.
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2.3 Aggregation of subtasks

Next the 19 subtasks are grouped into a smaller number of clusters. The adopted clusters are

given in Table 3. The rationale for this clustering is as follows. Subtasks of category A and B

are grouped when they are nominally performed in a sequence (A1-A3), (A5-A7), (B5-B7).

Each safety relevant subtask of category C forms its own cluster, while the other category C

subtasks are grouped in the cluster Miscellaneous.

Table 3 Clustering of the subtasks

Cluster Initial subtasks

MonitoringA A1-A3

CommunicationA A5-A7

CommunicationB B5-B7

Complementary CommunicationC C4

CommunicationC C6

Co-ordinationC C8

MiscellaneousC C1-C3, C5, C7, C9, C10

Next, based on knowledge of Wickens’ Multiple Resources model for controllers, we identified

how task scheduling at the level of clusters of subtasks takes place. First, concurrent performance

of the initial subtasks has been used to identify the concurrency for the subtask clusters. This is

done conservatively using the principle that if one combination of the clustered subtasks cannot

be performed concurrently, then the whole cluster of subtasks cannot be performed concurrently.

Application of this principle yields concurrency for two clusters only: Miscellaneous and

Monitoring. In a similar fashion, Table 4 for the pre-emption between clusters of subtasks has

been identified. First this was done for the initial subtasks and was based on knowledge of the

Multiple Resources Model for controllers. Subsequently the following pre-emption rule was

applied: if any subtask in some cluster X pre-empts all subtasks in some cluster Y, then cluster

X pre-empts cluster Y. Otherwise, cluster X does not pre-empt Y.

Table 4 Pre-emption between clusters

MonA ComA ComB CpCC ComC CoorC MiscC

MonA N N N N N N

ComA ComA N ComA ComA ComA ComA

ComB ComB ComB ComB ComB ComB ComB

CpCC CpCC N N N N CpCC

ComC ComC N N ComC ComC ComC

CoorC CoorC N N CoorC N CoorC

MiscC N N N N N N
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The pre-emption table should be read as follows. Consider subtasks ComB and ComA in Table 4.

In the column corresponding to ComA, we see that ComB pre-empts ComA. Thus if ComA is

carried out and ComB is initiated, execution of ComA will stop and ComB will be performed

first. In terms of a stack of to-be-performed subtasks this scheduling principle can be formulated

generically as the following two rules.

Rule 1: An initiated subtask will be placed in the execution stack before the subtasks that it

may pre-empt.

Rule 2: If the first two subtasks of the execution stack can be processed concurrently, this will

be done (subtask duration will be slightly longer, however).

Following Table 4 the cluster MiscellaneousC does not pre-empt any other cluster and is pre-

empted by all other clusters, except MonitoringA. Furthermore, since MonitoringA and

MiscellaneousC can be performed concurrently, we conclude that performance of the subtasks in

the cluster MiscellaneousC does not conflict with other subtasks at cluster level. Since the

cluster MiscellaneousC itself does not contain subtasks that are directly relevant for safe

separation, we can therefore discard this cluster in the model without compromising

conservativeness. Altogether Table 4 implies that the remaining pre-emption rules boil down to

a fixed priority list where MonitoringA has lowest and CommunicationB has highest priority. At

the level of clustered tasks, the complexity of the scheduling principle is reduced significantly,

without compromising conservativeness. In summary, we accomplished a reduction from 19

subtasks to six clusters of subtasks, the concurrent task performance is simplified into single

task performance, and pre-emption rules for each combination of subtasks are simplified into a

fixed priority list (see table 5).

Table 5 Six main cognitive tasks

Task Priority Description

MonitoringA 6 Visual anticipation and detection of deviations from the

controller intention

CommunicationA 2 Communicate clearance with aircraft that was detected

visually to deviate severely from controller intention

CommunicationB 1 Communicate clearance with aircraft for which an

Automation alert was issued

Complementary

communicationC

5 General complementary communication with pilots

CommunicationC 3 General communication of executive action (i.e.

clearances)

Co-ordinationC 4 General co-ordination with planner controller,

controllers of other sectors.
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3 Integration with air traffic systems

In this section we illustrate how the controller model developed in the second section is

integrated with the other elements of an air traffic example.

3.1 Hypothetical ATC example

We consider an hypothetical ATC example within an en-route sector that consists of two

streams of air traffic, flying in opposite direction, at a single flight level. This example has been

developed by Eurocontrol with the aim to learn understanding how ATC influences accident

risk, and how far the nominal spacing S between opposite RNP1 traffic streams can safely be

reduced. The specific details of this example are:

•  Straight route, with two opposite traffic lanes ( Figure 2 shows top view)

•  Air traffic controller (ATCo) allowed minimum separation between aircraft is 5 NM and

distance between the two traffic lanes is S

•  ATCo expects aircraft to stay on these lanes

•  Traffic flows along each lane at one flight level only, with 3.6 aircraft/hour per lane and 15

aircraft per controller

•  All aircraft nominally perform RNP1

•  None of the aircraft are TCAS equipped

•  No military aircraft.

S

Figure 2 Opposite direction traffic lanes at one flight level

This traffic scenario is considered for a conventional ATC concept of routine monitoring-based

control of traffic (Figure 3). There is radar-based surveillance and radio communication, but no

automation support tools. Aircraft deviations are identified through routine monitoring by the

controller.

3.2 Errors in flightplans and intentions

An important safety issue is that for one single aircraft there may be all kind of differences

between the flight’s intentions on the ground and in the air, and the controller and pilot

awareness of those intentions, i.e.:
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•  Controller’s awareness of the flight’s intentions

•  Flightplan in the ATC system

•  Pilot’s awareness of the flight’s intentions

•  Flightplan used by the FMS

Pilot skill
Aircraft

evolution

Communication

local

Communication

global

ATCo skill ATCo

Flight plan

ATC

Surveillance ATC system

Navigation

ground

Maintainance

ground

Navigation

aircraft

Maintainance

aircraft

Flight plan

aircraft
Weather

Pilot
Aircraft

system

Figure 3 Functions in conventional ATC.

To allow for these differences the following mathematical modelling approach is adopted:

Controller The tactical controller’s awareness of the flight’s intentions is assumed to be

ATC’s true reference. The quality of ATC’s true reference is in one of the following two

discrete modes: i) the true reference provides separation, ii) the true reference does not provide

separation. In general the latter mode value may be reached if a controller has made a

knowledge-based error.
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ATC The quality of the flightplan in the ATC system may be in one of the following two discrete

modes: i) agrees with ATC’s true reference, ii) differs from ATC’s true reference. The latter is due

to a controller input error, or an ATC database error.

Pilot The quality of the pilot’s awareness of ATC’s true reference is in one of the following

two discrete modes: i) agrees with ATC’s true reference, ii) differs from ATC’s true reference.

The latter may happen due to a clearance error. There are two types of clearance errors: 1)

intended clearance given to wrong aircraft or 2) wrong clearance given to intended aircraft. The

cause may be with the controller, or the pilot or both, and may be knowledge-based, rule-based

or skill-based.

FMS The quality of the flightplan used in the FMS is in one of the following two discrete

modes: i) agrees with ATC’s true reference, ii) differs from ATC’s true reference. The latter

happens if pilot awareness differs from ATC’s true reference or is due to a pilot input error or an

FMS database error.

In elaborating the above it is assumed that all the controller related errors may occur at random

during performance of subtasks A6, B6 or C6, (executive action) where the frequency of

occurrence depends on the control mode the controller is in. Furthermore, such errors may be

detected and corrected during rule monitoring subtasks A7, B7 or C7, which also depends on

the control mode (e.g. Amalberti and Wioland, 1997).

3.3 Petri net model of the ATC example

To integrate in a systematic way the elements of the air traffic en-route concept shown in Figure

3, including the six main controller cognitive tasks identified in the second section, we use a

dedicated Dynamically Coloured Petri Net (DCPN) specification formalism. A DCPN is a

general formalism to represent a dynamical stochastic system with discrete and continuous-

valued states (Everdij and Blom, 2000). For the ATC example considered in this paper the

DCPN instantiation is specified in Stroeve et al. (2002).

As a part of the complete DCPN, the Petri Net describing the discrete modes for the controller

model is given in Figure 4. In this Petri Net the six main cognitive tasks of Table 5 are

represented. For each task, we assume a relative priority ranking, an average duration under the

opportunistic and tactical control modes and the percentage of his time that the operator would

spend on the task if uninterrupted. The controller performs these tasks one at a time, according

to the given priorities. Task scheduling is kept straightforward: high priority tasks are performed

first, possibly interrupting a low priority task. Furthermore, Figure 4 shows the two cognitive

control modes of the air traffic controller: Tactical and Opportunistic. The switching between

the control modes depends on the subjectively available time (measured as the number of tasks
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waiting to be performed) and the outcome of previous actions (measured as the number of

recent corrective actions, i.e. CommunicationA and CommunicationB). If subjectively the

available time is short or if the outcome of previous actions is poor then the controller switches

to the Opportunistic control mode. Controller erroneous clearances are taken into account as

follows: the controller may give a different clearance than intended (e.g. switching heading and

speed), or may give the clearance to a different aircraft than intended (call-signs mixed up).

These errors are incorporated as random variations in the controller actions. The error types are

represented in the place Clearances.
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Figure 4 Petri Net of reduced controller model. A circle denotes a discrete state (e.g., the
performance of a task) and a square denotes a transition between discrete states.

The switching between the states in the controller model is influenced by several functional

entities in air traffic indicated in Figure 3, such as Aircraft evolution, Surveillance, ATC system,

R/T local, R/T global, Pilot Performance. Surveillance output (i.e. the estimated aircraft state) is

input for the visual detection of severe deviations by the controller. The ATC system must be

Working for the controller to be able to do his job. The R/T entities and Pilot entity together form

the Decision Making loop (DM-loop). If none of the entities in the DM-loop is Down or Inactive

for a given aircraft, then the controller is able to give a clearance to that aircraft. Properly

integrated, these entities together represent the air traffic control concept discussed at the

beginning of this section. Once having developed this DCPN instantiation, it is possible to both

implement and run a Monte Carlo simulation and combine this with stochastic analysis based

collision risk evaluation for this model (Blom et al., 2001b).

waiting to be performed) and the outcome of previous actions (measured as the number of

recent corrective actions, i.e. CommunicationA and CommunicationB). If subjectively the

available time is short or if the outcome of previous actions is poor then the controller switches

to the Opportunistic control mode. Controller erroneous clearances are taken into account as

follows: the controller may give a different clearance than intended (e.g. switching heading and

speed), or may give the clearance to a different aircraft than intended (call-signs mixed up).

These errors are incorporated as random variations in the controller actions. The error types are

represented in the place Clearances.
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4 Model based results

Based on the mathematical model we ran Monte Carlo simulations in order to assess controller

reaction times, controller cognitive performance and accident risk for the model.

4.1 Controller reaction times

For the controller routine monitoring concept we evaluated the period used to detect severe

deviations so that a comparison with available statistical data was possible (George et al., 1973).

Comparison, in Figure 5, with the model based results shows that the detection time results of

both the original and the reduced controller model agree quite well with the measured data. It

should be noticed that George et al. (1973) measured very few detection times beyond 150

seconds were measured. Although these longer detection times have low probability, these

times add significantly to the risk, and Figure 5 shows that model based results do extend to

these low probability values. We may conclude that both the full and the reduced model curves

agree quite well with the statistical data. This clearly contributes to gaining confidence in the

model-based approach taken.
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Figure 5 Controller detection time of severe deviations of the full model (line marked ‘+’), of the
reduced model (line marked ‘o’) and of statistical data (George et al., 1973) (dashed/dotted line,
the dotted part representing data based on less than 5 measurements).
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From Figure 5 it appears that our reduced model yields only slightly more conservative

controller detection time results. Therefore we conclude that for the particular application

considered here, incorporation of concurrent task processing into the controller performance

model is not necessary for avoiding overly conservative risk estimates. Obviously, incorporation

of concurrent processing into human performance models may be essential for other

applications such as detailed workload assessment.

4.2 Controller cognitive performance

The proportions of the various controller tasks, following from simulation of the ATC model,

are shown in Table 6. In the model the controller is about 35% of the time not involved in any

task, about 25% of the time specifying general clearances (CommunicationC), about 22% of the

time communicating with aircraft crews not involving clearances (Complementary

Communication), about 9% of the time coordinating with other controller’s, about 8% of the

time monitoring the traffic display and about 2% of the time specifying back-to-lane clearances

as a result of monitored deviations (CommunicationA).

Table 6 Relative task times for the various controller tasks and the relative time spent in the
opportunistic cognitive mode. The tasks are ordered from high to low priority.

Task Time (%) Opportunistic (%)

CommunicationB 0 n.a.

CommunicationA 2 3

CommunicationC 25 19

Coordination 8 47

Complementary Comm. 22 16

MonitoringA 8 1

Miscellaneous 35 0

The results show that monitoring and the specification of clearances as a result of monitored

deviations is almost always (>96%) done in the tactical control mode. The low contribution of

opportunistic control during monitoring is a result of the low task priority given to monitoring in

the model. In particular, monitoring is only performed if no other tasks are pending. This results

in a low workload, implying that this task is almost always done with a tactical control mode.

The small share of opportunistic control during the specification of clearances as a result of

monitored deviations (CommunicationA) can be explained by the notions that this task directly

follows monitoring, which is mostly done under tactical control, and that the task is short

lasting.

It follows from Table 7 that the ratio of opportunistic control increases with the task priority for

complementary communication and co-ordination, which are performed about 16% and 47% of
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the time in the opportunistic control mode, respectively. However, for the specification of

general clearances (CommunicationC), which has priority over co-ordination, a decrease in the

opportunistic mode share can be observed. This may be explained by the relatively long

duration of co-ordination tasks (see Table 7), such that the chances are high that a

complementary communication or monitoring task become pending during a co-ordination task,

whereas the probability that tasks with a lower priority become pending during the specification

of general clearances (CommunicationC) is more modest.

Table 7 Mean task duration and the mean time the process is pending due to a process with a
higher priority. The tasks are ordered from high to low priority.

Task Mean duration (s) Mean pending (s)

CommunicationB n.a. n.a.

CommunicationA 6.4 0

CommunicationC 13 0.1

Coordination 28 8.3

Complementary. Comm. 14 9.6

MonitoringA 7.1 17

4.3 Accident risk of model

Using dedicated Monte Carlo simulations (Blom et al., 2001b) for the ATC example we

assessed accident risk as a function of the spacing parameter S. The accident risk results are

presented in Figure 6. In Figure 6, the risk-spacing curve is decomposed into a sum of three

curves:

•  the curve ‘Nominal’ denotes the risk contribution from encountering aircraft that both

evolve along their lanes as expected by the ATCo, while communication and navigation

entities are working;

•  the curve ‘Communication & Navigation Up × Sharp-turn(s)’ denotes the risk contribution

from encountering aircraft of which at least one makes an ATCo unexpected sharp turn,

while communication and navigation entities are working;

•  the curve ‘Others’ denotes the risk contribution from encountering aircraft for all other off-

nominal event types.

Figure 6 shows that the first two events types almost completely determine the total risk curve.

The total risk curve crosses the ICAO defined TLS (Target Level of Safety) level at S = 13.5

NM. This means that a safe spacing value for the model is 13.5 NM. Of course the key question

is, what does this mean in reality?
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Figure 6 ATC routine monitoring model-based accident risk curve. The horizontal line is the
Target Level of Safety (TLS) of (ICAO, 1998). See the main text for an explanation of the
curves.

5 Risk model validation

So far we took a formal modelling approach towards the accident risk assessment. This means

that for the instantiated model of the ATC example accident risk and controller performance

indicators are assessed. One thing is certain, for operations as complex as the ATC example

considered, a model will always differ from reality, and thus model validation can not be a

matter of showing that the model equals reality. The validation problem rather is how to verify

that the model ‘matches’ reality sufficiently well, with respect to the intended use of the model.

An absolute ‘match’ is neither feasible nor necessary. Thus, validation addresses the questions:

•  How much does the instantiated model differ from reality, and

•  How large is the effect of these deviations on the outcomes of the assessment?

Hence, it is necessary to bring the model assumptions made into the foreground and

subsequently perform a bias and uncertainty analysis of the model versus reality.

5.1 Bias and uncertainty assessment

Five types of model assumptions are identified in (Everdij and Blom, 2002) that influence the

bias and uncertainty for a target operational concept:
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I. Differences in the operational concept used in the model and the target operational

concept

II. Non-coverage of hazards

III. Model structure

IV. Parameter values

V. Numerical approximations.

The effect of each model assumption on accident risk can be of two kinds:

•  Bias. Due to the adoption of the formal model assumptions, the DCPN model-based

accident risk is systematically higher or lower than expected for the real operation.

•  Uncertainty. There exists uncertainty in the DCPN model-based accident risk, for example

due to uncertainty in the value of some parameter.

Based on the results of a bias and uncertainty assessment for the ATC routine monitoring

operational concept (Everdij and Blom, 2002) and ACAS results (Hawkes, 1998; Arino et al.,

2002), an overview of the assumptions which have the strongest effect on the bias in the

accident risk is provided in Table 8. An overview of the assumptions regarding the

parameters which have the strongest effect on the uncertainty in the accident risk at S=13.5

NM is provided in Table 9.

Table 8 Assumptions that have a major, significant or minor effect on the bias.
Optimistic/pessimistic indicates that the accident risk is expected to be lower/higher due to the
assumption. Major is about a factor 10, significant is about a factor 2.25, minor is about a factor
1.5.

Assumption Type Effect

No semi-circular use of route structure I Major Pess.

Aircraft are not TCAS equipped I Sign. Pess.

There is no STCA system I Sign. Pess.

Standard deviation of lateral deviation after ATCo

unexpected sharp turn

IV Sign. Opt.

There are no party line effects II Minor Pess.

ATCo neglects secondary conflicts when giving an

avoidance instruction

II Minor Pess.

Ground aircraft tracking uses alpha-beta filter and single

radar coverage only is considered

II Minor Pess.

Pilot performance mode is independent of modes of

technical systems or ATCo

III Minor Opt.

Aircraft flightplan is independent of human operators or

technical systems, except ATCo

III Minor Opt.
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Table 9 Main uncertainties in the model risk due to uncertainty in parameter values.

Parameter Effect

Number of aircraft entering each lane per hour Significant

Probability of wrong clearance by ATCo in opportunistic control mode Significant

Maximum ATCo-allowed lateral deviation from lane Minor

Standard deviation of vertical position of aircraft Minor

Maximum course deviation during turn of aircraft Minor

Mean duration of implementing clearances for Relaxed pilot Minor

Mean duration of No Comm B by ATCo Minor

Mean duration of No Comm C by ATCo Minor

Probability of wrong clearance by ATCo in tactical mode Minor

Number of pending tasks at which control mode of ATCo becomes

opportunistic

Minor

Mean duration of transition of aircraft flightplan from Conform to

route to Different from route

Minor

Width of aircraft Minor

Height of aircraft Minor

5.2 Expected accident risks and safe spacing

The idea behind the approach is that if one can judge the bias and uncertainty of each individual

model assumption conditional on all previous assumptions, and is able to combine these results,

one can estimate the bias and uncertainty in model-based accident risk due to all assumptions

adopted. Next, one can determine an estimate for operational concept accident risk, by

compensating for this evaluated bias and uncertainty in the model-based accident risk. The

combined bias and uncertainty results are now added to the collision risk curve (see Figure 7).

At S=13.5 NM the actual risk is expected to be 3.5 times smaller than the modelled risk. The

95% credibility interval has been assessed to range from a factor 4.5 higher to a factor 12.2

lower than the expected risk. It seems reasonable to assume that the bias and uncertainty

correction applies for values of S > 8 NM. Then from Figure 7 we may conclude that for the

operation considered a safe spacing value S=11 NM results for the ATC example considered.
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Figure 7 ATC routine monitoring model-based accident risk curve (continuous line) and
expected accident risk at S=13.5 NM (denoted by *). The bar indicates the 95% credibility
interval at S=13.5 NM. TCAS effect is not taken into account by ICAO TLS and neither included
in the curve or the 95% accident risk area.

5.3 Safety criticality analysis

A safety criticality analysis shows which events for a pair of aircraft contribute most to the

accident risk for the spacing at which the target level of safety is attained. Analysis for the

hypothetical ATC example considered indicates that the most safety critical situation is the one

for which (see also Figure 6):

•  One aircraft is flying nominally along the flight lane (Nominal), and

•  The opposite aircraft is making a strong and sudden deviation from the flight lane (Sharp

turn),

•  While the decision making loop (surveillance - controller - communication) is functioning

properly for both aircraft, and

•  The navigation systems of both aircraft and on the ground are working nominally.

Furthermore, it follows that aircraft with slowly developing deviations from the flight lane

(Non-nominal evolution mode), due to degraded navigation systems or degraded aircraft

systems, have a smaller impact on the collision risk, although the probability of Non-nominal

evolution exceeds the probability of Sharp turn evolution. Sharp turn evolution is caused by an

erroneous controller clearance or an aircraft flightplan error, whereas the Non-nominal

deviations are largely caused by degraded technical systems. Hence, from the safety criticality
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analysis we may conclude that the most safety critical situations are related to intent mismatches

between pilots and controller rather than to degraded performance of technical systems.

6 Conclusions

When designing advanced ATC, it is important to understand the safety issues already at a

conceptual level. Because of the extremely low probability of accidents in existing ATC

practice, statistical data from practical situations is limited and analysing accident reports alone

is not sufficient to understand safety at the level of the interactions between the various ATC

components. For advanced ATC designs, data concerning unsafe events may even be lacking at

all. Therefore, some kind of modelling approach is required to optimise for capacity and

separation criteria without compromising safety.

Since in about 80% of the reported accidents humans were part of the cause, it is imperative to

properly incorporate the human factor into the models used for risk assessment. In this paper, we

therefore investigated three complementary psychological models, and we combined them into a

single mathematical model of a tactical controller in a conventional en-route context. Because

monitoring activity is typically performed as an integrated part of the tactical controller job, it is

necessary to also take into account other controller activities that may interfere with monitoring. This

was accomplished through our contextual model of controller performance that takes into account

the interfering tasks at a cognitive level, thus minimising the level of modelling detail required to

take into account the interfering tasks. This model is shown to be of great use in the evaluation of

both controller cognitive performance and accident risks, when evaluating ATC concepts. We also

showed that this advanced controller performance model can be used to evaluate ATC concepts

from the level of controller performance up to the level of accident risk.

We conclude that the use of advanced psychological models in accident risk modelling is

feasible, thus extending the applicability of the accident risk modelling approach to situations

where isolated models of individual human actions do not suffice.
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Appendix A Acronyms

AGARD Advisory Group for Aerospace Research and Development

ATC Air Traffic Control

ATCo Air Traffic Controller

DCPN Dynamically Coloured Petri Net

DM-loop Decision Making loop

EATCHIP European Air Traffic Control Harmonisation and Integration Programme

FMS Flight Management System

ICAO International Civil Aviation Organisation

NM Nautical Mile

R/T Radio Telephony

RNP1 Required Navigation Performance (95% of time within 1 NM)

STCA Short Term Conflict Alert

TCAS Traffic alert and Collision Avoidance System

TLS Target Level of Safety


