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Summary 

An analysis of the balance between the computational complexity, accuracy, and resolution re- 

quirements of a discontinuous Galerkin finite element method for the solution of the compressible 

Euler equations of gas dynamics is presented. The discontinuous Galerkin finite element method 

uses a very local discretization, which remains second order accurate on highly non-uniform 

meshes, but at the cost of an increase in computational complexity and memory use. The question 

of the balance between computational complexity and accuracy is addressed by studying the evo- 

lution of vortices in the wake of a wing. It is demonstrated that the discontinuous Galerkin finite 

element method on locally refined meshes can result in a significant reduction in computational 

cost. 



1 Introduction 

The accurate calculation of small scale flow structures presents a great challenge to computational 

fluid dynamics. Wake vortices, shocks, and the viscous sublayer in wall-bounded flows require a 

resolution which is orders of magnitude finer than in other regions of the flow. Efficient simulation 

of such structures is only feasible on highly uon-uniform meshes, which are refined in the regions 

of interest. Accurate simulation of the flow structures on locally refined meshes is possible using 

Discontinuous Galerkin (DG) methods. 

Discontinuous Galerkin finite element methods result in a very local discretization, which com- 

bines well with h-refinement because it maintains accuracy on non-smooth grids. The discoutin- 

uous Galerkin finite element method is, however, considerably more expensive, both in terms of 

computational complexity and memory usage, in comparison with the more commonly used finite 

volume methods. The key question to be addressed in this paper is whether for specific fluid dy- 

namics problems, with vastly different length scales in two or more directions, the computational 

complexity of the DG method is more than compensated by its accuracy. 

The balance between accuracy, resolution, and computational complexity of the DG finite element 

method is investigated by studying its efficiency in capturing the vortices in the wake of a wing. 

Numerical dissipation and insufficient grid resolution cause serious problems in capturing vortical 

structures, and result in a smearing and decay of the vortical structures at some distance behind 

the wing. For many applications it is very important to be able to trace these vortical structures 

over a large distance downstream. 

The outline of the paper is as follows. After a short description of the algorithm, the computational 

complexity of the method is analyzed. Subsequently its accuracy on highly non-uniform meshes 

is assessed for vortical flow. Finally, the balance between computational complexity and accuracy 

will be addressed. 



2 Numerical Method 

The numerical method used in the present investigation combines a discontinuous Galerkin dis- 

cretization for the spatial discretization with a TVD-Runge Kutta time integration method and 

multigrid acceleration. This technique has received considerable theoretical interest during the 

last decade. Especially the work of Cockbum, Shu, et al. (Ref. 1, 2), significantly contributed 

to its theoretical development. In a series of papers van der Vegt and van der Ven (Ref. 4, 5,  6) 

further developed the DG finite element method into a second order accurate numerical technique 

for the solution of the three-dimensional Euler equations of compressible gas dynamics on highly 

non-uniform hexahedral meshes. This method is used in the present investigation. 

The most computationally intensive part of the method are the element face flux integrals. The 

straightforward computation of the face flux integrals requires four point Gauss quadrature rules 

for second order accuracy. Van der Vegt et al. (Ref. 6) proposed an approximation to the flux 

integrals of the form 

L F(Uh) n&dr ;r F(u;) L nbmdr, 

where S is a face, Uh is the state vector of the Euler equations, F is the flux function, n is the 
-S . 

face normal, 4, (0 < m 5 3) is the m-th basis function in the cell bounding S ,  and U,, 1s 

the face average. The volume fluxes are approximated likewise. Van der Vegt et al. (Ref. 6) 

proved that second order accuracy is retained when the geometric terms are computed exactly. 

These approximations result in a number of flux calculations which is approximately equal to 

finite volume methods, and in a reduced computational complexity. 

The algorithm is efficiently implemented in the program HEXADAP using a face based data struc- 

ture, which allows full vectorization and parallelization of the code. The parallel performance of 

the code is further improved with a dynamic domain decomposition technique, which automat- 

ically redistributes the elements over the processors after grid adaptation (Ref. 7, 8). The com- 

putational efficiency is further improved by local time stepping (with CFL=0.7) and a multigrid 

convergence acceleration algorithm, which uses a first order accurate scheme on the coarser grid 

levels. 

The DG finite element method results in an accurate discretization, but with increased memory use 

and a significantly larger computational complexity than finite volume methods. The DG method 

also solves equations for the three higher moments for all five variables of the Euler equations and 

stores these variables. This results in 20 degrees of freedom per grid cell, four times more than for 

finite volume methods. 



storage 

flow field (3nm + n + 4)R 

geometry 

topology 

total 200 words 

Table 1 Memoxy requirements per grid cell for the DG method. The following notations are 

used: n is the number of flow variables (n = 5), m the number of basis functions 

(m = 4), R refers to real variables (8 Bytes), I to integer variables (4 Bytes). Totals are 

in 8 Bytes words. 



3 Computational complexity 

In this section the computational complexity of the DG method is analyzed and compared to a 

well-tuned finite volume Jameson algorithm implemented in the multi-block structured flow solver 

ENFLOW (Ref. 3). Since the Jameson algorithm is optimal in terms of computational complexity, 

the reader should be aware that this is the strictest comparison possible. 

The memory requirements of the above DG method are tabulated in Table 1. The memory is 

split into three parts: flow field, geometry (grid points, mass matrix, element integrals, etc.) and 

topology. The latter is required since the hexahedron grids are unstructured. The block-structured 

finite volume flow solver E N n O W  requires approximately 20 words per cell. The second order 

DG flow solver HEXADAP on unstructured meshes has four times more degrees of freedom and 

requires 2.5 times more memory per degree of freedom than the block-structured finite volume 

flow solver. 

The number of floating point operations per grid cell per fine grid iteration (including coarse grid 

corrections)of HEXADAP is 21 kflop, that is, 5 kflop per degree of freedom per fine grid iteration. 

In Table 2 the main components of the computation and their respective work load is shown. 

The main part is the Osher flux difference scheme, followed closely by the slope limiter. Note 

that the solution of the moment equations constitutes 20 % of the work load. Certain geometric 

contributions are recomputed at each stage in the Runge-Kutta scheme, amounting to 10% of the 

work load. Note that since the face flux computations constitute about 50% of the work load, a 

four point quadrature rule for the flux evaluation would increase the total work load by a factor of 

2.5. Hence the above approximations to the flux integrals significantly reduce the computational 

complexity. The single processor vector performance is 600 Mflopls (30% peak) on average on a 

NEC SX-4 and is mainly bounded by memory access. 

The finite volume flow solver ENFLOW requires 2 kflop per grid cell per fine grid iteration. The 

unstructured DG method has, however, four times more degrees of freedom and is 2.5 times more 

computationally expensive, per degree of freedom, than ENFLOW. In the next section it will be 

shown that the DG method is accurate on highly non-uniform grids, which require significantly 

less elements than structured grids. 



work load average performance 

Osher scheme 33 % 800 

slope limiter 25 % 400 

flow moments 20 % 1450 

geometric contributions 10 % 

left and right states 7 %  

Runge Kutta 5 %  

Table 2 Distribution of work and average single processor vector performance (in Mflopls) in 

the DG method 



4 Results 

The balance between computational complexity and accuracy of the DG finite element method 

discussed in this paper is investigated by calculating the flow field about a generic wing at a free 

stream Mach number M, = 0.84 and angle of attack cu = 3.06'. The wake vortices of the wing 

are difficult to capture over a large distance, especially if the grid is not aligned with the vortex 

core. After calculating an initial solution on a grid of 130,000 cells, the grid is adapted five times 

until a grid with 250,000 cells is obtained. After each adaptation the mesh is repartitioned for 

parallel load balance, and the flow is advanced for 100 multigrid cycles, see Figure l(a). Grid 

refinement is only performed in the wake and not over the wing. The grid is refined at the vortex 

using a vortex sensor based on vortex strength and the total pressure loss. Note that the derivatives 

of the velocity are directly available in each cell, since the DG method has 20 degrees of freedom 

per cell, including a fully resolved gradient of the state vector. 

Figure l(b) shows the vortex in a cross-section at x = 3 (the wing tip is located at x = 1.4 and 

the wing span is three). In Figure 2 the vortex, shown as streamlines, at a cross-section one and 

half wing span behind the wing tip on the one time refined mesh is compared with the results on 

the final refined mesh. It can be clearly seen that the vortex is better resolved and extends further 

downstream. Figure 3 shows the final adapted grid at x = 3, x = 6, and x = 9. Note that the 

initial mesh is not aligned with the vortex core, but the grid refinement accurately captures the 

vortex. 

Locally at the vortex the initially structured grid is refined twice in all three directions. In case of 

uniform refinement in, say, a quarter of the mesh, a structured grid with the same resolution would 

require at least . 64 = 16 times more grid points than the adapted grid (and would be difficult 

to generate since the vortex position is unknown beforehand). Hence the higher computational 

complexity of the DG method using locally refined meshes is compensated by its accuracy on 

non-uniform meshes. 



(a) Convergence history (b) Vortex at x = 3 

Fig. 1 Multigrid convergence history of the L2 residuals of the means and flow field of a generic 

wing (M, = 0.84, cu = 3.06'). Only the residuals in the wake are measured. 

Fig. 2 Vortex comparison on one time refined grid (leff) and final refined grid (right) at x = 6. 

The vortex is visualized using streamlines. 



(a) mesh at x = 3.0 

(b) mesh at x = 6.0 

(c) mesh at x = 9.0 

Fig. 3 Three cross-sections of the final refined non-uniform mesh behind a generic wing. 



5 Conclusions 

The DG method is efficient on highly non-uniform meshes and, combined with grid adaptation, is 

able to trace wake vortices over large distances. The computational complexity of the DG method 

per degree of freedom is 2.5 times the complexity of a finite volume block-smctured method, 

both in flop count and memory use. This factor is similar to the difference between structured and 

unstructured (tetrahedra) finite volume schemes. The increased complexity of the unstructured 

DG method is compensated by its accuracy on non-uniform, locally refined, grids which require 

significantly less grid cells for the same resolution. 
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