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ABSTRACT
The European Air Traffic Management System is characterised by a floating
initial situation and continuous change because of the autonomous and
evolutionary nature of its components. This is a key driver in the
specification and design of the EATMS architecture.
The EATMS development strategy should be based on a clear operational
philosophy and a clear realisation process. This will result in clear
appropriate design guidelines. Appropriate modelling techniques should
capture all system aspects that impact the EATMS architecture (e.g. by
using the 5 views of the RM-ODP). In other words: "think big". At this
moment the applicability of standards, primarily RM-ODP and CORBA, for
the EATMS architecture development is uncertain. The feasibility of
applying these standards is to be determined, for instance by developing
prototypes in a style comparable to the Annette project. In other words:
"start small". During the implementation of parts of the EATMS, every
part should fit within the vision embodied in the operational philosophy,
overall design and adopted process for realisation ("think big"), but
should have a short realisation elapse time, providing short term return
of investment ("start small").
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1. INTRODUCTION

The European air traffic has shown a steady and significant increase over the last years. This
substantial increase is expected to continue for the foreseeable future. Consequently, the
capacity of the European air traffic management system must increase accordingly, while
maintaining or even improving on the good current level of safety. The changes in the airline
industry, like the deregulation of the air traffic within the European Union due to the single
market, have led to the additional requirement of maximising the cost effectiveness of the
provided air traffic management services. This provides an important example of a change
towards satisfying the customers needs. Due to the changes in the operation of the air
transport industry, environment, like the impact of increasing environmental restriction, the
speed of changes in the customers need has accelerated over the last years. Consequently
the European Air Traffic Management (ATM) system should respond quicker to changes in its
operating environment. This can also be worded as a move away from the traditional
technology push towards market orientation. This trend also exemplifies the maturity of the
air transport industry.

Eurocontrol has responded to this challenge (which can, or even should, be seen as a
business opportunity) by the European Civil Aviation Council (ECAC) strategy for the 90’s [1].
The prime solution is the proposed European Air Traffic Management System (EATMS), with
the objective of reaching harmonisation and operational integration within the ECAC airspace.
EATMS is a long term objective, with implementation in 2005 and beyond. EATMS can also
be considered the fourth step of the European ATC Harmonisation and Integration
Programme (EATCHIP) strategy, the third step of which is currently being implemented [2],
after successful completion of the first steps. The EATMS is based on the following
constraints:

the ECAC states are autonomous. This implies different technical systems from
different vendors as well as differences in the organisational, judicial and operating
environments. These different systems form the constituent parts of the EATMS.

from the airspace user point of view, EATMS has to provide a seamless
continuous service for the entire ECAC geographical area during its continuous
evolution.

EATMS will be a distributed real time system. Due to its safety critical nature there
are strong requirements on continuous availability and integrity.
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the EATMS will have to comply with the international standards like the
International Civil Aviation Organisation (ICAO) Communication Navigation
Surveillance(CNS)/ATM standard, and ICAO Standards And Recommended
Practices (SARPS), as well as be able to interface with the disparate equipment
and procedures of the adjacent states and the military. These interfaces will evolve
continuously.

due to the autonomy of the ECAC states the evolution from the current situation
towards the EATMS will proceed at different speeds for the different geographical
areas. Consequently there is a requirement for inter-operation of ATM systems at
centre level with varying levels of sophistication. The requirement for continuous
availability yields the need to support a diverse, ever changing configuration of
system components (i.e. national ATM systems or their constituent subsystems).

These assumptions result in strong requirements on the EATMS architecture. Within the
Open Distributed Processing (ODP) standard, ISO 10746 [7], these assumptions are worded
as the characteristics heterogeneity, autonomy, evolution. Due to the nature of air traffic the
remaining ODP characteristic mobility is inherently applicable. The EATMS system also
exhibits all inherent characteristics of distributed systems mentioned in the ODP standard,
such as remoteness, concurrency, lack of global state, independent failure of system
components and asynchrony.

2. EXPERIENCE GAINED FROM ATM/CNS DEVELOPMENT, USING C/S TECHNOLOGY

When the multiformity of the European situation is not taken into account, the results of
EATMS development will not get the required multi-national support. This is exemplified by
the Air Traffic Land and Air Study (ATLAS) project, which, according to its charter, had to
base itself on a single unified system in stead of a harmonised solution. ATLAS did not
obtain its recognition even though various elements of the study approach as well as
thoughts on new operational concepts like autonomous aircraft have influenced subsequent
studies and developments. The lessons learned from this project are:

system harmonisation is the way to go, above a single unified system
a unified operational concept is needed as a basis for the harmonised
implementations
the approach to separate mission, objectives (or requirements) phases from the
subsequent design (architecture) and implementation phases is advantageous
a new ATM system should base itself on the evolution from the current situation.
The clean sheet of paper approach (a client requested prerequisite of the ATLAS
study) is not compatible with the European realities
a single Yourdon SA/RT (Structured Analysis with Real Time extensions) based
model is better then the two separate models used, one containing a pure
functional decomposition while the other contains the data model. With the current
state of the information technology object oriented methods might be more
appropriate than structured analysis based methods. To capture all views of the
single unified system, covering all relevant aspects of the ATM organisation, a
single model will be either too generic to provide much detailed information or will
become unmanageably large. Within the Open Distributed Processing Reference
Model (RM-ODP, [7]) this is taken into account by identifying viewpoints (or
specifications).
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The current EATMS approach followed by EUROCONTROL takes these lessons into
account.

The Common Modular Simulator (CMS, [14]), being part of the Programme for Harmonised
Air Traffic Management Research in Eurocontrol (PHARE), aimed at providing a unified ATM
research environment for the participating European countries (i.e. research establishments).
The participating countries experience the highest current air traffic load. After consensus on
the user requirements, the implementation was based on a single language. Consequently
the continuous operation of a lot of already existing software could not be guaranteed. Hence
the resulting implementation did not meet the expectations. The lessons learned are:

harmonisation of requirements works well
the diversity provided by local implementations (idiosyncrasies for outsiders) needs
to be respected.

Within the Annette project [15] a distributed simulation has been set up between four
European ATM research establishments. Standard (Internet) technologies were used. An
interface was designed, limited to the functions needed for the single demonstration involving
all 4 sites. Every partner was responsible for the local implementation of the common agreed
interface specification. This approach resulted in a short turn around time for the
demonstration. The lessons learned are:

using (industry) standard technology helps
concentrate on common agreed interfaces
checking compliance to the agreed interface specification is important
the CMS breakdown of an ATM simulator was used for Annette and worked well
the restricted requirements allowed a simple implementation which could be
realised quickly, provided immediate feed back.

The NLR ATC Research SIMulator (NARSIM, [11]) is currently being upgraded. The present
NARSIM structure is based on old software technologies and shows the signs of the
continuous upgrading of its capabilities during its operational life. The restructured NARSIM,
called NARSIM C/S (client server) is compliant with the CMS breakdown. Taking the above
mentioned lessons learned into account, NARSIM C/S uses a middleware approach to
connect the existing software modules. This middleware should allow future application
software modules from various sources to be added. The middleware takes care of all
information exchange between the application software modules (called servers), thereby
making each application software module more independent of the remaining software. It
also improves the visibility of the interfaces. The lessons learned from this project are:

the CMS partitioning works
middleware technology used for NARSIM C/S enables distributed processing
for interoperation of architectural components information technology standards are
needed
it is very important to agree upon the interfaces of the application modules
the resource usage of the middleware is commensurate with real time ATM
simulation on the current NARSIM hardware platform. However to achieve this
performance for some servers intelligent agents (i.e. client stubs) are needed.

The EURATN (European Aeronautical Telecommunication Network) project [17] has provided
the first implementation of an Aeronautical Telecommunication Network (ATN) compliant with
the ISO/Open Systems Interconnection (OSI) standards. The EURATN project produced a
working system. However due to the new technologies involved it took a long time to obtain



-8-
TP 96411

results. As a result some of the standards used are (from a information technology point of
view) obsolete, before the implementation had been completed. The EURATN lessons
learned are:

use standards, preferably industry or de-facto standards with sufficient
(commercial) support (i.e. use Common-Of-The-Shelf (COTS) software)
system evolution has to proceed with manageable steps, each with an
implementation time which takes the general progress in industry into account.
Smaller steps resulting in intermediate products which provide immediate benefits
to the customers also allow quicker return of investment, that is “think big” (provide
a vision for the future), “start small” (short implementation elapse time, combined
with immediate benefits).

3. EATMS ARCHITECTURE SCOPE AND REQUIREMENTS

The motivation and objectives for developing EATMS are outlined in the EATMS Mission,
Objectives and Strategy Document [4]. Key objectives are safety, capacity, efficiency, cost
effectiveness, uniformity and environment. To achieve these objectives for a complex system
like EATMS the system architecture plays a crucial role. The present paper primarily focuses
on aspects of the software architecture.

The term (software) architecture has many definitions. Here we take as a starting point “The
set of rules to define the structure of a system and the interrelationships between its parts”
as defined in [7, part 2].
These rules should translate the EATMS keywords listed above into workable concepts and
methods to model and structure the EATMS system. This includes the engineering of
internal and external interfaces and development of mechanisms and techniques for
interworking of its structural parts.

Drivers for the EATMS architecture and the architecture development process are its overall
context, the operational approach foreseen, the envisaged building blocks and the policy
towards existing systems.

The EATMS context focuses on the services as provided by EATMS as a whole, including
humans, machines and their respective procedures, and their relation with EATMS-external
elements (i.e users and providers), which are ( see [5]):

airspace users (or : “flight”)
aerodromes
operator
other parties, such as:

meteorology
air defence systems
ATC units of adjacent airspace

This identifies the role of the system in support of air transport industry, and sets the
functional and geographical boundaries for the EATMS architecture.

From both the operational ATM concepts for EATCHIP III [2] and EATMS [3, initial version] it
can be concluded that the CNS/ATM architecture should enable interoperability in different
ways:
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Between ATM planning layers (phases within the planning process, with varying
time horizons, between long term strategic planning, i.e. half a year, up to tactical
control, i.e. seconds to minutes), and the associated control loops
Between Air Traffic Controller (ATCo) operations and automated system operations
Between multiple ATCos operations, mediated through the automated system
Between systems operations (including Air/Ground)

The interoperability should prevent EATMS from being a set of stand-alone automated tools
requiring humans to draw conclusions and take actions based on diverse information
provided. The EATMS concept of Flight Phases as described in [5] is of relevance for the
architecture due to requirements on dynamics and timing aspects for EATMS services. An
overview of the required services, grouped per user category is given in [5, figure 7].

EATMS can be decomposed into a functional hierarchical tree yielding a set of building
blocks (components/units) that constitute the system [5, figure 8].

From a technology point of view the transition from, and partial incorporation of, existing
(legacy) systems as part of an evolving EATMS is an important factor in the transition
process from EATCHIP III. The system architecture is to support this process. This sets a
strong requirement on the system architecture, especially in the context of the assumed
autonomy and continuous evolution of system elements.

An initial set of functional and non-functional specifications can be derived for the identified
EATMS building blocks. Functional specifications state what services have to be provided.
Non-functional specifications list the constraints for the services, that may have an impact on
the required Quality of Service (QoS), such as:

Availability
Accuracy
Timeliness
Reliability
Resilience

The QoS provided by the EATMS to its users could be expressed in an overall QoS metric.
The Quality of Service can be considered as a metric for architectural quality. This overall
QoS is a combination of the QoS of each major service within EATMS. During the design of
EATMS, information on the resulting QoS of the system should be available to optimise the
EATMS architecture and its constituent servers.

Apart from above characteristics the EATMS architecture should exhibit characteristics which
make it an open distributed system (for detailed specification see [7]):

Openness
Integration
Flexibility
Modularity
Manageability
Security
Transparency
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4. EATMS ARCHITECTURE DEVELOPMENT PROCESS

As user requirements, operational concept and functional specifications, of the system are
expected to change continuously over the EATMS life cycle, the architecture development
process should not focus too much on present specifications.

The approach to the software architecture development process should take as a starting
point:

EATMS Context and Scope [5]
EATMS Operational Concept and Requirements
Realistic assumptions on the general nature of the CNS/ATM system (e.g.
distribution, networking, legacy, heterogeneity)
Basic information technology design principles, based on the object-oriented
paradigm using the object model (including concepts such as abstraction,
encapsulation, see also [13])
Basic software architecture approach and mechanisms, based on accepted and
proven modelling concepts and vendor-independent technology.

The modelling of EATMS in accordance with the Reference Model for Open Distributed
Processing (RM-ODP, [7]), is considered to be a sound basis for describing the system using
the different viewpoints it advocates. The elaboration of the RM-ODP and the viewpoints
used in it is beyond the scope of this paper. At present NLR has no practical experience yet
in applying RM-ODP in ATM projects. Based on a study of the documentation it was
preliminary concluded that:

Information and Computational viewpoints are crucial to specify the functional
architecture of the system, As the two viewpoints seem to be non-orthogonal they
may be combined into a single model.
The Engineering viewpoint is essential to specify the logical architecture.
The Technology viewpoint is closely linked to the implementation process and
somewhat separate from the design, although technology is a key factor in
achieving the required Quality of Service (QoS).
The detail of modelling should be driven by the design efficiency, i.e. focus on
models that directly contribute to realising the system objectives.
No specific methods (e.g. OMT or Shlear&Mellor) are prescribed. These are
considered (including associated tools) important success factors when working in
international teams.

Although the RM-ODP provides a complete set of views to model a complex system like
EATMS, it does not provide the model for the complete life cycle of an information system.
The Enterprise viewpoint is concerned with the business activities of the specified system.
This implies a definition of what will be part of the system and what will become its
environment, the system objectives, its stakeholders, etc. The Information, Computational,
Engineering and Technology viewpoints detail the solution to be provided by the system from
their respective viewpoints. It is not clear where this leaves the ATM operational concept [2,
3], which satisfies the system objectives but allows several realisations (or system
implementations). The construction of the Information, Computational, Engineering and
Technology views will be a sequential activity. However, for large systems such as EATMS,
several iterations impacting multiple views are to be expected during the realisation process.

From these models covering the complete system (“think big”) implementation can start. It is
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expected that several prototyping activities will take place to verify and validate the design
(“start small”). It is recommended to perform this prototyping at a limited scale during the
modelling (e.g. concerning system performance). Actual implementation should be carried out
based on a transition plan that introduces the new architecture into the existing CNS/ATM
systems and replaces systems with newly developed systems.
Traceability of requirements (including mapping of RM-ODP views) and appropriate
standardised documentation should be handled and managed throughout the life cycle to
assure design consistency, and ensures that the system complies with its requirements.

5. EATMS ARCHITECTURAL SOLUTION: AN OBJECT-ORIENTED APPROACH

Whereas RM-ODP does not prescribe an object-oriented approach, this section takes this
approach as a starting point. This is motivated by the well-accepted theoretical background of
object orientation (e.g. [13]), the EATMS assumptions of evolution and autonomy (see
section 2) which are well-supported by the object oriented paradigm and by the notion that
object technology is, and becoming more and more, widely accepted by industry by enabling
software re-use, simplified maintenance and fast-prototyping support.

A system having the characteristics of EATMS (e.g. distributed, heterogeneous, starting from
legacy systems) should benefit from the conceptual object model and architectural reference
model, called Object Management Architecture (OMA), as developed by the Object
Management Group (OMG).

The Object Management Group (OMG) is dedicated to producing a framework and
specifications for commercially available object-oriented environments. The Object
Management Architecture Guide [6] provides an architecture with terms and definitions upon
which all supporting interface specifications are to be based. Part of this architecture is a
Reference Model which classifies the components, interfaces and protocols which compose
an object system architecture into four areas (see figure 1):

The Object Request Broker (ORB) enables objects to make and receive requests
transparently in a distributed environment. It is the foundation for building applications from
distributed objects and for interoperability in homo- and heterogeneous environments. The
technology adopted for ORBs is known as the Common Object Request Broker Architecture
(CORBA, see [8]).
The ORB establishes the client-server relationships between objects. Using the ORB, a client
can invoke a method on a server object transparently, which can be on the same machine,
or across a network. The ORB is responsible for all the mechanisms required to find the
object implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the request.
The interface the client sees is completely independent of where the object is located, what
programming language it is implemented in, or any other aspect which is not reflected in the
object interface. A server interface defines the server object based on the Interface Definition
Language (IDL), which is programming language and network neutral. A detailed description
is considered to be beyond the scope of this paper.

Object Services is a collection of services (interfaces and objects) that support basic
functions for using and implementing objects. These services are necessary to construct any
distributed application and are always independent of application domains. The Common
Object Services Specification (COSS) include services for (see [10] for details): Object
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naming, object event notification, object lifecycle, object persistence, concurrency control,
externalisation, object relationship, object transaction, object security, object time. For
example, the life cycle service defines conventions for creating, deleting, copying and moving
objects; it does not limit objects implementation for a specific application.

Common Facilities is a collection of services that many applications may share, but
which are not fundamental as the Object Services (see [9]). For instance, a system
management facility could be classified as a horizontal (i.e. market/application independent)
common facility. CNS/ATM services, such as Flight Plan services, that are used by many
clients in the CNS/ATM application domain, are candidates to be implemented as vertical (i.e.
market/application specific) common facility.

Application objects are products of a single vendor or in-house development group
which control their interfaces. Application Objects correspond to the traditional notion of
applications, so they can not be standardised by the OMG. Instead, Application Objects
constitute the uppermost layer of the OMA Reference Model. The granularity of the
application objects can be quite diverse (e.g. a single radar could be considered as a
relatively small application object, while also some complete ATC centre could be treated as
a relatively large application object). The granularity applied is a design decision, which is
partly driven by the prescribed use of legacy systems forming part of EATMS.

Fig. 1 The Object Management Architecture Reference Model

Interoperability requires standardisation of formats and interfacing conventions between
software systems. Within CORBA ORB-interoperability specifies a comprehensive, flexible
approach to support networks of objects that are distributed across and managed by multiple,
heterogeneous CORBA compliant ORBs [8]. The ORB Interoperability Architecture provides a
conceptual framework for defining the elements of interoperability and for identifying the
compliant points. The architecture clearly identifies the roles of different domains of ORB-
specific information.
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The key element of ORB interoperability is that objects are enabled to make and receive
requests transparently in a distributed environment, even if the objects are implemented on
different ORBs.
When an interaction takes place across a (ORB-)domain boundary, a mapping, or bridge is
required to transform relevant elements of interaction as they traverse the boundary (see
figure 2). There are essentially two approaches achieving this: mediated bridging and
immediate bridging:

With mediated bridging, elements of the interaction relevant to the domain are
transformed at the boundary of each domain, between the internal form of that
domain and an agreed common form.
With immediate bridging, elements of the interaction relevant to the domain are
transformed at the boundary of each domain, directly between the internal form of
one domain and the internal form of the other.

By the use of bridging techniques, objects can interoperate via multiple ORBs, without the
ORBs involved knowing any details of each others implementation, such as what particular
IPC or protocols are used to implement the CORBA specification.

As OMG has all major computer and software vendors as members the standards set are
major candidates for becoming de-facto standards. Also a wide range of implementations of
the standard by different vendors will result in semi vendor-independent software which is
mutually compatible. This makes CORBA a candidate for usage as COTS in support of
EATMS architecture development.

Fig. 2 Generic ORB-to-ORB Bridging

An important requirement for EATMS is to support legacy system migration from EATCHIP
III, such that the migrated target system remains fully operational in new environments.
CORBA provides a distributed object-oriented approach to integrate legacy applications and
enable developers to write an object wrapper to encapsulate the legacy system. With
CORBA, the developer writes a description of the service provided by the legacy system
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using IDL, then writes code which invokes the appropriate set of actions in the legacy
application when one of the object wrapper's methods is invoked. This approach has been
proven efficient and effective [12].

At NLR a project has started early this year in which a CORBA 2.0 implementation (named
ORBIX) is used to verify the CORBA concepts and aspects as addresses above.

6. CONCLUSIONS

The EATMS system is characterised by a floating initial situation and continuos change
because of the autonomous and evolutionary nature of its components. This is a key driver in
the specification and design of the EATMS architecture.

The EATMS development strategy should be based on a clear operational philosophy and a
clear realisation process. This will result in clear appropriate design guidelines. Appropriate
modelling techniques should capture all system aspects that impact the EATMS architecture
(e.g. by using the 5 views of the RM-ODP). In other words: “think big”. At this moment the
applicability of standards, primarily RM-ODP and CORBA, for the EATMS architecture
development is uncertain. The feasibility of applying these standards is to be determined, for
instance by developing prototypes in a style comparable to the Annette project. In other
words: “start small”. During the implementation of parts of the EATMS, every part should fit
within the vision embodied in the operational philosophy, overall design and adopted process
for realisation (“think big”), but should have a short realisation elapse time, providing short
term return of investment (“start small”).

The applicability of standards, primarily RM-ODP and CORBA, for EATMS development
should be verified. Note that these standards should also be considered for building a new
generation of CNS/ATM simulators.

The Quality of Service (QoS) provided by the EATMS to its users could be expressed in an
overall QoS metric. This overall QoS is a combination of the QoS for each major service
within EATMS. During the design of EATMS, information on the resulting QoS of the system
should be available to optimise the EATMS architecture and its constituent servers.

The EATMS architectural framework should be implemented using - where possible -
common-of-the-shelf systems, which are vendor independent (i.e. use a - possibly de-facto -
standard), are proven technology and meet the baseline EATMS architectural requirements.

CNS/ATM Common Facilities should be developed in case CORBA-based technology is
adopted. These CNS/ATM specific facilities could than act as generic vertical' services
within EATMS, and could be based on existing specification or even implementations of
existing services.
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