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ABSTRACT

Dynamic games in which each player has an exponential cost criterion are referred to as risk-sensitive

dynamic games. In this paper, Nash equilibra are considered for such games. Feedback risk-sensitive

Nash equilibrium solutions are derived for two-person discrete-time linear-quadratic nonzero-sum

games, both under complete state observation and shared partial observation.
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1 Introduction

This paper studies discrete-time dynamic games where each player has an exponential-of-integral

cost criterion. For short, the latter game is referred to as a risk-sensitive dynamic game. Risk-sensitive

control is well studied in literature as an extension of classical control. The study of this extension to

dynamic games seems to be new. As result of this, we develop Nash equilibrium solutions both under

complete observation and shared partial observation.

Linear-Exponential-Gaussian (LEG) control has been introduced in the early 1970’s [1], [2]. In Ja-

cobson [1], LEG control for discrete time with perfect state observation is treated. Jacobson also

showed an equivalence of the optimal LEG control with the solutions of deterministic (cooperative

and noncooperative) zero-sum quadratic games. In Speyer et al. [2], LEG control for discrete time

with partial state observation is treated. For the case with costs only on the terminal state, it turned out

that the feedback control law is a linear function of the current state. For general linear-exponential-

quadratic-Gaussian (LEQG) control with costs on the intermediate states, [2] also obtained an optimal

controller which is a linear function of the smoothed estimate of the entire state history.

Subsequently, Whittle [3] and [4], completed these results and characterized the solution in terms of

a certainty equivalence principle. It was Whittle too who introduced the name risk-sensitive LQG

control. Whittle assumes that the control at the current time is a function of the observation history

up to the previous time, and obtained the solution for general LEQG control for discrete time with

partial state observation. Jaensch and Speyer [5] and Fan et al. [6] extend the results of Whittle for

the slightly more natural assumption that the control at the current time is a function of the observation

history up to the current time.

LEQG control in continuous time was treated by Bensoussan and Van Schuppen, [7] for the par-

tially observable case. Bensoussan [8] gives a good characterization of both the complete and partial

observation cases.

In James et al. [9] finite horizon partially observed risk-sensitive stochastic control for discrete-time

for nonlinear systems was considered. As in Whittle [3] and [4], they consider control with one-

step-delayed observation. Their approach was motivated by the method used by Bensoussan and Van

Schuppen [7] and the well-known separation method for risk-neutral control.

Collings et al. [10] present the output feedback discrete-time risk-sensitive LQG control solution de-

rived via the methods in [7], [9], with a one-step delayed observation. With these methods, the solution

is obtained without appealing to a certainty equivalence principle. In James and Baras [11], new re-

sults are presented concerning the certainty equivalence principle under certain standard assumptions.

In this paper, we go beyond LEQG control by considering discrete-time Nash equilibrium solutions

in dynamic games with exponential cost criteria. For dynamic games without exponential cost cri-
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teria, i.e. the risk-neutral case, we refer to Başar and Olsder [12]. The risk-sensitive dynamic game

problem is formulated in Section 2 for the special case of a two-person linear-quadratic nonzero-sum

game. In this section, also the definition of a risk-sensitive Nash equilibrium is given. In Section 3,

two theorems for the feedback risk-sensitive Nash equilibrium solution are derived, one for the com-

plete state observation case and one for the shared partial observation case. The derivation leading

to these these theorems is mainly based on the results of the book of Başar and Olsder [12] on the

theory of noncooperative dynamic games, and the detailed proofs of Whittle [3] Jaensch and Speyer

[5] and Fan et al. [6] on risk-sensitive control. In Section 4, both theorems are applied to a two-person

linear-quadratic nonzero-sum game. First, the feedback risk-sensitive Nash equilibrium solution in

the complete observable case is derived. Next, it is shown that the feedback Nash equilibrium solu-

tion in the shared partial observable case can be constructed from the feedback risk-sensitive Nash

equilibrium design and two risk-modified Kalman filters.

An earlier version of this paper has been presented at the 1995 ACC [13].



- 7 -
NLR-TP-2001-626

2 Problem formulation

We will consider a two-person discrete-time linear-quadratic dynamic game with exponential cost

criteria. The system model is described by

xk+1 = Akxk +B1
ku

1
k +B2

ku
2
k + wk (1)

where xk ∈ R
n, ui

k ∈ R
mi , and wk ∈ R

l. The measurement model is

zk = Hkxk + vk (2)

where zk ∈ R
p and vk ∈ R

p. The random variable x0 is normally distributed with mean x̂0 and with

covariance matrix P0, the processes {wk} and {vk} are assumed to be zero-mean, jointly Gaussian,

independent random variables for all k = 0, 1, . . . , N with known covariance matrices Qw
k > 0 and

Rv
k > 0, respectively.

Cost functional for player i is given by

J i(θi) = E
{−θi exp(−θi Ψi

0)
}

(3)

where the random cost Ψi
0 are

Ψi
0 =

1
2
x′NQ

i
NxN +

1
2

N−1∑
k=0

(x′kQ
i
kxk + ui′

kR
ii
k u

i
k + uj′

k R
ij
k u

j
k). (4)

It is assumed that all matrices are of appropriate dimensions, Qi
k are symmetric and Qi

k ≥ 0 for

k = 0, 1, . . . , N and Rii
k > 0 for k = 0, 1, . . . , N − 1. The parameters θi are some scalar constants

(positive or negative) which can be characterized as the risk-sensitivity parameter; they measure the

optimizers’ sensitivity to risk. If θi is positive, then player i behaves as if unobservables would take

values in his advantage, which is an optimistic attitude (i.e., risk-seeking). If θi is negative, then player

i behaves as if unobservables would take values in his disadvantage, which is a pessimistic attitude

(i.e., risk-averse). It is assumed that the players have different risk-sensitivity parameters.

The objective of both players is to minimize their cost function over the class of control laws. It

is assumed that both players know the state as well as the cost functions. During the evolution of

the game it is assumed that both players have the same information on the (either fully or partially

observed) state and know each other’s control function up to the previous time. The information space

Wk of both players is the same at stage k and is defined as

Wk =
{
x0, x1, . . . , xk; ui

0, u
i
1, . . . , u

i
k−1; i = 1, 2; k

}

for complete state observation, and

Wk =
{
z0, z1, . . . , zk; ui

0, u
i
1, . . . , u

i
k−1; i = 1, 2; k

}
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for shared partial state observation.

The available information ηik is a subset of the information space Wk. The strategy γi
k maps the

available information ηik into the control, that is γi
k(·) : Wk → R

mi , so that ui
k = γi

k(η
i
k). For given

values of θ1 and θ2, an admissible strategy pair (γ1∗ , γ2∗) constitutes a risk-sensitive Nash equilibrium

solution if the following inequalities are satisfied for γi ∈ Γi, i = 1, 2

J1∗ ∆= J1(γ1∗ , γ2∗ ; θ1) ≤ J1(γ1, γ2∗ ; θ1)

J2∗ ∆= J2(γ1∗ , γ2∗ ; θ2) ≤ J2(γ1∗ , γ2 ; θ2)

where γi ∆=
(
γi

0, γ
i
1, γ

i
2, . . . , γ

i
N−1

)
. The problem is to determine the feedback risk-sensitive Nash

equilibrium. Therefore it is assumed that the available information of player i for the complete state

observation case is ηik = {xk} and for the shared partial state observation case this is ηik = {zk}. In

this paper, the Nash equilibrium solution is characterized for both the complete and the shared partial

observation case.
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3 Risk-sensitive Nash equilibrium strategies

In this section two theorems are derived for feedback Nash equilibrium solutions in risk-sensitive

dynamic games, one for complete state observation and one for shared partial observation.

First the following proposition for the risk-sensitive dynamic game problem is derived, a similar

result for risk-sensitive optimal control was given in Whittle [3, Theorem 1], Jaensch and Speyer [5,

Theorem 3.1], and Fan et al. [6, Theorem 3.1].

Proposition 1 Let Si = Ψi
0 + θ−1

i ΨD, where

ΨD = 1
2 (x0 − x̂0)′P−1

0 (x0 − x̂0) + 1
2 v

′
0(R

v
0)

−1v0

+1
2

N−1∑
k=0

{
w′

k(Q
w
k )−1wk + v′k+1(R

v
k+1)

−1vk+1

}
.

(5)

If for i = 1, 2 the function Si is minimized with respect to ui
k, . . . , u

i
N−1 and extremized with respect

to x0, . . . , xN and zk+1, . . . , zN for a given value of Wk, where the order of optimization is irrelevant

and the infima and extrema are attained and denoted by the value (u1∗
k , u

2∗
k ), then the strategy pair

(or control law) at stage k defined by
(
γ1∗

k , γ
2∗
k

)
is the risk-sensitive Nash equilibrium at stage k.

Proof: In order to find the risk-sensitive Nash equilibrium solution for the problem with cost-

functionals of exponential-quadratic form as given in (3), it is shown in [14, Appendix], that the prob-

lem reduces to one in which for each player a Dynamic Programming recursion must to be solved.

The Dynamic Programming recursion for player i, a recursion in terms of Φi
k(Wk), is given as

Φi
k(Wk) = min

ui
k

ext
zk+1

Φi
k+1(Wk+1) (6)

with boundary condition1

Φi
N (WN ) = ext

x0...xN

(
Ψi

0 + θ−1
i ΨD

)
. (7)

Here, we use the term θi-extremizing, abbreviated as “ext”, to denote an operation in which one

minimizes when θi ≥ 0 and maximizes when θi < 0.

It turns out that for every ith player recursion (6), in which we also have to take into account possible

dependence of ui∗
k on xk, must be satisfied. The minimizing control is denoted by ui∗

k . The recursion

means that for every ith player the following equation in which (uj
k, . . . , u

j
N−1) = (γj∗

k , . . . , γ
j∗
N−1)

is substituted, must be solved

1Ψi
0 + θ−1

i ΨD is a function of x0 . . . xN , ui
0 . . . ui

N−1, uj
0 . . . uj

N−1 and z0 . . . zN .
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Φi
k(Wk) = min

UN−1
i,k

ext
ZN

k+1

ext
XN

(
Ψi

0 + θ−1
i ΨD

)
. (8)

In general, here we use the notationXk = (x0, x1, . . . , xk),XN
k = (xk, xk+1, . . . , xN ) and UN−1

i,k =(
ui

k, u
i
k+1, . . . , u

i
N−1

)
, with a similar convention for other variables.

Thus, the function Ψi
0 + θ−1

i ΨD is minimized with respect to the decisions of player i currently

unmade and θi-extremized with respect to all quantities currently unobservable.

3.1 Decomposition

The recursion equation (8) can be decomposed into a forward recursion P i
k and a backward recursion

F i
k. Together with Proposition 1, this results in two theorems as stated below. First, the decomposition

itself is shown.

At stage k, the observation zk is available and decision ui
k has not yet been taken. The past function for

the ith player at k is a function of z0, . . . , zk; ui
0, . . . , u

i
k−1. The future function for the ith player at

k is a function of zk+1, . . . , zN ; ui
k, . . . , u

i
N−1. According to Proposition 1 the order of optimization

is irrelevant and thus the decomposition of (8) yields

Φi
k(Wk) = ext

xk

{
P i

k(xk,Wk) + F i
k(xk)

}
(9)

where the functions P i
k(xk,Wk) and F i

k(xk) are given below.

The past function P i
k(xk,Wk) of player i at stage k is defined as

P i
k(xk,Wk)

∆= ext
Xk−1

[
1
2 θ

−1
i (x0 − x̂0)′

(
W̃ i

0

)−1
(x0 − x̂0)

+
1
2
θ−1
i v

′
0 (Rv

0)
−1v0 +

1
2

k−1∑
j=0

{
gij

(
xj , u

i
j , u

l
j

)

+ θ−1
i

(
nj

(
xj+1, u

i
j , u

l
j , xj

)
+mj+1(zj+1, xj+1)

)}]
.

(10)

The future function F i
k(xk) of player i at stage k is defined as

F i
k(xk)

∆= min
UN−1

i,k

ext
XN

k+1

ext
ZN

k+1

[
1
2
x′NQNxN +

1
2

N∑
j=k+1

θ−1
i mj(zj , xj)

+
1
2

N−1∑
j=k

{
gij

(
xj , u

i
j , u

l
j

)
+ θ−1

i nj

(
xj+1, u

i
j , u

l
j , xj

)}]

= min
UN−1

i,k

ext
XN

k+1


1

2
x′NQNxN +

1
2

N−1∑
j=k

{
gij

(
xj , u

i
j , u

l
j

)

+θ−1
i nj

(
xj+1, u

i
j , u

l
j , xj

)}]

(11)
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with

gik
(
xk, u

i
k, u

j
k

) ∆= x′kQ
i
kxk + ui′

kR
ii
k u

i
k + uj′

k R
ij
k u

j
k

mk(zk, xk)
∆= (zk −Hkxk)

′ (Rv
k)

−1 (zk −Hkxk)

and

nk

(
xk+1, u

i
k, u

j
k, xk

) ∆=
(
xk+1 −Akxk −Bi

ku
i
k −Bj

ku
j
k

)′

× (Qw
k )−1

(
xk+1 −Akxk −Bi

ku
i
k −Bj

ku
j
k

)
for i = 1, 2 and j �= i.
It follows immediately that P i

k(xk,Wk) satisfies the following forward recursion

P i
k+1(xk+1,Wk+1) = ext

xk

[
P i

k(xk,Wk) +
1
2
gik

(
xk, u

i
k, u

j
k

)
+

+
1

2θi

(
nk

(
xk+1, u

i
k, u

j
k, xk

)
+mk+1(zk, xk)

)] (12)

with initial condition

P i
0(x0,W0) =

1
2θi

(x0 − x̂0)′P−1
0 (x0 − x̂0) +

1
2θi
v′0 (Rv

0)
−1v0.

Similarly, the function F i
k(xk) satisfies the following backward recursion

F i
k(xk) = min

ui
k

ext
xk+1

[
F i

k+1(xk+1) +
1
2
{
gik

(
xk, u

i
k, u

j
k

)

+θ−1
i nk

(
xk+1, u

i
k, u

j
k, xk

)}] (13)

with terminal condition F i
N (xN ) = 1

2x
′
NQ

i
NxN .

The following two theorems follow directly from the discussion on the dynamic programming recur-

sion (8) and on the decomposition of function Si. The theorems concern the recursions needed to

determine feedback risk-sensitive Nash equilibria. For the complete observation case, we have the

following theorem.

Theorem 1

Let ui∗
k be the minimizing value of ui

k in the recursion equation F i
k(xk) for i = 1, 2, then the

feedback risk-sensitive Nash equilibrium at stage k for the complete observable case is given by(
γ1∗

k (xk), γ2∗
k (xk)

)
.
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For the shared partial observation case, we have the following theorem which is in fact an alternative

form of Proposition 1.

Theorem 2

Let ui∗
k be the minimizing value of ui

k in the recursion equation F i
k(xk) for i = 1, 2, and let vector

x̆i
k be the value of xk extremizing P i

k(xk,Wk) + F i
k(xk). Then, the feedback risk-sensitive Nash

equilibrium at stage k for the partially observable case is given by
(
γ1∗

k (x̆1
k), γ

2∗
k (x̆2

k)
)
.

This theorem is in fact an extension of [5, Theorem 3.2], in which only one player is considered.

Proof: Both theorems follow directly from the discussion on the dynamic programming recur-

sion (8) and on the decomposition of function Si, see (9)-(11). If the state is completely observable,

then the feedback risk-sensitive Nash equilibrium solution is
(
γ1∗

k (xk), γ2∗
k (xk)

)
and is determined

from the backward recursions F i
k(xk) for i = 1, 2 in (13). See also [12, Theorem 6.6] in which the

risk-neutral case is considered. The feedback risk-sensitive Nash equilibrium solution for the case of

shared partial observation is obtained by replacing xk by x̆i
k, where x̆i

k is the value of xk extremizing

P i
k(xk,Wk) + F i

k(xk). Theorem 2 is, in fact, an extension of, Theorem 3.2 in [5] and [6] where only

one player (optimal control problem) is considered.

Both theorems are applied to the two-person linear-exponential-quadratic dynamic game as formu-

lated in Section 2, the results of which are presented in the following section.
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4 Evaluation of forward and backward recursions

In this section, first the feedback risk-sensitive Nash equilibrium solutions for the complete obser-

vation case is determined from the backward recursions F i
k(xk) for i = 1, 2, see Corollary 1 in

Section 4.1. Next, the forward recursions P i
k(xk,Wk) for i = 1, 2 are evaluated and finally the feed-

back risk-sensitive Nash equilibrium solutions for the shared partial observation case is determined,

see Corollary 2 in Section 4.2.

4.1 Complete observable risk-sensitive dynamic game

The LEQ dynamic game solution follows as a special case of Theorem 1. First some preliminary

notation for Corollary 1 is given. Define

(
M i

k

)−1 =
(
M̃ i

k

)−1 + θiQw
k . (14)

Let N i
k (i = 1, 2, k = 0, 1, . . . , N) be appropriate dimensional matrices satisfying the set of linear

matrix equations

(
R11

k +B1′
k M

1
k+1B

1
k

)
N1

k +B1′
k M

1
k+1B

2
kN

2
k = B1′

k M
1
k+1Ak (15)

(
R22

k +B2′
k M

2
k+1B

2
k

)
N2

k +B2′
k M

2
k+1B

1
kN

1
k = B2′

k M
2
k+1Ak (16)

where the matrices M̃ i
k are obtained recursively from

M̃1
k = F ′

kM
1
k+1Fk +N1′

k R
11
k N

1
k +N2′

k R
12
k N

2
k +Q1

k (17)

M̃2
k = F ′

kM
2
k+1Fk +N2′

k R
22
k N

2
k +N1′

k R
21
k N

1
k +Q2

k (18)

with boundary conditions M̃1
N = Q1

N and M̃2
N = Q2

N and with

Fk = Ak −B1
kN

1
k −B2

kN
2
k . (19)

The feedback Nash equilibrium solution for the complete observation case is fully determined by the

recursions for future functions of both players. The future function for player i is quadratic in the state

variable

F i
k(xk) =

1
2
x′kM̃

i
kxk. (20)

If θi < 0, then it is necessary that M̃ i
l + (θiQw

k )−1 < 0 for l > k.
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Corollary 1 The two-person linear-exponential-quadratic dynamic game with Qi
k ≥ 0 and Rij

k ≥ 0

(j �= i), admits a unique feedback risk-sensitive Nash equilibrium solution, if and only if, (15)-(16)

admits a unique solution set
{
N i

k; i = 1, 2, k = 0, 1, . . . , N
}

, in which case the equilibrium strategies

are linear in the state variable

γi∗
k (xk) = −N i

kxk. (21)

For a proof the backwards recursive equations (13) are solved here for k = N,N − 1, . . . , 0. This

goes similar as in the proof of [12, Corollary 6.1].

Remark 1: The nonnegative definiteness requirements imposed on Qi
k and Rij

k are sufficient condi-

tions so that the future functions (13) are strictly convex and can be minimized, but they are by no

means necessary. Less stringent conditions for which the statement in Corollary 1 is still true is that

Rii
k +Bi′

kM
i
k+1B

i
k > 0, i = 1, 2, k = 0, 1, . . . , N.

Furthermore, if the set of equations (15) and (16) admits more than one set of solutions, every such

set constitutes a feedback risk-sensitive Nash equilibrium solution. See also [12, Remark 6.4].

Remark 2: A precise condition for which the set of equations (15) and (16) admits a unique solution

is the invertibility for each k = 0, 1, . . . , N of the matrix in which the iith block is given by Rii
k +

Bi′
kM

i
k+1B

i
k and the ijth block by Bi′

kM
i
k+1B

j
k, where i, j = 1, 2, j �= i. See also [12, Remark 6.5].

4.2 Partially observable risk-sensitive dynamic game

The partially observable LEQ dynamic game solution follows as a special case of Theorem 2. First

some preliminary notation for Corollary 2 is given. Let the vectors x̂i
k satisfy risk-modified Kalman

filter recursion equations

x̂i
k+1 = Akx̂

i
k +B1

ku
1
k +B2

ku
2
k

+Ak

[(
W̃ i

k

)−1 +H ′
k(R

v
k)

−1Hk + θiQi
k

]−1

·{H ′
k(R

v
k)

−1
(
zk −Hkx̂

i
k

) − θiQi
kx̂

i
k

}
(22)

with initial condition x̂i
0 = x̂0.

The matrices W̃ i
k satisfy the set of forward matrix Riccati equations

W̃ i
k+1 = Ak

[(
W̃ i

k

)−1
+H ′

k(R
v
k)

−1Hk + θiQi
k

]−1

A′
k +Qw

k (23)

with initial condition W̃ i
0 = P0.



- 15 -
NLR-TP-2001-626

For the partial observation case we must also solve the recursions for the past functions of both players.

Solving these recursions yields that the past function for player i has the form

P i
k(xk,Wk) =

1
2θi

(
xk − x̂i

k

)′ (
W̃ i

k

)−1(
xk − x̂i

k

)

+
1

2θi
(zk −Hxk)′ (Rv

k)
−1 (zk −Hxk) + . . .

(24)

where . . . indicates terms independent of xk.

If θi < 0, then it is necessary that W̃ i
l + (θiQi

k)
−1 < 0 for l ≤ k.

Corollary 2 The two-person linear-exponential-quadratic dynamic game and with partial observa-

tions without delay, admits a unique feedback risk-sensitive Nash equilibrium solution, if and only

if, (15) and (16) admits a unique solution set
{
N i

k; i = 1, 2, k = 0, 1, . . . , N
}

, in which case the

equilibrium strategies are

γi∗
k

(
x̆i

k

)
= −N i

kx̆
i
k (25)

where

x̆i
k =

[
I + θiW̃ i

kM̃
i
k + W̃ i

kH
′
k(R

v
k)

−1Hk

]−1

·
[
x̂i

k + W̃ i
kH

′
k(R

v
k)

−1zk

] (26)

Proof: As shown in Theorem 2, for the partial observable case, the feedback risk-sensitive Nash

equilibrium is
(
γ1∗

k (x̆1
k), γ

2∗
k (x̆2

k)
)
, where x̆1

k and x̆2
k are determined by extremizing P i

k(xk,Wk) +

F i
k(xk) with respect to xk for i = 1 and i = 2 respectively. Substitution of the results of (20) and (24)

yields

P i
k(xk,Wk) + F i

k(xk) = 1
2 θ

−1
i

[(
xk − x̂i

k

)′ (
W̃ i

k

)−1 (
xk − x̂i

k

)

+(zk −Hkxk)′ (Rv
k)

−1 (zk −Hkxk)

+θix′kM̃
i
kxk + . . .

]

= 1
2 θ

−1
i

[
x′k

{(
W̃ i

k

)−1 + θiM̃ i
k +H ′

k(R
v
k)

−1Hk

}
xk

−2x′k

{(
W̃ i

k

)−1
x̂k +H ′

k(R
v
k)

−1zk

}
+ . . .

]
.

Extremizing with respect to xk yields x̆i
k as in (26). From Corollary 1 we know that γi∗

k (xk) = −N i
kxk

and thus the result follows.

Remark 3: Equations (22) and (23) can be considered as a risk-modified Kalman filter for player i.

The vector x̂i
k denotes the estimate of xk which θi-extremizes the past function of player i at k. If

in these equations the matrices Qi
k are zero for k = 0, 1, . . . , N − 1, then they reduce to one set of

equations for both players which is exactly the Kalman filter.
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5 Conclusion

Whereas risk-sensitivity in control theory is well studied in literature, risk-sensitivity in dynamic

games has not been considered before in literature. In this paper results have been presented for

risk-sensitive dynamic games. A two-person linear-quadratic dynamic game in discrete time has been

considered with exponential cost criteria, where the players have different risk-sensitivity parameters.

Nash solutions have been derived under the hypothesis that the strategies at the current time are func-

tions of the observation history up to the current time. This is similar as the hypothesis in Jaensch and

Speyer [5] and Fan et al. [6] for risk-sensitive control. This hypothesis is an extension of the results

of Whittle [3] and [4], who assumes that the control at the current time is a function of the observation

history up to the previous time.

We derived two theorems on feedback risk-sensitive Nash equilibria and it is shown that the derivation

leading to these theorems is based on known results of both dynamic game theory and of risk-sensitive

control theory.

In the discrete-time risk-sensitive game, as presented in this paper, the results for the complete ob-

servable risk-sensitive dynamic game are a simple extension of similar results in both dynamic game

theory and risk-sensitive control theory. Even though the results for the complete observation case

are not very difficult to derive, they are important results since they are the basis for the shared partial

observable case. The results for this latter case are less straightforward. It is shown in this paper that

the feedback Nash equilibrium for the partially observable stochastic problem can be constructed from

the feedback risk-sensitive Nash equilibrium design for the complete observable stochastic problem

and from two risk-modified Kalman filters. It turned out that if there are no intermediate state costs

these two filters are identical and exactly the well-known Kalman filter, which is analogous to the

risk-sensitive control situation. However, for the more general case with costs on the intermediate

states, it turned out that for each player one gets a risk-modified Kalman filter.
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