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Abstract
An algorithm to recover C0-continuity of a block-by-block adapted multi-block
grid is proposed. Starting point for the algorithm is the notion that any adaptation
or modification of a single-block structured grid is equivalent to a map from the
unit cube onto itself. The algorithm is based on two types of operations: averaging
of different grids and continuity recovery by modification of grids. The averaging
operation is based on interpretation of grids in terms of monitor functions to drive
adaptation. The continuity recovery operation is based on employing a modified
form of Coons patch interpolation. An example in two-dimensions is presented
which clearly demonstrates the potential of the proposed algorithm in the sense
that C0-continuity is recovered while the resolution and local orthogonality of the
block-by-block adapted grid are approximately preserved.

Introduction
Consider a two-block grid consisting of two cube-shaped blocks that have one
face in common. Suppose that initially there exists a boundary-conforming grid
in each of the two blocks. As a consequence, two grids are present at the common
face, each of them being a subset of the nodes of the grid in a neighbouring block.
In the initial situation the two grids at the common face are identical. When we
adapt the grids in the blocks separately, the two adapted grids at the common face
are not identical in general. We will then call the compound grid discontinuous,
based on the following definition:

Definition 1 We will call a multi-block grid C0-continuous if the following three
conditions hold:

1. In each of the blocks there exists a boundary-conforming grid that is the im-
age of a uniform grid in the unit cube under a bijective map with a Jacobian
that is positive at all points of the unit cube.

2. In each face that is part of more than one block the grids associated with
the different blocks are identical.
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3. In each edge that is part of more than one face the grids associated with the
different faces are identical.

Similar to the problem ofC0-continuity at a common face of two blocks, the same
kind of problem occurs at a common edge of a number of faces, introducing more
complexity into the multi-block problem. The objective of the present paper is:

Objective: To provide an algorithm to modify a block-by-block adapted multi-
block grid such that C0-continuity over block interfaces is obtained, subject to the
following two restrictions:

1. Adaptation characteristics should be preserved,

2. Orthogonality should be preserved approximately.

The first requirement evidently aims at keeping the modification of the block-
by-block adapted grid as limited as possible in order to not destroy the obtained
resolution. The second requirement is derived from general accuracy considera-
tions.

The strategy chosen for the C0-continuity algorithm is to employ a step-by-step
approach, i.e., using a number of subsequent modifications of the maps that define
the block-by-block adapted grid.

Global description of proposed algorithm
Consider the single-block part of an initial multi-block grid depicted in Fig.1 and
the same part in Fig.2 after employing a block-by-block adaptation algorithm. The
proposed C0-continuity recovery algorithm is based on two types of operations:

1. Averaging of grids in block interfaces,

2. Continuity recovery by modification of grids in block and face interiors.

The averaging operation is indicated in Fig.3, showing new grid point locations
on the two block-block interfaces, obtained by averaging two grids per interface,
each of them being a subset of the nodes of the grid in a neighbouring block. The
continuity recovery operation is indicated in Fig.4, showing a modified grid con-
nected to the requested grid point locations on the block-block interfaces, while
preserving the resolution and orthogonality depicted in Fig.3 to some degree.

Using these two operations we can define theC0-continuity recovery algorithm in
terms of four consecutive steps following block-by-block adaptation:

1. Construct averaged grids in block-faces based on grids in adjacent blocks,
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2. Construct averaged grids in block-edges based on averaged grids in adjacent
faces obtained in the first step,

3. Recover continuity between averaged grids in block-faces and averaged
grids in block-edges by modification of the averaged grids in block-faces,

4. Recover continuity between grids in blocks and modified grids in block-
faces by modification of the grids in blocks.

Equivalence of grid adaptation/modification and maps
An important notion in the work presented here is that single block grid adapta-
tion/modification is equivalent to constructing a boundary-conforming continuous
invertible map from the unit cube onto itself. To see this, we use the property of
structured grids that any single-block grid in a given block 
B in the physical do-
main can be generated by applying a boundary-conforming continuous invertible
map x,

x : [0; 1]3 7! 
B � IR
3
; (1)

to a uniform grid xijk in the unit cube:

xijk = x((
i

N1

;
j

N2

;
k

N3

)T ); (2)

with i 2 f0; :::; N1g, j 2 f0; :::; N2g, k 2 f0; :::; N3g, where N1, N2 and N3 are
the number of cells in the three different coordinate directions in the unit cube.

Similarly, one could construct an adapted/modified grid by using an alternative
map ~x,

~x : [0; 1]3 7! 
B � IR
3
: (3)

The maps x�1 and ~x provide a map p from the unit cube onto itself:

p : [0; 1]3 7! [0; 1]3; p(�) = x
�1( ~x(�)): (4)

Hence the alternative map ~x(�) can be written as:

~x(�) = x(p(�)); (5)

which shows that single block grid adaptation/modification is equivalent to con-
structing a boundary-conforming continuous invertible map p(�) from the unit
cube onto itself. Fig.5 illustrates the compound map Eq.(5), where the map A rep-
resents p(�) and the map M represents x(p). The two domains in Fig.5 represent
the parametric domains associated with the adapted and initial grid respectively.

It is noted that similar reasoning can be applied to grids in block-faces and block-
edges. In case of a block-face grids are associated with maps operating on the unit
square, while in case of a block-edge grids are associated with maps operating on
the unit interval.
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Averaging operation
Consider a block-face in which we have two different adapted grids associated
with the grids in two adjacent blocks. Due to the equivalence of grid adaptation
and maps, as described in the previous section, we can associate the two differ-
ent grids with two different maps from the unit square onto itself, see the maps
indicated as A1 and A2, respectively, in Fig.6. The key point of the grid averag-
ing operation proposed here is to interpret the two maps in terms of four monitor
functions and to employ these to drive an adaptation operation which again con-
sists of a map from the unit square onto itself. Since each of the monitor functions
consists of one of the two coordinates defined by one of the maps A1 or A2, the
resolutions provided by both maps A1 and A2 will be represented by the averaged
map Aav.

Two candidates are proposed here for the underlying adaptation procedure:

1. Laplace-Beltrami operator (see [1] and [2]),

2. Modified Anisotropic Diffusion (MAD) operator (see [3] and [4]).

The advantage of the Laplace-Beltrami operator is that when the maps A1 and A2

are identical the averaged map Aav will be also identical to A1 and A2, while the
MAD operator does not satisfy this criterion. At the other hand, the advantage
of the MAD operator is that it is guaranteed to produce a regular averaged map
Aav [5], while such mathematical proof does not exist for the Laplace-Beltrami
operator.

Continuity recovery operation
Consider a grid in a block-face with different grids on the edges as resulting from
the averaging operation described above. To recover continuity between the grid
in the face and the grids on the edges we start by employing the equivalence be-
tween grid adaptation/modification and maps again. In Fig.7 the face and averaged
edge grids are depicted in the diagrams at the top, representing the parametric do-
mains associated with the initial and block-by-block adapted grid respectively. To
modify the face grid such that continuity with respect to the averaged edge grids
is obtained we employ an extension of the compound map. The extension, con-
sisting of the map C, see Fig.7, constitutes the continuity recovery operation.

Instead of modeling the map C directly we model it’s inverse C�1, see Fig.8. The
advantage is that we can use information concerning the aspect ratio distribution of
the block-by-block adapted grid in the physical domain without facing an implicit
formulation. To illustrate this, let the map C be formally defined in terms of two
functions u(�; �) and v(�; �), both mapping the unit square onto the unit interval.
All information of the block-by-block adapted grid is available as functions of u
and v, the coordinates in the parametric domain of the block-by-block adapted
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grid, see Fig.7. Hence, an explicit formulation for the map between (u; v)T and
(�; �)T can be obtained by using u and v as the independent variables instead
of � and �. The disadvantage that the obtained map (�(u; v); �(u; v))T must be
inverted numerically is limited since the piecewise linear approach proposed in
[4] is direct, robust and cost-effective.

The map C
�1 is modeled by a modified Coons patch, see the Appendix. In con-

trast to a conventional Coons patch [6] where a function on the boundary of a
unit square or cube is interpolated to the interior by means of linear interpolation
functions, e.g. u and 1 � u, the modified Coons patch proposed here employs
non-linear interpolation functions. For example, the function u is replaced by:

f

Z u

0

�(u; v; w)dug=f

Z
1

0

�(u; v; w)dug; (6)

where �(u; v; w) is an arbitrary positive function. Note that when �(u; v; w) � 1
the conventional Coons patch is recovered. The objective of this modification is
to make the interpolation controlable by the function �. In case of the map C

�1,
we take � as:

�(u; v; w) = fkxuk=max(kxvk; kxwk)g
2
; (7)

where x 2 IR
3 is the physical coordinate. When the block-by-block adapted grid

locally satisfies kxuk=max(kxvk; kxwk) << 1 (small aspect ratio), the interpo-
lation function Eq.(6) will locally be approximately independent of u which is a
necessary condition to preserve orthogonality to some degree [3, 4].

As an example of the modeling of the map C
�1 consider the grid in Fig.9 which

could be the result of a typical block-by-block adaptation procedure showing high
resolution areas along the circular boundaries and in the symmetry plane. In re-
ality we have generated the grid as the image of a uniform grid in the unit square
under a map M which is defined as follows.

M : [0; 1]2 7! 
 � IR
2
; M(p; q) = r(q)(cos(�(p)); sin(�(p)))T ; (8)

with

�(p) =

�
�( 1

2
� 2m�1jp� 1

2
j
m); p <

1

2
;

�( 1
2
+ 2m�1jp� 1

2
j
m); p �

1

2
;

(9)

and

r(q) =

�
1 + 2m�1qm; q <

1

2
;

2� 2m�1(1� q)m; q �
1

2
:

(10)

In the present example we have taken m = 5. Let the averaging operation de-
scribed in the previous section result in the grid point distribution on the inner
circular boundary depicted in Fig.10, generated by the map M(p̂(p); 0) with

p̂(p) = p+ c p(1� p); c = 0:99: (11)
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Employing a conventional Coons patch to model C�1 results in the grid depicted
in Fig.11 showing collapsed cells along the circular boundaries. In contrast, em-
ploying a modified Coons patch to model C�1 results in the grid depicted in
Fig.12 showing regular cells everywhere. Note that in both cases the initial high
resolution areas visible in Fig.9 are preserved.

Concluding remarks
The potential of the proposed algorithm to recover C0-continuity of a block-by-
block adapted multi-block grid is clearly demonstrated by an example in two-
dimensions in the sense that C0-continuity is recovered while the resolution and
local orthogonality of the block-by-block adapted grid are approximately pre-
served. The two types of operations on which the algorithm is based, averaging of
different grids and continuity recovery by modification of grids, can also be used
in a multi-block environment with advanced topology identities such compound
edges and faces [7].
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Figure 1: Single-block part of initial
multi-block grid.

discontinuous at block interfaces

Figure 2: Single-block part of block-by-
block adapted multi-block grid.

averaged grids

Figure 3: Averaged grids at block inter-
faces.

recovered continuity

Figure 4: Recovered C0-continuity.
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Figure 5: Adaptation represented by compound map.
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Figure 7: Continuity recovery represented by extended compound map.
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C-1 : Interpolation by means of Modified  Coons Patch

-1

continuity recovery

parametric domain
of adapted grid

C

Figure 8: Advanced interpolation in parametric domain.

Figure 9: Adapted single-block grid
around cylinder.

Figure 10: Requested grid on inner cir-
cular boundary.

Figure 11: Recovered continuity using
conventional Coons patch.

Figure 12: Recovered continuity using
modified Coons patch.

NLR-TP-2000-371
-12-



Appendix: Modified Coons patch in three dimensions

Given b(u; v; w) 2 C0 : @([0; 1]3) 7! @
b � IR3, and x(u; v; w) 2 C1 :
[0; 1]3 7! 
B � IR3, a modified Coons patch in three dimensions is defined as:

T3D(u; v; w; b(u; v; w); x(u; v; w)) =
1X
i=0

�i(u; v; w)b(i; v; w) +

1X
j=0

�j(u; v; w)b(u; j; w) +

1X
k=0


k(u; v; w)b(u; v; k)

�

1X
i=0

1X
j=0

�i(u; v; w)�j(u; v; w)b(i; j; w)

�

1X
i=0

1X
k=0

�i(u; v; w)
k(u; v; w)b(i; v; k)

�

1X
j=0

1X
k=0

�j(u; v; w)
k(u; v; w)b(u; j; k)

+

1X
i=0

1X
j=0

1X
k=0

�i(u; v; w)�j(u; v; w)
k(u; v; w)b(i; j; k);

with

�1(u; v; w) = 1� �0(u; v; w);

�0(u; v; w) = 1� f

Z u

0

�(u; v; w)dug=f

Z
1

0

�(u; v; w)dug;

�1(u; v; w) = 1� �0(u; v; w);

�0(u; v; w) = 1� f

Z v

0

 (u; v; w)dvg=f

Z
1

0

 (u; v; w)dvg;


1(u; v; w) = 1� 
0(u; v; w);


0(u; v; w) = 1� f

Z w

0

�(u; v; w)dwg=f

Z
1

0

�(u; v; w)dwg;

�(u; v; w) = fkxuk=max(kxvk; kxwk)g
2;

 (u; v; w) = fkxvk=max(kxuk; kxwk)g
2;

�(u; v; w) = fkxwk=max(kxuk; kxvk)g
2:
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