
UNCLASSIFIED

Executive summary

UNCLASSIFIED

Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

This report is based on a presentation held at the DASIA 2007 conference, Naples,
31 May 2007.

Report no.
NLR-TP-2007-464

Author(s)
B.A. Oving
T. Zwartbol
S. Denham
M. Rennie

Report classification
UNCLASSIFIED

Date
May 2008

Knowledge area(s)
Space

Descriptor(s)
test system
Galileo
EuroSim
simulation
verification

AIV Platform for the Galileo Message Generation Facility

MGF Test
Computer

TLAN 1 RT LAN
Switch

Test LAN
IRIG-B

NRT Computer
 EuroSim

NRT Element
simulation
models

TLAN 2 NRT LAN
Switch

RT Computer
 EuroSim

RT Element
simulation
models

Test LAN

Switch

Problem area
The Message Generation Facility
(MGF) is an element of the Galileo
Mission Segment (GMS) and is
responsible for distribution of the
navigation, integrity and SAR
messages from the processing
facilities (OSPF, IPF, ERIS, RLSP)
to the Up-Link Stations (ULS).

The main objective is to route a
message to the correct ULS in time
for on-board update of navigation
data and integrity data for
dissemination to users. The MGF
element is being developed by
Deimos Space S.L. (Spain).

Description of work
To perform the Assembly,
Integration and Verification (AIV)
activities of the MGF, a dedicated
test platform, named MGF-AIVP, is
developed by NLR.

The MGF-AIVP simulates other
elements in the GMS that are
connected to the MGF, in real-time.
Its focus is to verify the main
objective of the MGF.

Applicability
Galileo is a new GNSS developed
by Europe to expand and enhance
the current American GPS. It offers
several navigation services: free-of-
charge open service, safety-of-life
service (with integrity guarantee),
public regulated service (military),
commercial service.

The MGF is a crucial part of the
Galileo ground system. Hence, the
AIVP plays an important role in the
acceptance of the system, requiring
knowledge of real-time simulations.

UNCLASSIFIED

UNCLASSIFIED

AIV Platform for the Galileo Message Generation Facility

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR

Anthony Fokkerweg 2, 1059 CM Amsterdam,
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
Telephone +31 20 511 31 13, Fax +31 20 511 32 10, Web site: www.nlr.nl

Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TP-2007-464

AIV Platform for the Galileo Message Generation
Facility

B.A. Oving , T. Zwartbol, S. Denham1 and M. Rennie1

1 Deimos Space S.L.

This report is based on a presentation held at the DASIA 2007 conference, Naples, 31 May 2007.

The contents of this report may be cited on condition that full credit is given to NLR and the authors.

Customer National Aerospace Laboratory NLR
Contract number ----
Owner National Aerospace Laboratory NLR
Division Aerospace Systems & Applications
Distribution Unlimited
Classification of title Unclassified
 May 2008
Approved by:

Author

Reviewer Managing department

NLR-TP-2007-464

 2

Summary

The Message Generation Facility (MGF) is an element of the Galileo Mission Segment (GMS)
and is responsible for real-time distribution of the navigation, integrity and SAR messages from
the processing facilities (OSPF, IPF, ERIS, RLSP) to the Up-Link Stations (ULS).

The main objective is to route a message to the correct ULS in time for on-board update of
navigation data and integrity data for dissemination to users. The MGF element is being
developed by Deimos Space S.L. (Spain).

To perform the Assembly, Integration and Verification (AIV) activities of the MGF, a dedicated
test platform, MGF-AIVP, is developed by the National Aerospace Laboratory, NLR (the
Netherlands). The MGF-AIVP simulates other elements in the GMS that are connected to the
MGF, in real-time. Its focus is to verify the main objective of the MGF.

NLR-TP-2007-464

 3

Contents

1 Introduction 5

2 Test system description 7

3 Test system architecture 8

4 Test system interfaces 9

5 Simulation framework 10

6 Simulation models 12

7 Simulation behaviour 14

8 Acknowledgements 15

9 References 15

NLR-TP-2007-464

 4

Abbreviations

AIVP Assembly, Integration and Verification Platform
ASN.1 Abstract Syntax Notation (nr. one)
CRC Cyclic Redundancy Check
CS Commercial Service
ERIS External Regions Integrity System
FTP File Transfer Protocol
GACF Ground Assets Control Facility
GCC Galileo Control Centre
GCS Galileo Control Segment
GMS Galileo Mission Segment
GNSS Global Navigation Satellite System
GSS Galileo Sensor Station
GST Galileo System Time
ICD Interface Control Document
IP Internet Protocol
IPF Integrity Processing Facility
KMF Key Management Facility
LAN Local Area Network
MDDN Mission Data Dissemination Network
MDL Mission Definition Language
MGF Message Generation Facility
MUCF Mission & Uplink Control Facility
NRT Near Real-Time (LAN)
OSPF Orbital Synchronisation Processing Facility
PTF Precise Timing Facility
RLSP Return Link Service Provider
RT Real Time (LAN)
SAR Search And Rescue
SIS Signal In Space
SMP Simulation Model Portability (standard)
TCP Transmission Control Protocol
UDP User Datagram Protocol
ULS Up-link Station
UML Unified Modelling Language

NLR-TP-2007-464

 5

1 Introduction

The Galileo system provides several services to users around the globe. The satellites in the
space segment transmit signals containing time, navigation, and integrity information with which
users are able to determine their position.

A network of ground stations all over the world containing Galileo receivers continuously
measures the satellites’ positions1. These measurements are sent to the Galileo Control Centres
in Europe, to be processed by the Orbital Synchronisation Processing Facility (OSPF) and the
Integrity Processing Facility (IPF). The OSPF is responsible for updating the navigation data,
such as satellite position parameters and clock parameters, whereas the IPF produces integrity
status flags for each satellite.

Figure 1 shows this continuing process as a closed-loop system, where the ground segment is
composed of Galileo Sensor Stations (GSS), Mission Data Dissemination Network (MDDN),
Ground Control Centre (GCC), and Up-Link Stations (ULS).

GCC

ULSGSS

SAT

MDDN MDDN

ENV ENV

USER

ENV

signal + nav data + int data

measurements + nav data + int data

carrier + nav data + int data

new nav data + new int data

signal + nav data + int data

signal:
carrier:

L-band carrier, phase, PRN code
C-band carrier

GCC

ULSGSS

SAT

MDDN MDDN

ENV ENV

USER

ENV

signal + nav data + int data

measurements + nav data + int data

carrier + nav data + int data

new nav data + new int data

signal + nav data + int data

signal:
carrier:

L-band carrier, phase, PRN code
C-band carrier

signal:
carrier:

L-band carrier, phase, PRN code
C-band carrier

 Fig. 1 Overview of Galileo navigation & integrity service

The navigation and integrity data is disseminated by the Message Generation Facility (MGF),
residing inside the GCC, to the various UpLink Stations (ULS) that uplink the data to the
satellites.

1 Actually, the pseudo-range from satellite to receiver is measured as a time difference.

NLR-TP-2007-464

 6

For redundancy reasons, there are multiple instances of each GMS Element in the GCC.

GCC

OSPF

IPF

MGF
every 1 sec

ERIS

RLSP

ULS

new nav data
new int dat a

new nav data for each SAT every 10 min

new int dat a for each SAT every 1 sec

measurements:
•new nav data
•new int dat a

xKMFauthentication
encryption

GCC

OSPF

IPF

MGF
every 1 sec

ERIS

RLSP

ULSULS

new nav data
new int dat a

new nav data for each SAT every 10 min

new int dat a for each SAT every 1 sec

measurements:
•new nav data
•new int dat a

xKMFxKMFauthentication
encryption

 Fig. 2 Real-time data flow through MGF

Figure 2 shows a simplified picture of the real-time data flow, with interfaces from the
processing facilities to the MGF and from the MGF to the ULS. For real-time authentication and
encryption of data, the MGF has dedicated connections to the Key Management Facilities
(xKMF).

As Galileo features an extra service called Search And Rescue (SAR), complementing the
COSPAS/SARSAT system, the Return Link Service Provider (RLSP) provides data for the
return link in answer to a distress signal from a user. Furthermore, integrity data coming from a
(commercial) External Regional Integrity Service (ERIS) is inserted by the MGF into the
integrity messages.

But the MGF has interfaces to other GMS Elements, as well:
• As the satellites orbit around the planet, a visibility schedule is needed to route a message for

a particular satellite to the ULS that has that satellite in view. This visibility schedule is
produced by the Mission Uplink and Control Facility (MUCF), which sends it periodically to
the MGF.

• The MGF has a monitoring and command interface with the Ground Assets Control Facility
(GACF).

• The MGF has a timing interface to the Precise Timing Facility (PTF) for synchronising its
local time with the Galileo System Time (GST).

• In case the normal C-band uplink via ULS cannot be used, the navigation service switches to
S-band uplink via the Galileo Control Segment (GCS).

NLR-TP-2007-464

 7

• For Commercial Services (CS), the MGF interfaces with the Service Provision Facility (SPF).

As the GMS Elements are connected in dedicated Local Area Networks (LAN), real-time
interfacing is based on the UDP/IP protocols over the RT-LAN. The Non-real-time LAN (NRT-
LAN) is used for all other interfacing (e.g. file transfers). The MGF is built as an embedded
system with a large number of active physical network ports and runs a real-time certified
operating system.

2 Test system description

To verify MGF requirements, test scenarios will be defined in the MGF AIV plan. The
Assembly, Integration & Verification Platform (AIVP) must be able to play these scenarios. The
role of the AIVP is to act as the counterpart of the MGF, simulating the operational environment,
in this case a part of the Galileo Mission Segment (GMS). To enable this, the AIVP contains
simulation models of all the elements2 that communicate with the MGF. In this way, the MGF
thinks it is running in an operational environment.

As the MGF is communicating in real-time, the AIVP must be able to test the level of real-time
guarantee, and hence must be real-time as well. Timing measurements will show the delay of the
MGF processing and the interface delays in order to verify MGF performance requirements.

The simulation models are able to set up and maintain the connections to the MGF. Furthermore,
depending on the required level of simulation, the models implement (part of) the behaviour of
the corresponding element, following the protocols as defined in the GMS Interface Control
Documents (ICD). This behaviour is essentially a mix of synchronous (cyclic) messaging by
sending models and asynchronous reception of messages by receiving models, everything in
real-time.

When a simulation/test run has finished, the results will be analysed to assess the pass/fail
criteria of the test. Depending on the complexity of a test scenario, pass/fail criteria are checked
automatically in a test script (and logged during the simulation run) or verified in a post-
processing step using a dedicated tool.

Another important capability of any test system is the injection of errors for testing the
robustness of the unit-under-test. The AIVP features a scripting language to implement test
scenarios that command and control the simulation models.

2 This means that nearly the complete Galileo Mission Segment (GMS) is modelled on interface level.

NLR-TP-2007-464

 8

3 Test system architecture

The design of the MGF-AIVP is based on separation of the real-time and non-real-time domains,
see figure 3. It has the following hardware components:
• Test Computer, responsible for test monitoring and control.
• Real-Time Computer, responsible for running the real-time simulation models.
• Non-Real-Time Computer, responsible for running the non-real-time simulation models.
• Switches, responsible for LAN conversion from the Ethernet ports of the MGF to the (limited

number of) Ethernet ports of the AIVP.

The Test Computer is a standard PC, whereas the RT/NRT Computers are rack-mounted dual-
processor servers that run the simulation models of the GMS Elements using the EuroSim real-
time simulation framework.

MGF Test
Computer

TLAN 1 RT LAN
Switch

Test LAN
IRIG-B

NRT Computer
 EuroSim

NRT Element
simulation
models

TLAN 2 NRT LAN
Switch

RT Computer
 EuroSim

RT Element
simulation
models

Test LAN

Switch

Fig. 3 MGF-AIVP architecture

The Real-Time Computer includes a “PTF simulator” that generates the master time reference
(GST reference via IRIG-B 1pps) to which the simulators as well as the MGF are synchronised.
The uniform time reference is achieved by slaving the EuroSim scheduler directly to the IRIG-B
clock.

All simulator components of the AIVP will be slaved to this GST reference to obtain
unambiguous time-stamping when recording values of variables, messages, and events. This

NLR-TP-2007-464

 9

ensures time-related issues to be traced when combining the recordings of the AIVP machines
and the MGF.

4 Test system interfaces

Four interface types can be discerned for the MGF:
• a message interface for real-time data exchange, based on the GMS protocol over TCP/IP or

UDP/IP over Ethernet;
• a message interface for status management, based on the Simple Network Management

Protocol (SNMP) over Ethernet;
• a file transfer interface using the File Transfer Protocol (FTP) over TCP/IP over Ethernet;
• a time synchronisation interface using a 1-pulse-per-second (1PPS) IRIG-B standard.

A two-layer approach separates the models into a Common Layer and a Specific Layer, where
the Common Layer is responsible for socket handling (UDP/IP, TCP/IP, SNMP) and for the
encoding and decoding of GMS messages. The Specific Layer deals with behavioural aspects,
such as states, (automatic) responses, command handling, and keep-alive mechanisms.

Specific Layer Application- specific behaviour
Common Layer GMS data messages files GMS m&c messages
 NRT RT FTP SNMP
Network Layer TCP UDP
Transport Layer IP
Data Link Layer Ethernet
Physical Layer Ethernet

Fig. 4 Layered approach for GMS element models interfacing with MGF

All events, such as reception & transmission of messages, errors & warnings, script execution,
are written to logs with a timestamp.

The implemented UDP interfaces support both uni-cast and multi-cast transmission of messages.
Apart from the different addressing in the corresponding sockets, no distinction is made in the
design between uni-cast and multi-cast.

When multiple instances of a model are available, they all send to the same port; no restrictions
are imposed to prevent the interleaved arrival of messages at MGF. It is however possible to

NLR-TP-2007-464

 10

configure the start slots of the cyclic models in such a way that each model has its own start slot.
In this way, sequential arrival of messages can still be simulated.

5 Simulation framework

The MGF-AIVP relies for a large part on the simulation framework EuroSim. EuroSim is used to
build, schedule and execute the simulation models.

Important EuroSim features are its real-time scheduler, with which tasks (containing entry-points
to model functions) can be executed, and the data dictionary: a shared-memory pool containing
model data.

On multi-processor machines, EuroSim is able to reserve a processor (provided there are more
than one processor in a machine) for real-time execution. Only the necessary interrupts are
handled by that processor, guaranteeing known performance at operating system and simulation
level.

Furthermore, EuroSim allows models to be scheduled on either the real-time processor (with
given boundary conditions for the maximum allowed processing time) or the non-real-time
processor. This enables the user to easily change the domain of a simulation model, e.g. from
non-real-time to real-time, by simply editing the EuroSim schedule.

In the EuroSim schedule, tasks can be connected to interrupts or to timers with a user-defined
frequency. The latter option is to be used for repetitive actions, such as sending messages every
second with a real-time guarantee.

EuroSim also features a real-time scripting language that allows the user to precisely and
repetitively execute actions to influence the simulation. Via EuroSim External Simulator Access
(ExtSim), these scripts can be accessed externally by another test scripting language, e.g. Perl.
External Simulator Access provides access and control to a running simulation, as well.

Figure 5 shows the functioning of a EuroSim simulation with the Data Dictionary as the central
part and the real-time scheduler controlling the access to the Data Dictionary. The models
publish (selected) attributes as variables, and (selected) methods as entry-points in the Data
Dictionary. The scheduler updates the time with every clock tick and calls the models according
to the schedule, which then perform the activity to update the variables.

NLR-TP-2007-464

 11

Data Dictionary

X Y() Z

Model 1

X

update update

Scheduler

Model 2

Y()

Model 3

Z

10 Hz 100 Hz20 Hz

Action
Manager

MDL
Scripts

set/get/run

ExtSim
Access RecordersMonitors

update update

execute execute

Scheduler

2 Hz 100 Hz useruser

execute execute

Data Dictionary

X Y() Z

Model 1

X

Model 1

X

update updateupdate update

Scheduler

Model 2

Y()

Model 2

Y()

Model 3

Z

Model 3

Z

10 Hz10 Hz 100 Hz100 Hz20 Hz20 Hz

Action
Manager
Action

Manager

MDL
Scripts
MDL

Scripts

set/get/run

ExtSim
Access
ExtSim
Access RecordersRecordersMonitorsMonitors

update update

execute executeexecute execute

Scheduler

2 Hz2 Hz 100 Hz100 Hz useruseruseruser

execute execute

 Fig. 5 Overview of EuroSim functioning

The real-time scripting engine of EuroSim is based on the Mission Definition Language (MDL),
which has a C-like syntax with the obvious built-in statements (if, while) and functions. An
MDL script can also execute entry-points, i.e. functions of a model that are put in the Data
Dictionary. For instance, the send method of a model is put in the Data Dictionary as an entry-
point to allow the user to create a test script that calls the method at a specific Simulated Time.

The monitors are used to display the values of selected simulation variables with a frequency of
2 Hz. A recorder logs selected values with a user-definable frequency. Just like MDL scripts,
they can be created and executed during a simulation run.

The external simulator access allows other software applications (such as a scripting language
like Perl) to connect to the (initialised or running) simulation.

NLR-TP-2007-464

 12

6 Simulation models

The simulation models are designed using the Unified Modelling Language (UML) to allow
inheritance and multiple instantiation. As the implementation is done mostly in C++, the models
need to comply with the Simulation Model Portability (SMP) standard, so that they can be
imported in the EuroSim framework.

PtfModel

setTime()
interrupt()
resume()

(from MODEL)

Buffer

data : String
dataLength : Integer
dataTimeStamp

(from SUPPORT)

Interface

state : Integer = UNCONFIGURED
available : Boolean
model : Model

start()
stop()

(from INTERFACE)

Message

encodedMessage : EncodedMessage
messageHeader : MessageHeader
emptyHeader : Boolean = false
invalidHeader : Boolean = false
correctCrc : Boolean = true
messageCrc : Integer

create()
check()
fill()
checkData()
checkFormat()
checkHeader()
addHeader()

(from MESSAGE)

0..10..1

MessageInfo

messageData : MessageData
(from MESSAGE)

Simulator

models : List<Model> = empty
signature : String = string with current date and time

create()
initialise()
run()

(from CONTROL)

Configuration

logLevel : Integer = 0
(from SUPPORT)

Model

execState : Integer
message : Message
badCRC : Boolean = false
badFormat : Boolean = false
delay : Double = 0.0
messageReception : Boolean = true
signature : String
mode : String = Nominal
messagesInfo : List<MessageInfo> = empty

create()
initialise()
run()
startSending()
stopSending()
setNominal()
check()

(from MODEL)

1..n1..n

11

0..*0..*

0..n0..n

 Fig. 6 Top-level class diagram for the simulator

Each server runs the exact same simulator, but through initial configuration, only those models
that need to be connected will be active. By setting the state of the RT models to ON and those
of the NRT models to OFF, the AIVP can be configured for the RT Computer. The same
approach holds for the NRT case.

NLR-TP-2007-464

 13

IPF

IPF

IPF

IPF

 Fig. 7 Model deployment

The example shows that the simulator configuration 1 on the RT Machine only activates the RT
models, whereas configuration 2 activates the NRT models on the NRT Machine.

Note that several instances of each model are created during initialisation of the simulator, e.g.
10 instances of the ULS model to represent the complete ULS network.

The ‘sending’ models can be configured for failure injection by sending corrupted messages or
not sending messages at all:
• insert a bad or correct CRC in the message;
• use an incorrect format for the message;
• delay the sending of the messages;
• switch sending of messages on or off.

These substates are independent of each other. Furthermore, the scheduling of each model task
can be changed during run-time, so that the models can send their messages faster or slower than
they should.

The ‘receiving’ models will verify the correct behaviour of the MGF by checking the routing, the
timing and the contents of the messages. Checks of the message contents are performed at the
models where the data originated (e.g. IPF or OSPF), whereas checks of the routing are
performed by the MUCF model.

NLR-TP-2007-464

 14

The real-time messages are defined in Abstract Syntax Notation (ASN.1) files. The MARBEN
ASN.1 toolkit is used to generate C++ source code from these definitions. Dedicated wrapper
classes are defined to ‘insert’ the generated code into the EuroSim project.

7 Simulation behaviour

The communication protocols between MGF and GMS Element are described in the MGF ICD.
The simulation models implement that behaviour. Figure 8 shows the sequence diagram for the
handling of navigation data between the MGF-AIVP simulation models and the MGF.

 : SatModel : SatModel : EnvModel : EnvModel : OspfModel : OspfModel : MGF : MGF : MkmfModel : MkmfModel : UlsModel : UlsModel : MucfModel : MucfModel

getSatellite(Integer)

getState

sendNavData()

sendPrsNavData()

receiveData

receiveRawMsgSubFr()

check()

authenticate(String)

sendMsgSubFrAuth()

receiveData

receiveMsgSubFr()

checkRouting(SatModel, String)

 Fig. 8 Navigation data processing (Open Service)

The OSPF model first retrieves the state of the satellites, which can also be ON or OFF. Then,
the navigation data for the satellites is sent to the MGF, according to the ICD. The MGF creates
a Galileo message from the navigation data and asks the MKMF to authenticate the message.

NLR-TP-2007-464

 15

Then, the MGF sends the authenticated message to the ULS model, which in turn calls the
MUCF model to verify whether the MGF routed the messages to the correct ULS.

8 Acknowledgements

NLR thankfully acknowledges the fruitful co-operating with Deimos Space and their
contributions to this paper.

References

1. EuroSim, www.eurosim.nl

	1 Introduction 5
	2 Test system description 7
	3 Test system architecture 8
	4 Test system interfaces 9
	5 Simulation framework 10
	6 Simulation models 12
	7 Simulation behaviour 14
	8 Acknowledgements 15
	9 References 15

