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Summary

In the late 1990s the NLR and Fokker ELMO were involved in the development of a safety

critical embedded system, the Flight Control Display Module (FCDM). The FCDM is part of

the Flight Control and Display System (FCDS). The FCDS is developed by Sextant Avionique

as part of their Avionique Nouvelle concept. The FCDS finds its first application in the

EuroCopter EC-135 helicopter. Within FCDS, FCDM acts as a data concentrator and transmits

flight control and navigation data to display units.

This paper describes the development and verification of the FCDM. The inputs for the

development process are described: system requirements and a pre-defined hardware

architecture. The development process resulted in a software architecture that is also briefly

described. Partitioning has been applied to segregate less critical components, which resulted

into three different levels for the software: A, B and E.

A brief description of all DO-178B software life cycle processes is given.
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1 Introduction

The last thirty years show an exponential growth in the use of software within airborne systems

[Storey]. These systems are typical examples of embedded systems. They are used to monitor

the state of or even to control an aircraft and to display flight control and navigation data to the

pilots. The nature of these systems is safety critical if the impact of a failure leads to conditions

which prevents an aircraft from a continued safe flight and/or landing.

In the late 1990s the NLR and Fokker ELMO were involved in the development of a safety

critical embedded system, the Flight Control Display Module (FCDM). The FCDM is part of

the Flight Control and Display System (FCDS). The FCDS is developed by Sextant Avionique

as part of their Avionique Nouvelle concept. The FCDS finds its first application in the

EuroCopter EC-135 helicopter. Within FCDS, FCDM acts as a data concentrator and transmits

flight control and navigation data to display units.

The guidelines for the production of software for civil airborne systems and equipment are

documented in [DO-178B]. An independent third party (the certification authority) checks on

compliance with these guidelines by performing a number of audits. According to DO-178B the

system safety assessment process results into a classification of all software components into

five possible software levels. Since the FCDM handles flight critical control and navigation data

the FCDM software is classified as level A (the most severe level).

This paper describes the development and verification of the FCDM. The inputs for the

development process are described: system requirements and a pre-defined hardware

architecture. The development process resulted in a software architecture that is also briefly

described. Partitioning has been applied to segregate less critical components, which resulted

into three different levels for the software: A, B and E.

A brief description of all DO-178B software life cycle processes is given.

2 FCDM system requirements

Apart from FCDM, FCDS is made up of display units, Instrument Control Panels (ICP) and a

Reconfiguration Control Unit (RCU).

Flight control data is displayed on the Primary Flight Display unit (PFD) and navigation data is

displayed on the Navigation Display unit (ND). The ICP enables the pilot(s) to change flight

settings and to select flight equipment and display modes.
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Two operation modes are defined for the FCDM:

•  Single or Double Pilot Visual Flight Rules (SPVFR, DPVFR) with one FCDM.

•  Single or Double Pilot Instrument Flight Rules (SPIFR, DPIFR) with two FCDMs. In this

case a cross-link for data validation between the two FCDMs is used to achieve the IFR

safety requirements. The FCDM module itself, however, has no redundancy.

In IFR safety critical flight equipment is duplicated and manual reconfigurable by the pilots by

using the Reconfiguration Control Unit (RCU). This reconfiguration is typically performed in

case of discrepancy of pre-defined parameters between the equipment.

The following figure shows the FCDMs in a DPIFR configuration with two sets of display units

(PFD/ND), two ICPs and the RCU. As an example of connected input equipment the Attitude

Heading Reference System (AHRS) is shown.

AHRS

FCDM FCDM

RCU

ICP

PFD/
ND

PFD/
ND

ICP

AHRS

Fig. 1  FCDM in Dual Pilot Instrument Flight Rules (DPIFR) configuration

All indicated busses are ARINC 429 busses with the exception of the discrete busses from RCU

to the FCDMs. ARINC 429 is a standard communication bus in civil avionics; discrete busses

transmit only logical 1/0 states.

The FCDM implements the following functionality:

•  Aircraft configuration management by means of a downloadable FCDS configuration file.

•  Parameter selection received from the helicopter equipment (ARINC 429 sensors).
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•  Safety validation by checking refresh rates of all equipment and calculating discrepancies

for duplicated equipment.

•  Transmission of processed data to PFD and ND and to other helicopter equipment.

•  Management of two ICPs.

•  Management of manual equipment reconfigurations.

•  Management of cyclic in-flight checks.

•  Management of function tests and storage of test results.

•  Failure management.

3 Hardware architecture

The FCDM module consists of two Central Processor Units (CPUs). One CPU is dedicated for

all ARINC 429 input and output handling (I/O processor), the other CPU is dedicated to discrete

I/O handling, data processing, data validation, flight control, etc. (Main processor), see figure 2.

The IO hardware components are:

•  Three ARINC 429 controller chips. Each controller contains 8 input channels with control

logic to check the consistency (parity and length) of received ARINC words and 3 output

channels.

•  Intel i386EX CPU @ 66 MHz. with an embedded timer, used as Real Time Clock (RTC).

•  Memory: 256 Kbytes static RAM (for run-time data, e.g. set-up data, stack, etc.) and 256

Kbytes PROM (for IO firmware).

The Main hardware components are:

•  Intel i386EX CPU @ 66 MHz. with embedded:

� Watch Dog Timer (WDT).

� Timer used as Cycle Timer.

•  Memory: 256 Kbytes static RAM (for run-time data, e.g. set-up data, stack, etc.), 512

Kbytes PROM (for the boot firmware and the application software) and 16 Kbytes Non

Volatile RAM (NVRAM, for non-volatile data, e.g. error log data, ICP data, FCDS

configuration file, etc.).

•  One serial I/O controller with an EIA 485 serial port for maintenance purposes and an EIA

232 serial port for a debug and status monitor.

•  Discrete I/O interfaces with 48 inputs and 32 outputs.

The I/O and Main CPUs are linked through shared memory (16 Kbytes dual ported RAM) to

exchange set-up information, I/O control and ARINC 429 flight data.
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Dual  ported
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Fig. 2- FCDM dual CPU hardware architecture

4 Software architecture

Analysis of the system requirements and the already available hardware resulted in the decision

to develop three software components:

•  A boot strap loader.

•  Firmware for the I/O processor.

•  Software for the Main processor.

Figure 3 depicts this software architecture. It shows the downloadable FCDM/Main software

(by the boot strap loader), the downloadable FCDS configuration file and the ARINC 429 and

discrete inputs/outputs.

ARINC
429
IO

IO Main

Discrete
IO

Boot

Downloadable
Main Sw

Downloadable
FCDS Config. 

File

IO buffer
(sh.mem.)

Main Sw
(PROM)

IO Sw
(PROM)

Fig. 3  FCDM software architecture
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4.1 Boot strap loader

The boot strap loader is used to download data and/or application software (i.e. a hardware

production test/acceptance procedure or the Main application software) and to start application

software.

The hardware production test/acceptance procedure is used to perform a comprehensive

functional test of the FCDM hardware. It is loaded into the FCDM on ground on a dedicated

workbench. This item is outside the scope of this paper.

4.1.1 Safety consideration

The decision whether to start the load function or to start the application program may have a

catastrophic impact on the helicopter safety and is therefore classified to be DO-178B level A.

The down load function itself, however, is level E.

The boot strap loader is defined to be firmware since its functionality will not change in time; it

is located in the FCDM/Main PROM.

4.2 FCDM/IO firmware

The FCDM/IO firmware receives, selects and validates all ARINC 429 data and transmits

ARINC 429 data to a/o the display units through the normal and safety busses.

In the FCDM/IO set-up mode set-up data is exchanged from FCDM/Main to FCDM/IO through

the shared memory. This data is used to initialise the ARINC 429 controllers and the I/O

processing. The load of set-up data is completed with a verification of the checksum of all set-

up data.

In the operational mode FCDM/IO receives, selects and validates (in terms of data coherency:

number of bits and parity) ARINC 429 data. The ARINC 429 controllers perform this task. All

data is time-stamped and stored on its specific location in the shared memory, either in a FIFO

(for data of which not a single sample may be missed) or in a most recent sample buffer (for

data of which always the most recent sample has to be available).

In operational mode FCDM/IO transmits ARINC 429 data as well. ARINC 429 output data is

stored in FIFOs in shared memory. There is one FIFO for every ARINC 429 output channel.

The set-up mechanism allows a flexible configuration of all ARINC 429 inputs and outputs.

Since the basic IO functionality will not change in time, the FCDM/IO is defined to be

firmware.



-10-
NLR-TP-99241

4.2.1 Safety consideration

Since the FCDM handles safety critical control and navigation data all the FCDM/IO firmware

is considered to be level A.

To guarantee the integrity of the FCDM/IO hardware and firmware FCDM/IO performs an

exhaustive Power-on Built-in Test (a/o checksum verification on the firmware and memory

tests). This test is performed only in case of a cold start.

The implementation of a Cyclic Built In Test (CBIT, a/o memory tests) increases the integrity

of FCDM/IO even further.

4.3 FCDM/Main software

The FCDM/Main software implements the major part of the system requirements.

The FCDM/Main software uses tables for all input/output processing, reconfigurations,

calculations and monitoring activities. At start-up these tables are optimised (adding redundant

data from other tables) and actualised with data from the FCDS configuration file to speedup the

real-time processing as much as possible.

A new FCDS configuration file can be downloaded in maintenance mode through the EIA 485

serial link.

In operational mode FCDM/Main processes all ARINC 429 data. All ARINC 429 data is

validated in terms of refresh rate. To meet the system integrity safety critical parameters are

checked for value discrepancies. The integrity of the FCDMs is increased by reading safety

critical data from the cross-link and to check them for value discrepancies.

The ICPs only send incremental data to the FCDMs. FCDM /Main maintains for both ICPs all

modes and states of the flight settings. These settings are stored in the NVRAM, hence after an

in-flight re-start FCDM continues with the most recent values for the settings.

Reconfiguration is determined by reading the RCU input discretes and the RCU information

from the opposite FCDM through the cross-link. Comparing these sets of information makes the

final decision. In case of reconfiguration of equipment, the equipment is not taken into account

for any processing but the remaining equipment takes over.

4.3.1 Safety considerations

To guarantee the integrity of the FCDM/Main hardware, software and FCDS system

consistency FCDM/Main performs a Power-On Self-Test (POST). This POST is executed at

start-up in case of a cold start or fatal error.
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The implementation of a Cyclic Built In Test (CBIT, a/o checksum verification of all set-up

tables, memory tests) increases the integrity of FCDM/Main further.

All operational functions processing flight critical data are considered to be level A. CBIT and

POST functions are level B, while maintenance functions are considered to be level E.

4.3.2 Partitioning

To ensure that more critical software components are not affected by less critical components

the components have to be segregated from each other. One architectural concept, as proposed

by DO-178B to comply with this, is software partitioning.

The FCDM/Main software uses the partitioning to:

•  Provide isolation between functionally independent software components.

•  Isolate faults.

Isolation between software components is achieved by using:

•  Spatial partitioning.

•  Temporal partitioning.

FCDM/Main implements the spatial partitioning by using the i386EX paging mechanism.

Temporal partitioning is used to execute the CBIT as a separate task in background.

5 Software development process

5.1 Requirements process

For the requirements analysis Structured Analysis with Real Time extensions (SA/RT) [Hatley

& Phirbhai] supported by the Cadre TeamWork CASE tool was used. The SA/RT process and

control specifications contain the high level requirements in plain English.

All system requirements are identified with a unique number. This number is reflected within

the requirements analysis (and the SA/RT model) to accommodate requirements traceability

from system requirement to high level requirement.

5.2 Design process

Software design is the process through which high level requirements are translated into low-

level requirements and the software architecture. The software architecture basically consists of

a structure of interrelated modules. The modules contain coherent sets of functions and

definitions of data structures.
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For the design the Structured Design method (SD) [Yourdon] was planned to be used. Since the

system requirements evolved during the implementation of the project the SD model became

unmanageable. It was decided then to stay with the preliminary design and to insert structured

pseudo code into the source files. The pseudo code was extracted from the source files at the

end of the project and forms the main constituent of the design document.

A simple call tree presents the software architecture in the design document.

High level requirements are allocated to specific functions within modules. Function names are

used as identifier for the low-level requirement identification. This accommodates the

requirement traceability from high level requirements to low-level requirements.

5.3 Coding process

The objective of the coding process is to produce source code based upon the software

architecture and the low-level requirements.

For this process the customer required the use of the C programming language. Due to the

criticality of the application an ANSI C compiler is used and the NLR proprietary C coding

standard was enhanced according to the guidelines of [Hatton]. Using a Commercial Of The

Shelf (COTS) static analysis tool enforced the (restricted) use of the C programming language

features.

Since the source code was enhanced with detailed design directives (file headers, function

headers and pseudo code) traceability between low-level requirements and source code was

easily satisfied.

5.4 Integration process

The objective of this process is to produce the application executables by using the target

computer, the source code from the coding process and the software architecture from the

design process.

In a first level of the implementation the core of the FCDM software (the table driven

input/output processing, reconfigurations and calculation activities) was developed and tested in

the UNIX host environment. After the target system became available the FCDM software was

adapted and tuned for the target environment.

To test and debug the application in its target environment a COTS in-circuit emulator in

conjunction with a cross-debugger and a COTS ARINC-429 simulation tool was used.
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The ARINC simulation tool simulates the helicopter environment by producing a number of

relevant ARINC 429 data busses (i.e. simulated helicopter equipment) and displays in real-time

a number of selected ARINC 429 busses from the FCDM.

The emulator enables the developer with step by step operations, memory and register checking,

breakpoint setting, timing analysis, etc.

The target computer used for the integration process was a so-called development board. To be

able to clip-on the emulator this board was not provided with the protective coating, as the

production boards are. Moreover, the watch dog capability was disabled to allow debugging

with the emulator. Apart from that the development board and the production boards are

functionally identical.

UNIX

PC

PC

EmulatorEmulator

Target

Test panelTest panel

Discrete IO ARINC 429

Debug,
Download

VT100

Debug/Spy

E
th

er
ne

t

UNIX UNIX

Fig. 4  FCDM development/integration environment

Figure 4 shows the development/integration environment for the FCDM.

The test panel is used to simulate all discrete inputs/outputs. The UNIX systems are used for the

development and configuration management. The PCs are used for testing and debugging the

application with the in-circuit emulator in conjunction with the cross-debugger and the ARINC

simulation tool. The VT100 terminal is used for in-line debug and spy purposes.
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6 Software verification process

6.1 Verification

Verification is defined in [Ref. DO-178B] as ‘the evaluation of the results of a process to ensure

correctness and consistency with respect to the inputs and standards to that process’. So,

verification is not simply testing, but typically a combination of reviews, analyses and test. The

general objectives of the software verification process are to verify that:

•  The system requirements have been developed into software high-level requirements that

satisfy those system requirements (verification of requirement process).

•  The high-level requirements have been developed into software architecture and low-level

requirements that satisfy the high-level requirements (verification of design process).

•  The software architecture and low-level requirements have been developed into source code

that satisfies the low-level requirements and software architecture (verification of coding

and integration process).

•  The executable object code satisfies the low-level software requirements (testing).

•  The means used to satisfy the verification process objectives are technically correct and

complete for the software level (verification of the verification process itself).

For level A software, [DO-178B] requires that the above objectives are satisfied with

independence, which in practice means that other persons than the developers perform the

verification activities.

For lower software levels less emphasis is on requirements coverage and structural code

coverage and their verification.

With testing as the only exception, all the above verification objectives have been achieved by

analysing and reviewing the outputs of the process. Note that the verification process itself is

subject to verification.

6.2 Testing

Testing is defined in [Ref. DO-178B] as `the process of exercising a system or system

component to verify that it satisfies specified requirements and to detect errors’.  Three types (or

levels) of testing can be distinguished:

•  Validation or hardware/software integration testing.

•  Integration testing.

•  Unit or low-level testing.
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6.2.1 Validation or hardware/software integration testing

Validation or hardware/software integration testing is used to verify that the object code is

compliant with and robust to the high-level requirements. Validation testing is performed by

using the ARINC-429 simulation tool. With this kind of test environment test automation is not

possible, which is a major concern when regression testing has to take place. All validation tests

are performed on an FCDM production board.

6.2.2 Integration testing

Integration testing is used to verify the interrelationships between software requirements and

components and to verify the implementation of the software requirements and software

components within the software architecture. Integration testing is performed by making

emulator scripts and executing them on an FCDM (development) board. The output of these

scripts is then compared with expected output results. This approach makes it possible to

automatically re-run the tests whenever necessary.

6.2.3 Unit or low-level testing

Unit testing is used to verify that the software units are compliant with and robust to the low-

level requirements. This testing is performed by using a COTS test tool that can also provide

detailed structural code coverage information of the tests that have been performed. For this

purpose the tool instruments the source code, this then has to be re-compiled and run again. For

level A software this approach is only allowed when it is guaranteed that the compiler produces

object code that is directly traceable to the source code. All unit tests have been performed on an

FCDM (development) board using an emulator.

The successful implementation of the partitioning mechanism implied that no unit testing was

applied to level E software units.

7 Other life cycle processes

Note: A detailed description of the other DO-178B life cycle processes is outside the scope of

this article.

7.1 Software planning process

The DO-178B document is not a development standard. Basically it consists of lists of

objectives to fulfil in each software life cycle process. The main objective of the planning

process is to define how compliance to the objectives is achieved. For this the actual software

development standard was defined and methods and tools were chosen.
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For example consider the verification process: DO-178B requires the generation of verification

results but does not prescribe where or how to document the results.

For FCDM the [DoD-2167A] standard was used as a guideline for the documentation.

7.2 Software quality assurance process

The software quality process assesses the software life cycle processes and their outputs to

obtain assurance that the objectives are satisfied, that deficiencies are detected, evaluated,

tracked and resolved, and that the software product and software life cycle data conform to

certification requirements.

One of deficiencies found by the FCDM quality assurance manager was that tool qualification

of the unit test tool was insufficient. An audit of the supplier was deemed necessary and

subsequently performed.

7.3 Software configuration management process

The main activities of this process include configuration identification, change control, baseline

establishment and archiving of the software product, including the software life cycle data.

To manage the produced source code the NLR proprietary software repository tool is used.

During the coding process this tool enables the developers to develop several modules in

parallel and to update their development version with the latest committed version.

7.4 Certification liaison process

The objective of the certification process is to establish communication and mutual

understanding between the producer and the certification authority. For this it is important to

communicate the Plan for Software Aspect of Certification (PSAC) with the certification

authority as soon as possible. Changes required by the authority at a later stage (during

development) may be very difficult and expensive to implement.

8 Concluding remarks

The development of the safety critical avionics FCDM module as described above led to a

successful certification of the FCDS.

As usual there appeared to be a conflict between the proposed development life cycle and the

time to market as well as evolving system requirements. The major impact within the

development phase was that the Yourdon structured design method for the detailed design

appeared to be too heavy to maintain; the Yourdon structured design mehtod was replaced by

the far more pragmatic use of pseudo code and a simple call tree for each software component.
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The major impact for the verification was that the three test processes (validation, integration

and unit testing) had to be performed in parallel.

An early separation of software levels for the diverse software functions in the FCDM module is

very advantageous. Not only to ensure that more critical components are not affected by less

critical components, which is a safety requirement, but also in terms of reduction in the effort of

the software verification process.

The use of a coding standard is obvious for a safety critical application. However, since C isn’t

Ada additional guidelines are necessary to make it restrictive and by that safe. A (COTS) tool to

enforce the coding standard and the restrictive use of C relinquishes a lot of tedious code

walkthroughs.

The use of tables to implement the input/output processing, reconfigurations, calculations and

monitoring activities resulted in highly compact source code. This approach resulted in easily

maintainable code and corresponding test cases and procedures.

The tables were tested both manually (by inspection) and at the integration/validation level.

DO-178B is known to be a very mature and adequate guideline. The practical usage of DO-

178B in the FCDM project confirms this. It provides the flexibility required in commercial

applications development, while not compromising the safety requirements.

9 Abbreviations

AHRS Attitude Heading Reference System

CBIT Cyclic Built In Test

COTS Commercial Of The Shelf

CPU Central Processor Units

DPIFR Double Pilot Instrument Flight Rules

DPVFR Dual Visual Flight Rules

FCDM Flight Control Display Module

FCDS Flight Control and Display System

ICP Instrument Control Panels

ND Navigation Display unit

NVRAM Non Volatile RAM

PFD Primary Flight Display unit

POST Power-On Self-Test
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PROM Programmable Random Access Memory

PSAC Plan for Software Aspect of Certification

RAM Random Access Memory

RCU Reconfiguration Control Unit

RTC Real Time Clock

SA/RT Structured Analysis with Real Time extensions

SD Structured Design method

SPIFR Single Pilot Instrument Flight Rules

SPVFR Single Pilot Visual Flight Rules

WDT Watch Dog Timer
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