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Problem area 
The Message Generation Facility 
(MGF) is an element of the Galileo 
Mission Segment (GMS) and is 
responsible for distribution of the 
navigation, integrity and SAR 
messages from the processing 
facilities (OSPF, IPF, ERIS, RLSP) 
to the Up-Link Stations (ULS).  
 
The main objective is to route a 
message to the correct ULS in time 
for on-board update of navigation 
data and integrity data for 
dissemination to users. The MGF 
element is being developed by 
Deimos Space S.L. (Spain). 
 
Description of work 
To perform the Assembly, 
Integration and Verification (AIV) 
activities of the MGF, a dedicated 
test platform, named MGF-AIVP, is 
developed by NLR.  

The MGF-AIVP simulates other 
elements in the GMS that are 
connected to the MGF, in real-time. 
Its focus is to verify the main 
objective of the MGF. 
 
Applicability 
Galileo is a new GNSS developed 
by Europe to expand and enhance 
the current American GPS. It offers 
several navigation services: free-of-
charge open service, safety-of-life 
service (with integrity guarantee), 
public regulated service (military), 
commercial service.  
 
The MGF is a crucial part of the 
Galileo ground system. Hence, the 
AIVP plays an important role in the 
acceptance of the system, requiring 
knowledge of real-time simulations. 
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Summary 

The Message Generation Facility (MGF) is an element of the Galileo Mission Segment (GMS) 
and is responsible for real-time distribution of the navigation, integrity and SAR messages from 
the processing facilities (OSPF, IPF, ERIS, RLSP) to the Up-Link Stations (ULS).  
 
The main objective is to route a message to the correct ULS in time for on-board update of 
navigation data and integrity data for dissemination to users. The MGF element is being 
developed by Deimos Space S.L. (Spain). 
 
To perform the Assembly, Integration and Verification (AIV) activities of the MGF, a dedicated 
test platform, MGF-AIVP, is developed by the National Aerospace Laboratory, NLR (the 
Netherlands). The MGF-AIVP simulates other elements in the GMS that are connected to the 
MGF, in real-time. Its focus is to verify the main objective of the MGF. 
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Abbreviations 

AIVP Assembly, Integration and Verification Platform 
ASN.1 Abstract Syntax Notation (nr. one) 
CRC Cyclic Redundancy Check 
CS Commercial Service 
ERIS External Regions Integrity System 
FTP  File Transfer Protocol  
GACF Ground Assets Control Facility 
GCC Galileo Control Centre 
GCS Galileo Control Segment  
GMS Galileo Mission Segment  
GNSS Global Navigation Satellite System 
GSS  Galileo Sensor Station 
GST Galileo System Time 
ICD Interface Control Document 
IP Internet Protocol 
IPF Integrity Processing Facility 
KMF Key Management Facility 
LAN Local Area Network 
MDDN Mission Data Dissemination Network 
MDL Mission Definition Language 
MGF Message Generation Facility 
MUCF Mission & Uplink Control Facility 
NRT Near Real-Time (LAN) 
OSPF  Orbital Synchronisation Processing Facility  
PTF Precise Timing Facility 
RLSP Return Link Service Provider 
RT  Real Time (LAN) 
SAR Search And Rescue 
SIS Signal In Space 
SMP Simulation Model Portability (standard) 
TCP Transmission Control Protocol 
UDP User Datagram Protocol 
ULS Up-link Station 
UML  Unified Modelling Language 
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1 Introduction 

The Galileo system provides several services to users around the globe. The satellites in the 
space segment transmit signals containing time, navigation, and integrity information with which 
users are able to determine their position.  
 
A network of ground stations all over the world containing Galileo receivers continuously 
measures the satellites’ positions1. These measurements are sent to the Galileo Control Centres 
in Europe, to be processed by the Orbital Synchronisation Processing Facility (OSPF) and the 
Integrity Processing Facility (IPF). The OSPF is responsible for updating the navigation data, 
such as satellite position parameters and clock parameters, whereas the IPF produces integrity 
status flags for each satellite. 
 
Figure 1 shows this continuing process as a closed-loop system, where the ground segment is 
composed of Galileo Sensor Stations (GSS), Mission Data Dissemination Network (MDDN), 
Ground Control Centre (GCC), and Up-Link Stations (ULS). 
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  Fig. 1 Overview of Galileo navigation & integrity service 

 
The navigation and integrity data is disseminated by the Message Generation Facility (MGF), 
residing inside the GCC, to the various UpLink Stations (ULS) that uplink the data to the 
satellites.  
 

                                                      
1 Actually, the pseudo-range from satellite to receiver is measured as a time difference. 
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For redundancy reasons, there are multiple instances of each GMS Element in the GCC. 
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  Fig. 2 Real-time data flow through MGF 

 
Figure 2 shows a simplified picture of the real-time data flow, with interfaces from the 
processing facilities to the MGF and from the MGF to the ULS. For real-time authentication and 
encryption of data, the MGF has dedicated connections to the Key Management Facilities 
(xKMF). 
 
As Galileo features an extra service called Search And Rescue (SAR), complementing the 
COSPAS/SARSAT system, the Return Link Service Provider (RLSP) provides data for the 
return link in answer to a distress signal from a user. Furthermore, integrity data coming from a 
(commercial) External Regional Integrity Service (ERIS) is inserted by the MGF into the 
integrity messages. 
 
But the MGF has interfaces to other GMS Elements, as well:  
• As the satellites orbit around the planet, a visibility schedule is needed to route a message for 

a particular satellite to the ULS that has that satellite in view. This visibility schedule is 
produced by the Mission Uplink and Control Facility (MUCF), which sends it periodically to 
the MGF.  

• The MGF has a monitoring and command interface with the Ground Assets Control Facility 
(GACF). 

• The MGF has a timing interface to the Precise Timing Facility (PTF) for synchronising its 
local time with the Galileo System Time (GST). 

• In case the normal C-band uplink via ULS cannot be used, the navigation service switches to 
S-band uplink via the Galileo Control Segment (GCS).  
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• For Commercial Services (CS), the MGF interfaces with the Service Provision Facility (SPF). 
 
As the GMS Elements are connected in dedicated Local Area Networks (LAN), real-time 
interfacing is based on the UDP/IP protocols over the RT-LAN. The Non-real-time LAN (NRT-
LAN) is used for all other interfacing (e.g. file transfers). The MGF is built as an embedded 
system with a large number of active physical network ports and runs a real-time certified 
operating system. 
 
 
2 Test system description 

To verify MGF requirements, test scenarios will be defined in the MGF AIV plan. The 
Assembly, Integration & Verification Platform (AIVP) must be able to play these scenarios. The 
role of the AIVP is to act as the counterpart of the MGF, simulating the operational environment, 
in this case a part of the Galileo Mission Segment (GMS). To enable this, the AIVP contains 
simulation models of all the elements2 that communicate with the MGF. In this way, the MGF 
thinks it is running in an operational environment.  
 
As the MGF is communicating in real-time, the AIVP must be able to test the level of real-time 
guarantee, and hence must be real-time as well. Timing measurements will show the delay of the 
MGF processing and the interface delays in order to verify MGF performance requirements.  
 
The simulation models are able to set up and maintain the connections to the MGF. Furthermore, 
depending on the required level of simulation, the models implement (part of) the behaviour of 
the corresponding element, following the protocols as defined in the GMS Interface Control 
Documents (ICD). This behaviour is essentially a mix of synchronous (cyclic) messaging by 
sending models and asynchronous reception of messages by receiving models, everything in 
real-time.  
 
When a simulation/test run has finished, the results will be analysed to assess the pass/fail 
criteria of the test. Depending on the complexity of a test scenario, pass/fail criteria are checked 
automatically in a test script (and logged during the simulation run) or verified in a post-
processing step using a dedicated tool. 
 
Another important capability of any test system is the injection of errors for testing the 
robustness of the unit-under-test. The AIVP features a scripting language to implement test 
scenarios that command and control the simulation models.  

                                                      
2 This means that nearly the complete Galileo Mission Segment (GMS) is modelled on interface level. 
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3 Test system architecture 

The design of the MGF-AIVP is based on separation of the real-time and non-real-time domains, 
see figure 3. It has the following hardware components: 
• Test Computer, responsible for test monitoring and control. 
• Real-Time Computer, responsible for running the real-time simulation models. 
• Non-Real-Time Computer, responsible for running the non-real-time simulation models. 
• Switches, responsible for LAN conversion from the Ethernet ports of the MGF to the (limited 

number of) Ethernet ports of the AIVP. 
 
The Test Computer is a standard PC, whereas the RT/NRT Computers are rack-mounted dual-
processor servers that run the simulation models of the GMS Elements using the EuroSim real-
time simulation framework.  
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NRT Computer 
 EuroSim 

 
 

NRT Element  
simulation 
models 

TLAN 2 NRT LAN 
Switch 

RT Computer 
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Fig. 3 MGF-AIVP architecture 

 
The Real-Time Computer includes a “PTF simulator” that generates the master time reference 
(GST reference via IRIG-B 1pps) to which the simulators as well as the MGF are synchronised. 
The uniform time reference is achieved by slaving the EuroSim scheduler directly to the IRIG-B 
clock. 

All simulator components of the AIVP will be slaved to this GST reference to obtain 
unambiguous time-stamping when recording values of variables, messages, and events. This 
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ensures time-related issues to be traced when combining the recordings of the AIVP machines 
and the MGF.  
 
 
4 Test system interfaces 

Four interface types can be discerned for the MGF:  
• a message interface for real-time data exchange, based on the GMS protocol over TCP/IP or 

UDP/IP over Ethernet;  
• a message interface for status management, based on the Simple Network Management 

Protocol (SNMP) over Ethernet;  
• a file transfer interface using the File Transfer Protocol (FTP) over TCP/IP over Ethernet; 
• a time synchronisation interface using a 1-pulse-per-second (1PPS) IRIG-B standard. 
 
A two-layer approach separates the models into a Common Layer and a Specific Layer, where 
the Common Layer is responsible for socket handling (UDP/IP, TCP/IP, SNMP) and for the 
encoding and decoding of GMS messages. The Specific Layer deals with behavioural aspects, 
such as states, (automatic) responses, command handling, and keep-alive mechanisms. 
 
Specific Layer Application- specific behaviour 
Common Layer GMS data messages files GMS m&c messages 
 NRT RT FTP SNMP 
Network Layer TCP UDP 
Transport Layer IP 
Data Link Layer Ethernet 
Physical Layer Ethernet 

Fig. 4 Layered approach for GMS element models interfacing with MGF 

 
All events, such as reception & transmission of messages, errors & warnings, script execution, 
are written to logs with a timestamp.  
 
The implemented UDP interfaces support both uni-cast and multi-cast transmission of messages. 
Apart from the different addressing in the corresponding sockets, no distinction is made in the 
design between uni-cast and multi-cast.  
 
When multiple instances of a model are available, they all send to the same port; no restrictions 
are imposed to prevent the interleaved arrival of messages at MGF. It is however possible to 



  
NLR-TP-2007-464 

  
 10 

configure the start slots of the cyclic models in such a way that each model has its own start slot. 
In this way, sequential arrival of messages can still be simulated. 
 
 
5 Simulation framework 

The MGF-AIVP relies for a large part on the simulation framework EuroSim. EuroSim is used to 
build, schedule and execute the simulation models.  
 
Important EuroSim features are its real-time scheduler, with which tasks (containing entry-points 
to model functions) can be executed, and the data dictionary: a shared-memory pool containing 
model data.  
 
On multi-processor machines, EuroSim is able to reserve a processor (provided there are more 
than one processor in a machine) for real-time execution. Only the necessary interrupts are 
handled by that processor, guaranteeing known performance at operating system and simulation 
level.  
 
Furthermore, EuroSim allows models to be scheduled on either the real-time processor (with 
given boundary conditions for the maximum allowed processing time) or the non-real-time 
processor. This enables the user to easily change the domain of a simulation model, e.g. from 
non-real-time to real-time, by simply editing the EuroSim schedule. 
 
In the EuroSim schedule, tasks can be connected to interrupts or to timers with a user-defined 
frequency. The latter option is to be used for repetitive actions, such as sending messages every 
second with a real-time guarantee.  
 
EuroSim also features a real-time scripting language that allows the user to precisely and 
repetitively execute actions to influence the simulation. Via EuroSim External Simulator Access 
(ExtSim), these scripts can be accessed externally by another test scripting language, e.g. Perl. 
External Simulator Access provides access and control to a running simulation, as well. 

 
Figure 5 shows the functioning of a EuroSim simulation with the Data Dictionary as the central 
part and the real-time scheduler controlling the access to the Data Dictionary. The models 
publish (selected) attributes as variables, and (selected) methods as entry-points in the Data 
Dictionary. The scheduler updates the time with every clock tick and calls the models according 
to the schedule, which then perform the activity to update the variables. 
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     Fig. 5   Overview of EuroSim functioning 

 
The real-time scripting engine of EuroSim is based on the Mission Definition Language (MDL), 
which has a C-like syntax with the obvious built-in statements (if, while) and functions. An 
MDL script can also execute entry-points, i.e. functions of a model that are put in the Data 
Dictionary. For instance, the send method of a model is put in the Data Dictionary as an entry-
point to allow the user to create a test script that calls the method at a specific Simulated Time. 
 
The monitors are used to display the values of selected simulation variables with a frequency of 
2 Hz. A recorder logs selected values with a user-definable frequency. Just like MDL scripts, 
they can be created and executed during a simulation run.  
 
The external simulator access allows other software applications (such as a scripting language 
like Perl) to connect to the (initialised or running) simulation. 
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6 Simulation models 

The simulation models are designed using the Unified Modelling Language (UML) to allow 
inheritance and multiple instantiation. As the implementation is done mostly in C++, the models 
need to comply with the Simulation Model Portability (SMP) standard, so that they can be 
imported in the EuroSim framework.  

PtfModel

setTime()
interrupt()
resume()

(from MODEL)

Buffer

data : String
dataLength : Integer
dataTimeStamp

(from SUPPORT)

Interface

state : Integer = UNCONFIGURED
available : Boolean
model : Model

start()
stop()

(from INTERFACE)

Message

encodedMessage : EncodedMessage
messageHeader : MessageHeader
emptyHeader : Boolean = false
invalidHeader : Boolean = false
correctCrc : Boolean = true
messageCrc : Integer

create()
check()
fill()
checkData()
checkFormat()
checkHeader()
addHeader()

(from MESSAGE)

0..10..1

MessageInfo

messageData : MessageData
(from MESSAGE)

Simulator

models : List<Model> = empty
signature : String = string with current date and time

create()
initialise()
run()

(from CONTROL)

Configuration

logLevel : Integer = 0
(from SUPPORT)

Model

execState : Integer
message : Message
badCRC : Boolean = false
badFormat : Boolean = false
delay : Double = 0.0
messageReception : Boolean = true
signature : String
mode : String = Nominal
messagesInfo : List<MessageInfo> = empty

create()
initialise()
run()
startSending()
stopSending()
setNominal()
check()

(from MODEL)

1..n1..n

11

0..*0..*

0..n0..n

 
 Fig. 6 Top-level class diagram for the simulator 

 
Each server runs the exact same simulator, but through initial configuration, only those models 
that need to be connected will be active. By setting the state of the RT models to ON and those 
of the NRT models to OFF, the AIVP can be configured for the RT Computer. The same 
approach holds for the NRT case.  
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IPF

IPF

IPF
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   Fig. 7 Model deployment 

 
The example shows that the simulator configuration 1 on the RT Machine only activates the RT 
models, whereas configuration 2 activates the NRT models on the NRT Machine.  
 
Note that several instances of each model are created during initialisation of the simulator, e.g. 
10 instances of the ULS model to represent the complete ULS network.  
 
The ‘sending’ models can be configured for failure injection by sending corrupted messages or 
not sending messages at all: 
• insert a bad or correct CRC in the message; 
• use an incorrect format for the message; 
• delay the sending of the messages; 
• switch sending of messages on or off. 
 
These substates are independent of each other. Furthermore, the scheduling of each model task 
can be changed during run-time, so that the models can send their messages faster or slower than 
they should.  
 
The ‘receiving’ models will verify the correct behaviour of the MGF by checking the routing, the 
timing and the contents of the messages. Checks of the message contents are performed at the 
models where the data originated (e.g. IPF or OSPF), whereas checks of the routing are 
performed by the MUCF model. 
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The real-time messages are defined in Abstract Syntax Notation (ASN.1) files. The MARBEN 
ASN.1 toolkit is used to generate C++ source code from these definitions. Dedicated wrapper 
classes are defined to ‘insert’ the generated code into the EuroSim project.  
 
 
7 Simulation behaviour 

The communication protocols between MGF and GMS Element are described in the MGF ICD. 
The simulation models implement that behaviour. Figure 8 shows the sequence diagram for the 
handling of navigation data between the MGF-AIVP simulation models and the MGF. 

 : SatModel : SatModel  : EnvModel : EnvModel  : OspfModel : OspfModel  : MGF : MGF  : MkmfModel : MkmfModel  : UlsModel : UlsModel  : MucfModel : MucfModel

getSatellite(Integer)

getState

sendNavData( )

sendPrsNavData( )

receiveData

receiveRawMsgSubFr( )

check( )

authenticate(String)

sendMsgSubFrAuth( )

receiveData

receiveMsgSubFr( )

checkRouting(SatModel, String)

 
 Fig. 8 Navigation data processing (Open Service) 

The OSPF model first retrieves the state of the satellites, which can also be ON or OFF. Then, 
the navigation data for the satellites is sent to the MGF, according to the ICD. The MGF creates 
a Galileo message from the navigation data and asks the MKMF to authenticate the message. 
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Then, the MGF sends the authenticated message to the ULS model, which in turn calls the 
MUCF model to verify whether the MGF routed the messages to the correct ULS. 
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