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1 Introduction 

Mathematical models of constrained dynamical systems often contain higher-order differential 

equations to model the dynamics. Additional inequalities may be present that model the hard 

environmental or operational restrictions. Given the fact that both authors worked that long in the 

vicinity of Jan Willems it is only natural that they studied constrained systems in a behavioural 

setting. Behavioural theory is well developed, especially for linear dynamical systems [9, 10, 111. 

In the behavioural theory, which encompasses a foundation for the theory of deterministic dy- 

namical systems, all variables are initially treated on an equal footing whereas in a more classical 

setting usually an explicit distinction is made between input and output variables. Such a distinc- 

tion however, may not be clear a priori. Examples that illustrate this already in a linear context 

can be found in for instance [ l l ] .  An other example is a unilaterally constrained robotic manipu- 

lator [4]. Interaction of a manipulator with its environment, for instance grapple of an object, will 

inevitably mean restrictions on (possibly all) the positions, velocities and forces that are used to 

model the behaviour of the manipulator. 

An important feature of the behavioural framework is that it offers a mathematical theory to discuss 

interconnected systems. In the behavioural theory a basic distinction is made between a system 

and its representation(s). In this paper the beginning of a theory is presented for systems described 

by difference inequalities in a behavioural setting. A dynamical system C is defined as a triple 

C := (T, W, %), where T C R is the time set, W is the space of variables, and % is a subset of 

WT. % called the behaviour of the system. Detailed introductions to the behavioural approach to 

systems and control can be found in [9, 10, 111. 

The remainder of this paper is organized as follows. In section 2 we will introduce the notion 

of convex conical systems. In section 3 we formally define unilateral dynamical systems. It is 

investigated which properties allow dynamical systems to be described by a class of difference 

inequalities. In section 4 we discuss the elimination problem for difference inequalities. In section 

5 results on a Farkas theorem for behavioural inequalities are presented. Concluding remarks can 

be found in section 6. References are collected in section 7. 



2 Convex conical behavious 

We will discuss dynamical systems that can be described by linear difference inequalities. Some 

basic notions and properties are introduced, where we closely follow the line of thought presented 

in [7] for static inequalities. 

Definition 2.1 A dynamical system C = (T, W, 13) is said to be convex if W is a real vector space 

over R and B is a convex subset of w, ie.  ifwl, wz E 13 then {(I - a)wl + aw210 i cu 5 1) E 

B. h is said to be conical if13 is a cone, i.e. 13 is closed under multiplication by a nonnegative 

scalar: {w E 13, a 2 0) + {cuw E 13). I fa  system is both convex and conical it is called convex 

conical. 

IAnear systems are a special case of convex conical systems. (Unless stated otherwise, proofs of 

results presented in this paper can be found in [3].) 

Proposition 2.2 Let C = (T, W, 13) be a dynamical system. Then C is convex conical if and 

only i fB contains all nonnegative linear combinations of its elements, i.e. ifwl, ..., w, E B and 

cul, ..., a, E [0, co) then alwl + ... + a,w, E 23. 

For abehaviour B let (-13) := {w E Wq 1 - w E 23). 

Proposition 2.3 Let C = (I", W, 13) be a convex conical dynamical system. Then: 

( i )  The behaviour of the smallest linear system containing C, denoted by EL, is given by 

~ ~ - B = { W E W ~ ~ W = W ~ - W ~ ,  w l , w z ~ 1 3 ) .  

( i i )  The behaviour of the largest linear system contained in C, denoted by Cc, is given by 

13fI-23) = { w € W q I w  ~ 1 3 a n d w ~  (-13)). 

In RrL a subset is called convex polyhedral if it is the intersection of a finite collection of closed 

halfspaces. 

Definition 2.4 Let C = (25, W, 13) be a discrete-time dynamical system. Then C is said to be a 

finite-polyhedral (conical) system ifVtl, tz E Z ,  -m < t l  2 tz < m, 131[tlrt2~ is (a) polyhedral 

(cone) in (R9)tz-tl+1. In that case 23 is said to be (a)jinite-polyhedral (cone). 

Proposition 2.5 Let C = (Z, W, 13) be a time-invariant discrete-time dynamical system. Let C 

befinite-polyhedral. Then C is complete ifand only if13 is closed 

The question arises if the 'finite-polyhedral' condition on C is a necessaty condition in proposition 

2.5. We return to this issue later. 



3 Behavioural inequalities 

A behavioural difference inequality representation of a discrete-time dynamical system with the 

time axis 'iT = Z and signal space W is, as in the linear case, defined by two integers L and 1, and 

a map f : WL-"+' + W (for some g E ll). (In the remainder, equalities as well as inequalities 

will be referred to as equations.) A difference inequality is given by: 

f (w(t + L ) ,  ..., w(t + I ) )  1 0,vt € Z .  

It is clear that the system C = ( Z ,  W ,  B ) ,  with 

B = {w : Z + WygTI equation (1) is satisfied) (2) 

defines a time-invariant dynamical system. 

Definition 3.1 Let C = (2, W ,  B)  be a discrete-time dynamical system. I f  there exists a map 

f : wL-'+l + IWg such that B allows a representation as in (2) then the system C is said to be a 

unilateral dynamical system. C] 

We will focus on convex conical unilateral dynamical systems whose behaviour can be represented 

by 

where o denotes the shift operator and R E RgX4[s, s-'1 the ( g  x q)  polynomial matrices with 

real coefficients and positive and negative powers of the indeterminate s. As in the linear case 191, 

the number of columns of R(s ,  s-l) is fixed and equals the number of manifest variables. The 

number of rows of R(s ,  s-l) is equal to the number of equations used to describe the behaviour. 

The question immediately arises what intrinsic properties of a dynamical system allow its be- 

haviour to be represented as in (3). In [9] it has been shown that a discrete-time dynamical system 

C = (T, W, 23) can be described by a difference equality if and only if it is linear, time-invariant 

and complete. 



It is clear that system C = ( Z ,  W, 13) with B as in (3)  is a convex conical system. Convex conical 

behaviours can also arise from certain nonlinear representations. For instance, the discrete-time 

system that is described by the nonlinear latent variable description {w( t )  = e2(t)) ,  can also be 

described by the convex conical manifest description {w( t )  2 0). 

To differentiate behaviours where inequalities are present from behavioural representations where 

only equalities are present we introduce the following notation. Let R1 E RgXq [s, s-'1 and R2 E 

RTxq[s, s-'1. Denote: 

The following definition is a generalization of the notion of lineality space for the static case [7]. 

Definition 3.2 The lineality behaviour Bc, of a nonempty convex conical system C = ( Z ,  W, 23) 

is dejined as 1 3 ~  = B n (-13). For system C, the system CL = ( Z ,  W, B L )  is called the lirzeality 

system. 

By proposition 2.3 the lineality system is the largest linear system in a given system. 

Lemma 3.3 Let C = (74, W, B)  be a discrete-time dynamical system with 13 = 13r(R). Then 

13c, = 1 3 ~ ( R ) .  

Difference inequalities uniquely define the lineality behaviour. Since the reverse statement is not 

generally true one can not hope to find a difference inequality representation of a behaviour from a 

characterization of its lineality behaviour. This implies that the results that have been obtained in 

the behavioural approach to linear difference equalities are not directly applicable to the inequality 

case. To obtain an inequality description a different approach must be followed. 

Definition 3.4 Let a be a Rq-valued sequence with compact support. Then the set X = {w E 

(W)" I Ct," aT( t )w( t )  2 0) is said to be a halfspace in (W)". I fa  set P is the intersection of 

a$nite number of halfspaces Xi, i e .  P = n g l X i f o r  some g E N, then the set P is said to be a 

polyhedral cone in (Rq)". 

Note that if the sequence a in definition 3.4 has compact support in [t,, t*],  then for w E ?there 

is no requirement on w outside Ulis interval [t,, t*]. For a polyhedral cone P in (W)" ,  define 

utP, t E Z ,  by utP := { d w  E (IF)" I w E P). This leads to the following notion. 



Definition 3.5 Let C = (Z, M ,  23) be a discrete-time convex time-invariant complete dynamical 

system. Then C is said to be shifted-polyhedral conical if there exists apolyhedral cone Y in ( ~ 9 ) ) "  

such that 23 = ntEzutT. In that case 23 is said to be a shifted-polyhedral cone. U 

Theorem 3.6 Let C = (Z, W, 23) be a discrete-time convexjinite-polyhedral time-invariant com- 

plete dynamical system. Then: C is shifed-polyhedral conical if and only if3R E RgX9 [s, s-I] 

such that 13 = {w E (W)" I R(u, c-l)w 2 0). 

It follows from definition 3.1 that if C = (Z, (I@)", 23) satisfies the conditions in theorem 3.6 

with 23 a shifted-polyhedral cone then C is a unilateral dynamical system. The question arises if 

the conditions C = (Z, W ,  B) is complete, time-invariant and convex finite-polyhedral conical, 

or equivalently (by proposition 2.5), 23 is closed, shift-invariant and a convex finite-polyhedral 

cone, are also sufficient for C to be a shifted polyhedral cone. This conjecture, which was raised 

in [I], was disproven in [6]  for the case Ti' = Z+ by the following illustrative and nontrivial 

counterexample. 

Example 3.7 Define the following sequence of vectors in (R))"+: 

i e .  k,(i) = 1 if1 5 i < n, k,(n) = 2 and ic,(i) = 0 ifi > n. Now dejine the following sequence 

ofpolyhedral cones in (R)'+: 

Now define system C = (Z+, W, 23) with 

i.e. the closure of the union of the cones Ki. First we will show that 23 is closed, shift-invariant 



andfnite-polyhedral. Now by construction in (7) B is closed. From OK, = Km-l we have 

U B  = B. It remains to show that l 3  is jirzite-polyhedral. It sufjces to show that the pm- 

jection of B on the jirst n  coordinates of Z+ is equal to cone((l,O, . . . , o ) ~ ,  (1 ,2 ,0 , .  . . , o ) ~  
, . . . , (1 ,1 , .  . . ,1 ,  z ) ~ )  2 Rn. The latter statement followsfrom the fact that in Rn: 

To disprove the conjecture it must be shown that there is no polynomial matrix R(s) such that: 

w E B R(u)w 2 0. ~ e t  be the projection of K,,, on the first m coordinates of Z+, i.e. 

It is easy to see thatfrorn (21 ,  22,.  . . , ~ , + l ) ~  E Kn+1 it follows that (z1,22,. . . , z , ) ~  E Kn 
T and (x2,x3.. . , x , + I ) ~  E Kn. However; ( X I ,  $2 , .  . . , 2,) , ( x z , x ~ . .  . , x , + ~ ) ~  E Kn does not 

imply that (xl,xz,. . . , x , + I ) ~  E Kn+l. To see this, observe that ( 1 , 1 , .  . . , E Kn, und 
1 1 - 1 1 . .  1 € K Now consider; in Rn+', the vector (1  - m, l ,1 , .  . . , I ) ~ .  

Suppose that this vector is in Kn+l. Then from 

it follows that X I  < 0. This contradicts the requirement that X 1  2 0. 

Now assume that there does exist apolyhedral cone K E W, for some n E N, such that 

{w E 23) @ {Vt E Z+, (w(t), w(t + I ) ,  . . . , w(t + n - I ) ) ~  E K).  ( 1  1) 

By construction one has that Kn K .  But now from Kn 2 K,,+l, Vn E N, and the fact that 

(xl , " 2 ,  . . . , z , ) ~  E K, and ( 2 2 ,  2 3  . . . , xn+l)T E Kn does not imply that ( X I ,  $2, . . . , x , + I ) ~  

E K,+~ it follows immediately that one can not conclude from (w(t) ,  w(t + 1 ) ,  . . . , w(t + n - 
I ) ) ~  E K a n d  (w( t+  l) ,w(t+2),  ... , ~ ( t + n ) ) ~  E K that (w(t),w(t+ I ) ,  .. . , ~ ( t + n ) ) ~  E 

B1p,,+nl. This disproves the statement in equation (11). This in turn disproves the conjecture for 



The above example can be used also to disprove the conjecture for the case T = Z, by redefining 

kn := (..., 1,1 ,2 ,0 ,0  ,... ),whereic,(n) = 2. 

In [9] the linear case is proven in two different ways. In the first proof, one of the essential 

observations is that a decreasing sequence of linear subpaces Lt E Rq with Lt+l C Lt attains a 

limit in a finite number of steps. This however need not be the case for convex polyhedral sets. 

Moreover, the convex cone that is obtained as the limit of this sequence need not to be polyhedral. 

Take the ice-cream cone K := {(x, 2 ~ ,  z ) ~  E R3 1 x2 + y2 5 z2, z > 0). There are infinitely 

many polyhedral cones that contain the closed convex cone K. (This follows already in R2, 

where a circle can be obtained as the limit of a sequence of polygons.) However, K itself is not 

polyhedral. For the second proof in [9], E := (Rq)" is equipped with the topology of pointwise 

convergence. The dual of IE, denoted by E*, consists of all Rq-valued sequences that have compact 

support, and is equipped with the weakest topology such that (E*)* = E. It is then shown that 

with 23I = {r  E IE* I CtEz r(t)w(t) = 01, (&)' = 23. In the present case we have so far not 

been able to prove or disprove that similar statements hold for inequality behaviours. 

Open Problem 3.8 Let C = (74, W, 23) be a discrete-time convexfnire-polyhedral conical time- 

invariant dynamical system. Give necessary and suficient conditions for 23 to be a shifed- 

polylzedral cone. o 

We conclude that at least until problem 3.8 is solved, the finite-polyhedral condition on C can not 

be omitted easily from proposition 2.5. 



4 The elimination problem 

In this section we focus on elimination of latent variables from a difference inequality represen- 

tation. Let RI E RgXq [s, s-l],  R2 E RgXd [s,  S-'1, w : Z + Rg and & : Z -+ !I@. Consider the 

latent variable difference inequality: 

The question arises whether or not the latent variable & can be eliminated from (12) to arrive at a 

representation R(u,  u-')w 2 0 for some polynomial matrix R. 

The next result states that the number of equations necessary to describe the manifest behaviour 

depends on the values of reals present in the latent variable description. 

Proposition 4.1 Let ai E R(i  E - 9). Consider the latent variable system Ce = ( Z ,  (W)", 

(EX)", Be), with Be = { ( w , t )  E (R9)" x (R)" I R1(u, u-')w 2 al l , .  . . , Rg(u,u-')w 2 a,!), 

g E N. Dejine H+ := { i  : a< > 0),  Ho := { i  : a< = 0}, H- := {i : ai < O), and 

n+ := card(H+), no := card(Ho) and n- := card(H-) (where card denotes cardinality.) The 

latent variables can be eliminated Moreover; the manifest behaviour that the system Ce represents 

carz be described by the (n+ . n- + no) inequalities 

Consequently, if no = 0 and either n+ = 0 or n- = 0 then there are no restrictions on the 

manifest variables w. 

It is now easy to see that in case R(u, K 1 ) w  2 At ,  with A E 118gxd and & E (Rd)",  the 

latent variables can also be eliminated by repeated use of the result in proposition 4.1: write 

! = col(tl,.  . . , ed) and eliminate the ti's one after the other. The resulting set of inequalities con- 

tains a large number of equations, but is stated in terms of the manifest variable w only. This also 

provides some clues for the elimination of the latent variables from R(u, u-')w 2 A(u, u-I)!. 

For instance if A(s ,  s-I) has positive or negative entries only, then the variables w are not re- 

stricted. 



The following representation will play an important role in our discussion of the elimination prob- 

l e m . L e t b ~ N ,  M ~ ~ ~ ~ ~ [ ~ s ~ ' ] , a n d N E @ ~ ~ [ s , s - ' ] .  

The variable P appears in (13) as a unilaterally consmined latent variable. 

Proposition 4.2 Let Ce = (Z ,  (Rq)", (Rd)", B E )  be adiscrete-time time-invariant latent variable 

dynamical system represented by R ~ ( u ,  u-l)w 2 Rz(u, u-')l, with R1 E Rgxq[s,s-'1 and 

Rz E W x d  [s, S-'1. Then 3 b  E N and there are polynomial matrices M E Rqxb [s, S-'1 and 

N E Rgxb [s, s-'1 such that the manifest system C = (Z, (IF)", 13) of Ce can be described by 

13 = {w E (W)" 1 ZIP E (Rb)" such that equation (13) holds). 

Since a behaviour %r(R) is a special case of a latent variable description (take Rz = 0 in (12)), 

proposition 4.2 applies to systems C = (Z ,  (@)", Br(R) )  as well. Note also that any represen- 

tation (13) can be written as a latent variable description (12). Therefore, the remaining problem 

to be solved reads as follows. Can the latent variable P be eliminated from (13) to arrive at an 

inequality representation R(u,  u-')w 2 0 for some polynomial matrix R? The following propo- 

sition gives sufficient conditions. 

Proposition 4.3 Let M E RqXb[s,s-I] and N E RgXb[s ,~- l] .  Let Cp = ( Z ,  ( R  q)", (Rb)", 

B,Q) be a discrete-time time-invarimt latent variable dynamical system. Suppose it induces the 

manifest behaviour with 13 = {w E (Rq)" I 30 E (Rb)" such that (13) holds). Then there exists 

apolynomial matrix R(s,  s-l) such that the manifest behaviour of Cp is given by B = 131(R) i f  

f l  is obsewable in w = M(u, u-')P, or N ( s ,  s-') = 0. 

The first condition in proposition 4.3 implies that there exists a polynomial matrix Rf(s,  s-l) 

such that @ = Rf(u,u-')w. This gives { ( I  - MRf)(u,u-')w = 0, (NRf)((r ,  f l ) w  2 0 )  

as a model of the manifest behaviour. The second condition in proposition 4.3 implies that the 

prescribing equation is w = M(u,  u-')P. Since we are now in the linear case, the elimination 

theorem [9] provides us with the manifest behaviour R"(u,u-')w = 0 for some polynomial 

matrix RN(s,  S-I ). 

Another promising approach, which uses results from the linear case, is given in [3]. Up till now 

we have not been able to formulate necessary conditions in terms of the matrices M and N. 



5 On a Farkas theorem for behavioural inequalities 

In this section we focus on efficient representations of behavious that can be represented by 

with R E RQxq[s, s-'1. As in the linear case, minimality will always refer to keeping the number 

of equations as small as possible. 

Definition 5.1 Let C = (Z, W, B) .  Let R E RgXq [s, s-'1 and R' E RgtXq[s, S-'1. The systems 

of dwerence inequalities R(n, n-')w 2 0 and R'(u, n-')w 2 0 are said to be equivalent if 
{ ( R )  = ( R ) }  The system of diference inequalities R(n, n-')w 2 0 is said to be a 

minimal inequality (or for short, minimal) if: { B I ( R )  = Br(R1))  + { g  5 9'). 

In for instance 191, it is shown that a kernel representation R(u, u-')w = 0 is minimal if and only 

if R(s, s-') has full row-rank. It is easy to see that an inequality system {R(u, K 1 ) w  2 0) with 

R E RlXq[s,  S-'1 is minimal, and also that Br(R) # B E ( R )  if R(s, s-') # 0 and R(s, s-') has 

full row-rank. 

Proposition 5.2 The following holds: 

( i )  Not every inequality behavioltr Br(R) has afull row-rank inequality representation. 

(ii) For every q E N, there exists an inequality system in q variables such that the minimum 

number of rows in the minimal inequality representation exceeds q. 

We are interested in the relation between two polynomial matrices R(s, s-') and R'(s, s-') when 

they satisfy 

Based on the static case, one may expect that such a relation should be the extension of Farkas' 

theorem to the behavioural case. 

Proposition 5.3 Let R E iRQXq[s,s-'1 be a full row-rank polynomial matrix Let R' E 

Rg' '@[s ,  s-'1. Then: {R(n, a-')w 2 0 => R1(u, u-')w 1 0) ij and only ij there exists a 

unique polynomial matrix H E IR$ ' ~ [ s ,  s-'1 such that R1(s, s-') = H(s, s-')R(s, s-I). 



In order to extend proposition 5.3 to the general case, i.e. without the assumption that the polyno- 

mial matrix R(s, s-l) has full row-rank, there remain some difficulties. One could try to extend 

the original proof given by Farkas in [5]. However, this proof explicitly uses the fact that every 

scalar that is unequal to zero is invettible. Such a general statement does not hold for elements 

of RgX9[s, s-'1. The most promising approach for the dynamic case seems to be the usage of 

mathematical tools such as the separation theorem of Hahn-Banach (see for instance [S]). The 

basic mathematical preliminaries read as follows. Denote IE := (Rq)" with the topology of point- 

wise convergence. The dual of IF., denoted by IE*, consists of all Rq-valued sequences that have 

compact support. Let R E RgXq[s, s-I]. Let B = B I ( R ) .  The polar cone of B ,  denoted by 

E#, is given by {w* E IE* I Vw E E : XCtEZ w*(t)w(t) 2 0). We would like to establish that 

E# = {w* E IE* 13a E IE* , a 2 0 such that w* = R ~ ( u - ' ,  ,)a), but we have so far not been 

able to prove or disprove these statements. The statements, together with the fact that { B l  c 932) 

implies { B f  C B f )  are believed to be useful in a proof of the following conjecture. 

Conjecture 5.4 Let R E RgX9[s, s-'1 and R' 6 RgfX9[s, S - I ] .  Then: {R(u, u-l)w 2 0 + 
R'(o, u-l)w 2 0) i f  and only i f  there exists a polynomial matrix H E @ Xg[s ,  s-'1 such that 

~ ' ( s ,  s-') = H ( S ,  S - ~ ) R ( S , S - ' ) .  

When true, conjecture 5.4 would result in aFarkas theorem for behavioural inequalities. 

The next logical step is to allow both equalities and inequalities in representation. For results in 

that direction we refer to [3]. 



6 Concluding remark 

The beginning of a theory on dynamical systems described by behavioural difference inequalities 

has been presented. The notions of convexity and conicity have been introduced in a behavioural 

setting. It has been shown that so called shifted-polyhedral conical systems can be described by 

a difference inequality. We have also discussed the elimination problem for representations that 

involve latent variables. SufIicient conditions have been derived under which latent variables can 

be eliminated from a representation. The extension of Farkas' theorem has been proven for full 

row-rank polynomial matrices. 

Throughout this paper we have shown that inequality systems have characteristics that are very 

different from characteristics of linear systems. Clearly, there remains a lot of work to be done on 

modelling behavioural inequalities, and a number of open research problems have been identified. 
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