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1 Introduction 

For CFD computations of 3D flows, grids are required. The construction of such grids in 3D 
flow domains is nontrivial, when flow domain boundaries have complex shapes, like those of 
a complete aircraft. In such cases, CFD computations are today based on either multiblock 
structured grids, or on unstructured grids. 

.4 multiblock grid may be described as a collection of blocks, with a grid in each block. 
- Each block has the form of a deformed cube, and covers a part of the flow domain; a block has 
thus the topology of a unit cube, and has six block faces, twelve block edges, and eight block 
vertices, like the unit cube has. The blocks together should cover the flow domain completely. 
Moreover, a part of the block faces should cover the flow-domain boundaries completely. The 
covering of the flow domain by blocks may be arranged in various ways, see below for more 
details. 
- Each block is subsequently covered by hexahedral cells of a grid. These grid cells should 
be packed cell-face-to-cell-face, and form a smooth, well-ordered, three-dimensional covering 
of the complete block. Each cell vertex defines a grid point. The collection of cell vertex 
points in a block defines the grid in the block. Because the grid cells in a block form a well- 
ordered three-dimensional covering of the block, these grid points may be stored in simple 
data structures, 3D arrays. 

An unstructured grid may be described as a covering of the 3D flow domain by tetrahe- 
dral cells. Each cell has thus four cell faces, and four cell vertices. These tetrahedral cells 
are usually packed cell-face-to-cell-face, and should cover the flow domain completely. The 
collection of all cell vertex points defines the grid. Because here the grid cells are not required 
to cover the flow domain in a smooth, well-ordered way, the grid points cannot in general be 
stored in simple data structures like 3D arrays. 

Multiblock grids can be classified in three different types, based on the way of covering of 
the flow domain by the blocks. 
- In overlapped (overset) grids, adjacent blocks form 3D overlap regions, instead of e.g. inter- 
face surfaces. An overlapped region is common to at least two blocks. 
- In patched grids, adjacent blocks form common interface surfaces. An interface surface lies 
in two block-face surfaces, one at  either side of the interface surface. The two grids in the 
two blocks induce in general two different subgrids in the common interface surface. When 
this is true, the grid is called here a patched grid. 
- In Co-continuous grids, adjacent blocks with a common interface surface have also a common 
subgrid in that interface surface. 

Overlapped grids, patched grids, and Co-continuous grids form thus a hierarchy of multi- 
block structured grids of increasing structure. The covering of the flow domain by blocks is, 
with overlapped grids, in principle completely unstructured. This is, to a lesser extent, also 
the case for patched and Co-continuous grids. Go-continuous grids require extra information 
to allow a coupling of the two grids in  two adjacent blocks such that in common interface 
surfaces a common subgrid is defined. 

The advantages and disadvantages of unstructured grids and the various kinds of multi- 
block structured grids with respect to each other should be considered Gom all viewpoints 
which are relevant for industrial applications of CFD technology. 
- Geomet ry  manipulation. Complex surface shapes of 3D flow-domain boundaries, like 
complete transport and fighter aircraft, can in fact only be efficiently processed for CFD work, 
if accurate, flexible, and reliable surface-representation and -manipulation methods are used. 
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This will be made clear in this report. For CFD-oriented surface-processing activities in grid 
generators and flow solvers, CADCAM packages are not so useful, because they have a high 
user-threshold for CFD specialists. 
- Grid  generation. Unstructured 3D grids require the smallest manhour effort for their 
generation, and C0 continuous grids the most. 
- Flow solvers. C0 continuous grids are the simplest and most convenient to deal with. 
With C0 continuous grids it is easy to guarantee conservation across block interfaces, achieve 
high numerical accuracy, and to apply efficient solution methods. Unstructured grid offer in 
these respect still problems. 
- Postprocessing. The more structure in the grids, the easier the graphical interactive 
inspection of smoothness and accuracy of grids and numerical flow solutions. 

Multiblock grid may be considered to provide a fair compromise between the advantages 
and disadvantages of structured and unstructured grids. The structured grids within the 
blocks allow high computational efficiency and numerical accuracy of computation results, 
while the unstructurednes of block coverings of flow domains allow the treatment of complex 
configurations. These advantages of multiblock grids come with a price of increased manhour 
effort (compared to the situation about ten years ago, when monoblock grids were still usual). 

The successful use of block-structured-grid-based methods for solving viscous flows over 
complex aerodynamic configurations is demonstrated in recent conferences on grid generation 
[1],[2],[3],[4], [5],[6]. Almost all aerospace organizations involved in CFD simulations have 
some type of in-house multiblock grid generation capability. This suggests that the manhour 
effort for multiblock grid generation is generally considered acceptable. 

In this paper we will mainly consider only Co-continuous grids. Only a restrictive type of 
patched grids, based on local grid refinement of the structured grids in the blocks, will also be 
briefly described. For such restrictive patched grids it is also possible to preserve conservation 
across block interfaces 191. 

The generation of a C0 continuous grid involves three major subsequent processes: 
a) surface modeling, 
b) domain decomposition i.e. the construction of the blocks within the flow domain and 
c) grid generation i.e. the construction of the structured grids within each block. 

Grid generation processes start thus with surface modeling of flow boundaries with, in 
general, CADCAM software. The purpose of surface modeling is to obtain the geometric 
definition of configuration surfaces in a form which is acceptable for CFD work. Often, 
configuration surfaces are provided with a computer file which was generated by a Computer- 
Aided Design CAD system (like CATIA). Typical standard forms of such files are IGES and 
VDA files. CAD geometries have usually to be edited and/or trimmed, to correct geometric 
defects which are not acceptable in CFD work (i.e. gaps, or non-physical edges of surface 
elements), or to modify the true geometry for the purpose of CFD analysis (i.e. remove parts 
of the geometry that are not relevant for CFD analysis). Sometimes, surface definitions of 
only the individual components of a configuration (e.g. wing, fuselage, pylon, nacelle) are 
provided as input of CFD computations. The intersections of the various components have 
then to be determined. 

Surface modeling for CFD work may end with a geometric definition of the configuration 
surface consisting of surface patches, each surface patch being pointwise defined by a 2D 
array of points. These pointwise defined surface patches should abut cleanly, with no gaps, 
overlaps, doubly defined regions, or non-physical protrusions. The creation of these surface 
patches tends to be a time-consuming effort, requiring mastery of large, complex CAD-based 
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systems like ICEMfCFD or Unigraphics. However, such CAD-based systems are further 
well-equipped for this kind of surface-modeling work. 

After completion of the surface modeling task, the domain-decomposition task has to be 
executed. The physical flow domain is then subdivided into an unstructured collection of 
blocks. Below, only decompositions with non-overlapping blocks will be considered. Domain 
decomposition is an highly interactive task. An advanced Graphical User Interface (GUI) on 
a good workstation are needed to  support a user during domain decomposition. The GUI 
should provide a user with a set of efficient functions, to facilitate the domain decomposition 
process.Nowadays, the interactive generation of blocks is still the most time consuming and 
difficult part of the multiblock grid generation process. 

After domain decomposition, a blocked flow domain is available, and the grid generation 
step can be executed, i.e. the construction of a structured grid in each block. Grid generation 
is also a highly interactive task, but is much more simple and less time consuming than 
domain decomposition. The result of the grid generation is a multiblock grid, which may be 
used in a flow solver to compute solutions of Euler and/or Navier-Stokes equations. 

A complete set of mutually tuned codes, for surface modeling, domain decomposition, 
grid generation and flow calculation, is called a flow simulation system. Such a flow sim- 
ulation system has been developed at  NLR for the computation of flows about complete 
aircraft configurations, including propulsion-system components. The system is known as 
the ENFLOW (EulerINavier-Stokes FLOW) system [7],[8]. Fig.1 shows the layout of the 
system and summarizes its use for CFD work. The commercial ICEM/CFD code is used 
for CADCAM type surface modeling. The subdivision of a three dimensional flow domain 
into blocks is done with the graphical interactive domain modeler ENDOMO. The graphical 
interactive grid generator ENGRID is used for the computation of structured grids in the 
blocks. Given a multiblock grid, the flow solver ENSOLV computes the solution of the Euler 
and/or Navier-Stokes equations with respect to specified boundary conditions. The system 
contains further about 20 auxiliary codes for all kinds of tasks which makes the life of CFD 
specialists easier (visualization codes, file conversion codes, etc.). The ENFLOW system has 
been used for industrial flow calculations around many kinds of configurations: various types 
of transport aircraft configurations, various fighter configurations, space shuttles, wing bod- 
ies, supersonic projectiles, etc. In the near future, the ENFLOW system will be extended 
with grid adaptation of multiblock structured grids based on mesh movement [15],[16]. 

From the description above it should be apparent that multiblock grid generation with 
the ENFLOW system is a user-in-the-loop task. Therefore, one of the goals of the software 
design of ENDOMO and ENGRID has been to automate as much as possible, so that the 
user may concentrate on handling of the topology of block decompositions and on providing 
sufficient grid quality. This paper will describe some of the most important automation tools 
that are used in the ENDOMO and ENGRID codes. An excellent general overview about 
multiblock grids and its use in CFD can be found in [lo] and [Ill. 

The paper is organized as follows. Section 2: Theory for blocked flow domains is described. 
The topological elements of block decompositions and their connectivity relations are defined. 
Compound edges and compound faces are introduced; these allow block decompositions to 
be more or less unstructured collections of blocks. Degenerations of topological elements are 
considered. The design of geometrical shape functions of topological elements is described. 
Section 3: The domain-decomposition process is described. In ENDOMO, there is a clear 
distinction between topological and geometrical elements. The user constructs geometrical 
elements which are in turn used to build the topological elements. Section 4: Grid generation 
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with ENGRID for the construction of structured grids in blocks is described. Section 5: Some 
applications axe given. Section 6: The most important multiblock concepts and ideas, that 
are used in the software design of ENDOMO and ENGRID are summarized. 

2 Blocked flow domains 

2.1 Topological elements, connectivity relations, and local coordinate sys- 
tems 

A blocked flow domain consists of topological elements. These elements are blocks, faces, 
edges and vertices. The elements are topologically equivalent to, respectively, a unit cube, 
unit square, unit interval, and point. These topological equivalences are the basis for the 
construction of well-structured grids in each element. 

A block has six faces, twelve edges, and eight vertices as topological boundary elements. 
A face has four edges and four vertices as topological boundary elements. An edge has two 
vertices as topological boundary elements. 

Blocks, faces, edges and vertices are identified by labels B, F, E ,  V ,  respectively, from 
sets { B ) ,  { F ) ,  { E ) ,  and { V ) ,  which are so-called "label sets". In practice, the labels are 
integers in N: the set of positive natural numbers. For example, Bllz  is block number 112, 
F63 is face number 63, etc., and, in computer codes, only the integer subscripts are used to 
identify block B112 and face F63. 

The way how of blocks, faces, edges, and vertices are connected to each other over common 
boundary elements defines the topology of a blocked flow domain. It appears that only five 
types of connectivity relations between the above topological elements are sufficient to define 
the complete topology of a blocked flow domain. 

The first type concern block-to-face relations. Each block B is connected to its six faces, 
and this is expressed by a mapping of the form 

For reasons made clear below, the face labels are assumed to be ordered in pairs: faces Fl 
and Fz should be in block B opposite to each other, faces F3 and Fq should also be opposite 
to each other, and faces F5 and F6 are the remaining pair of opposite faces in block B. 

For example, in a computer code, a relation defined by Eq.(l) could have the form 

meaning that block Bl12 has the faces FZ3, F44, F2, F12, F9, and FZ12 as opposite pairs of 
faces. 

Two blocks will be connected to each other block-face-to-block-face, if they have a common 
face label in their block-to-face relations. 

The second type of connectivity relations concern face-to-edge connectivity relations. Each 
face F is connected to its four edges, and this is expressed by a mapping of the form 

V F  E { F )  : F H (El,Ez,Es,E4). ( 2 )  

Here, too, the edge labels are assumed to be ordered in pairs: edges El and E2 should be in 
face F opposite to each other, and the two remaining edges E3 and E4 are then also opposite 
to each other. 



F- 
Two faces will be connected to each other face-edge-to-face-edge, if they have a common 

edge label in their face-to-edge relations. 
The third type of connectivity relations concern edge-to-vertex relations. Each edge E is 

related to its two vertices, and this is expressed by a mapping of the form 

VE E {E) : E u  (V1,Vz). (3) 

The two vertex labels are here also to be considered ordered as a pair of opposite vertices, for 
reasons explained below. 

Two edges will be connected to each other edge-vertex-to-edge-vertex, if they have a 
common vertex in their edge-to-vertex relations. 

The topological equivalences between blocks, faces, edges and vertices with, respectively, 
unit cubes, unit squares, unit intervals, and points, have as a consequence that the topological 
boundary elements of each block, face, and edge must be connected to each as in the unit 
cube, square, and interval. These properties should be (automatically!) built in the above 
connectivity mappings during domain decomposition work. 

The connectivity relations are such that each face has exactly four corner-vertices. Sim- 
ilarly, each block has exactly eight corner-vertices and twelve boundary edges. The four 
corner-vertices of a face, and the eight corner-vertices and twelve boundary-edges of a block 
can be (completely automatically!) computed from the above connectivity relations Eqs.(l), 
(2), (3), and lead to so-called derived connectivity relations. 

The four corner-vertices of each face are then given by a derived connectivity relation of 
the form: 

V F E {F) : F u (Vl,V2,V3,V4). (4) 

The topology of a face is shown in Fig. 3. In this example, vertex Vl is defined as the 
intersection vertex of edge El and edge E3, thus as  the common vertex label of the two 
connectivity mappings of these edges. 

The eight corner-vertices of a block are given by derived connectivity relations of the form: 

The twelve boundary-edges of a block are given by derived connectivity relations of the form: 

The topology of a block is shown in Fig. 2. 
The three types of connectivity relations specified by Eqs.(l), (2), and (3) are sufficient 

to describe the complete topology of block coverings of flow domains, in which the blocks are 
packed block-face-to-block-face. 

In order to allow more freedom in block coverings of flow domains, compound faces 
and compound edges are introduced. These compound elements should allow partial block- 
boundary interfacing. A face of a block can then be adjacent to more than one other block 
[14]. This allows unstructurednes of block coverings of flow domains, and leads, compared 
to block-face-to-block-face coverings, to much fewer and larger blocks. An illustration of this 
effect is shown in Figs. 4, 5, 6 which is a simple 2D example of a block structured grid for 
a part of the harbour of Rotterdam 1171. The use of compound elements also enhances the 
flexibility of the domain decomposition process. 
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A compound face is defined as consisting of two subfaces that are joined together at a 

common edge (see Fig. 13). Each subface of a compound face is also allowed to be compound 
again. A face which is not compound is elementary. The set of compound and elementary 
faces are denoted as {Fc} and {Fe}. Thus {F) = {Fe} U {FC). 

The fourth kind of connectivity relations mentioned at the beginning of this section are 
compound-face-to-subfaces mappings. For each compound face F there is a mapping of the 
form 

V F E {FC} : F i-t (Fl,F2). (7) 

giving the two subfaces Fl and F 2  of the compound face. 
The fifth and last kind of connectivity relations are compound-edge-to-subedges relations. 

A compound edge consists of two subedges, that are joined together at a common vertex (see 
Fig. 12). The set of compound and elementary edges are denoted as {EC} and {Ee). Thus 
{E} = {Eel U {EC}, and the fifth kind of connectivity relations are of the form 

The derived connectivity relations of compound edges and compound faces must also obey 
certain restrictions. For example, the two subfaces of a compound face, given by Eq.(7), must 
have a unique common edge with one edge label. Similarly, the two sub-edges of a compound 
edge, given by Eq.(8), must have a unique common vertex with one vertex label. 

In a multiblock system, each topological element has its own local coordinate system. 
The local computational coordinate system in a topological element is an example of such 
a local coordinate system. But also the parametrization of the curve of an edge or the 
surface of a face define a local coordinate system in the edge and face. The unit cube 
for blocks, the unit square for face and the unit interval for edges can always be used 
as the range of the local coordinates. For example, the normalized arclength u E [O, 11 
can be used as parametrization of the curve of an edge. The computational coordinate 
f E [O,l] of an edge can be defined as fi = i /N / i = 0 . .  . N where N is the number of grid 
cells on the edge. The computational space of a face can be defined as (f, q) E [O, 112 with 
(f.. ., qt3 . .) - - ( '  z/N, j/M) / i = 0 . .  . N, j = 0.. . M where N and M are the number of grid cells 

in the two computational directions. The parametrization of the surface of a face can always be 
defined as Z.D : (u, v )  E [O, 11' i-t R3 where u and v are defined as normalized arclength along 
the four boundaries of the surface of the face. The computational space of a block can be 
defined as (fijk, qijk, Cijk) = (i/N, j/M, k/L) I i = 0. .  . N, j = 0 . .  . M, k = 0. .  . L where N , M  
and L are the number of grid cells in the three coordinate directions. 

The topological connectivity relations are used to define the orientation of a local coor- 
dinate system in a topological element. For a block B, with B i-t (FI, Fz, F3, Fq, Fj, Fs), the 
orientation of the local coordinate system (f, q,C) E [O, 113 is such that f = 0 at face Fl, f = 1 
at face F 2 ,  q = 0 at face F3, q = 1 at  face Fq, C = 0 at face Fs, C = 1 at face Fs (see Fig. 
2). For a face F, with F ct (El, Ez, E3, E4), the orientation of the local coordinate system 
(f,q) E [O, 112 is such that f = 0 at  edge El, f = 1 at edge E2, q = 0 at edge E3, q = 1 at edge 
Eq (see Fig. 3). For an edge E ,  with E i-t (VI, VZ), the orientation of the local coordinate 
system f E [O,1] is such that f = 0 at  vertex Vl, f = 1 at vertex VZ. 

Local coordinates are very useful to completely automatically relate to each other functions 
of different topological elements, which must satisfy nontrivial continuity requirements. This 
occurs for example during grid generation when a generated grid in an edge (face) must be 
stored in all blocks to which the edge (face) belongs (see Section 4.2). It is also needed for 



the construction of the geometrical shape function of a face for which it is required that the 
surface of the face exactly fits the four curves of the face-edges (see Section 2.3). 

2.2 Degenerations 

During domain decomposition, it is someti~nes inevitable to use degenerated blocks (for ex- 
ample in a polar grid region where a block with a block-face degenerated to a point or curve 
is needed ). Hence, degeneration of a topological element should be allowed. However there 
are restrictions for the types of degeneration that are allowed. These restrictions are caused 
by the following considerations. 

In a multiblock grid, each topological element has its own structured grid. The orientation 
of the computational space is defined by the topological connectivity relations. For a block B, 
with B H (Fl, F 2 ,  F3, F 4 ,  Fj, Fs), the orientation of the computational space ( [ B , ~ B , ~ B )  E 
[O, 113 is such that f B  = 0 at face Fl, fB = l at  face F2, q~ = 0 at  face F3, q~ = 1 at face F 4 ,  

(B = 0 at  face Fj, CB = 1 at face F6 (see Fig. 2). For a face F, with F H (El,E2,E3, Ed), 
the orientation of the computational space ( [ ~ , q p )  E [O, 11' is such that EF = 0 at edge El, 
(F = 1 at edge E 2 ,  q~ = 0 at  edge E3, qp = 1 at edge Eq (see Fig. 3). For an edge E, 
with E e (Vl, b), the orientation of the computational space cE E [O, 11 is such that fE = 0 
at vertex VI, EE = 1 at vertex V2. The size of the computational space of a topological 
element, i.e. the number of grid cells in each computational coordinate direction, is defined 
during grid generation (see Section 4.1). For grid generation purposes, it is necessary that 
the computational space of a topological element is uniquely embedded in the computational 
space of a topological element to which it belongs (see Section 4.2). The embedding of 
computational spaces into each other depends on topology and the size of the computational 
spaces and is automatically determined when the grid dimensions are known. For example, 
Fig. 7 shows how the computational space of an edge and face may be embedded in the 
computational space of a block. 

Degenerated topological elements are automatically identified by the topological connec- 
tivity relations. An elementary edge which is degenerated to a point is characterized by the 
connectivity relation E H (K,V2) with Vl = V2. Such an edge is called collapsed. The 
orientation of the computational space of a collapsed edge is undefined, but can be chosen 
arbitrarily (in a computer code) because all grid points along the edge will coincide with the 
position of the vertex. A closed-curve edge with equal vertices can not be used because the 
orientation is then not defined and can not be chosen arbitrarily. Only closed-edge curves 
with different vertices (although their geometrical position is the same) are allowed. Thus 
from a topological point of view, there are two types of elementary edges: collapsed and not- 
collapsed. Collapsed edges are also very special in the sense that the number of grid points 
along such an edge is not unique. This is illustrated in Fig.8 where edge E is a collapsed edge 
with vertex V. The number of grid points along edge E depends on the block to which the 
edge belongs and is not unique. 

Degenerations of compound edges are not allowed. An elementary sub-edge of a compound 
edge is not allowed to be collapsed. The reason for this is that size and orientation of the 
computational space of a collapsed edge is not uniquely defined so that the embedding of 
the computational space of a collapsed sub-edge in the computational space of the compound 
edge is also not uniquely defined. 

Allowed types of degenerated elementary faces are shown in Fig.9. An elementary face 
will be degenerated to a curve if two opposite edges are equal (i.e. El = E2 or E3 = E4 
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in Eq. (2)). In that case, one coordinate direction is undefined. An elementary face will 
be degenerated to a point if both pairs of opposite edges are equal. Then both coordinate 
directions are undefined 

Allowed types of degenerated compound faces are illustrated in Fig.10. Not all possible 
kinds of degenerations are allowed. The rule is that the computational space of a subface is 
uniquely embedded in the computational space of the compound face. 

Allowed types of degenerated blocks are illustrated in Fig.11. These types of degenerated 
blocks have in common that the orientation of the computational space of the blocks is always 
uniquely defined. For example, a block with two equal opposite faces is not allowed. This is 
also not needed because such a block would be degenerated to a quadrilateral surface. 

2.3 Geometrical shape of topological elements 

Another very important aspect of blocked flow domains are the geometrical shape functions 
of edges and faces. Each edge (face) is pointwise defined by an 1D (2D) array of control 
points in physical space and piecewise cubic Hermite interpolation is used to construct a 
smooth curve (surface) which is passing through the set of control points without introducing 
spurious oscillations (as may occur with standard cubic spline interpolation). 

Sometimes the pointwise definition of a face does not have a point-to-point match with 
the pointwise definition of a face-edge. Correction functions are introduced so that this 
mismatch is automatically repaired. These correction functions are needed to guarantee that 
a multiblock grid, created with ENGRID, is C0 continuous. The need for correction functions 
is often overlooked in the literature. 

The geometrical shape of a vertex V is a point, given by Z" = (z, y, z ) ~ .  The geometrical 
shape of an edge is a curve segment. Consider an elementary edge E with vertices Vl and fi 
given by the connectivity relation E H (V1, V2). FTom a geometrical point of view, there are 
two types of elementary edges: default edges and non-default edges. A default elementary 
edge is an edge of which the edge-curve shape is a straight-line segment between the two 
edge-vertices. The geometrical shape function of an  default elementary edge is given by 

where u E [O, 11, Vl and V2 are the two vertices of edge E. Notice that u is the normalized 
arclength and ZE(O) = ZK and ZE(1) = Zv2. Also notice that the coordinate direction of u is 
defined by the topological connectivity relations and is thus the same as for the computational 
coordinate. This is a general rule which also holds for compound edges and elementary and 
compound faces. 

A non-default elementary edge is an edge of which the edge-curve shape is described by an 
ordered one dimensional sequence of control points given by Zpl . . . Zp,. In computer codes, 
an ordering of the control points is used such that the first control point Zpl is closest to vertex 
Vl and the last control point Zp,  is closest to vertex V2. This is done automatically. Piecewise 
cubic Hermite interpolation between the control points is used to construct a smooth C1 curve 
&',, : u E [O, 11 i-t R3 which is passing through the set of control points with a geometrical 
shape as one would intuitively expect, without introducing spurious oscillations. Appendix A 
describes Hermite interpolation between control points. Normalized arclength is used for the 
coordinate u. Fig. 19 illustrates that Hermite interpolation gives a monotonic interpolation 
curve while cubic spline interpolation may easily introduce unwanted oscillations. 
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The first and last control point of a non-default edge may not match the edge-vertices 
exactly. It is required that the edge-curve is passing exactly through the edge-vertices; oth- 
erwise two edges which share the same vertex may not be continuously connected. This is 
obtained by defining the geometrical shape function of a non-default elementary edge as 

where 2ct,,,(u) is a correction function defined by 

where 3Tpi, ZpN are the positions of the first and last control point, and Ho , HI are cubic 
Hermite functions defined in Eq.(41) below. The result of the correction function is that 
non-default edges also precisely obey that ZE(0 )  = Zv, and Z E ( l )  = Zv2. 

A compound edge can be considered as a binary tree structure, with elementary edges at 
the leaves and compound edges at the nodes. The geometrical shape function of a compound 
edge is recursively defined in terms of the geometrical shape functions of its sub-edges. 

Consider a compound edge E with sub-edges El and E2. Let ?E, (~ l ) ,5E , (~2)  be the two 
geometrical shape functions of El and E2. Assume that the two sub-edges El and E2 are 
situated in the compound edge E as shown in Fig. 12. Let L1 and L2 denote the length of 
edges El and E2. Assume that ul and 212 are normalized arclength. Thus /I &?E] (u l )  II= L1, 
/I &ZE2 (212) I/= L2. Then ZE(u) is defined as 

ZE] ( U I )  with u = L l u l / ( L ~  + L2), u1 E [O, 11 
Z E ~ ( U Z )  with u = (Ll + L ~ u ~ ) / ( L I  + L2), 212 E [O, 11 (12) 

It is easily verified that ZE(U)  is also arclength scaled, i.e. 11 &ZE(u) /I= L1 + L2. There are 
in fact eight possibilities, defined by the topology, how the two sub-edges El and E2 can be 
situated in the compound edge E. Fig. 14 show the eight possibilities. Each case has its own 
unique definition of ZE(u); Eq.12 is just an example of one of the eight possibilities. 

The final result of this recursive definition is that a compound edge-curve can be considered 
as a composite curve consisting of L elementary edge-curves. The compound edge-curve is 
defined on L intervals 0 = uo < . . . < U L  = 1. Each interval is mapped to an elementary 
edge-curve. The ratio of the size of two intervals is equal to the ratio of the length of the two 
corresponding elementary edge-curves. The relation between the global coordinate u E [O,1]  
of the compound-edge curve and a local coordinate ii E [0, 11 of an elementary edge-curve is 
defined by the position of the corresponding interval and the orientation of the elementary 
edge in the compound edge. Finally, notice that SE(u) is continuous and C1 in the interior 
of the intervals. 

The geometrical shape of a face is a quadrilateral surface. From a geometrical point of 
view, there are two types of elementary faces: default faces and non-default faces. The 
geometrical shape of a default elementary face is defined as a bilinearly blended Coon's 
patch bounded by the four curves of the four face-edges. The geometrical shape function 
ZF : (u ,v)  E [O,  11' H R3 is thus defined as 
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At the boundary, the geometrical shape function of a default face is equal to the geometrical 
shape function of an edge, for example +(O,v) = ?E,(v). In Eq.13 is assumed that the 
coordinate direction of the face edges correspond with the coordinate direction of the face 
itself. If this is not the case,for example for edge El, then ?E, ( 1  - v )  must be used instead of 
ZEl(v)  in Eq.13. Notice that the geometrical shape function of a compound edge is needed 
in Eq.(13) if a face-edge is compound. 

A non-default elementary face is a face of which the geometrical surface shape is described by 
a well-ordered two-dimensional sequence of control points. In Appendix B is described how 
piecewise bi-cubic Hermite interpolation between the control points is applied to construct 
a smooth C 1  surface Zsu, : ( u , v )  E [O,  112 H R3 which is passing through the set of control 
points with a geometrical shape as one would intuitively expect, without introducing spurious 
oscillations. 

It is also required that the surface of a face should fit the curves of the four edges of the face 
exactly. Otherwise, two faces which share the same edge will not be continuously connected. 
This is obtained by defining the geometrical shape function of a non-default elementary face 
as 

ZF(U,  v )  = Z S ~ ~ ( ~ ,  v )  + ZCor(u, v ) ,  (14) 
where ?ct,,,(u) is a correction function defined by 

In this way, we also obtain that at the boundary, the geometrical shape function of a non- 
default face is equal to the geometrical shape function of an edge, for example ? F ( O , V )  = 
FEJv) .  In Eq.(15) is again assumed that the coordinate direction of the face edges correspond 
with the coordinate direction of the face itself. If this is not the case,for example for edge El ,  
then again ZE1 (1 - v )  must be used instead of ZEl ( v )  in Eq.15. 

A compound face can be considered as a binary tree structure with elementary faces at the 
leaves and compound faces at the nodes. Therefore, it is sufficient to define the geometrical 
shape function of a compound face given the geometrical shape functions of the two sub-faces. 
In this way, the geometrical shape function of a compound face is recursively defined. 

Consider a compound face F with sub-faces FI and F2. Let ZFl ( u l ,  vl),ZF2 (uz,  vz) be the 
two geometrical shape functions of Fl and F2. Assume that ZFl ( u l ,  v l ) , Z ~ ~  (u2, v2) are arc 
length scaled along the boundary. The two sub-faces Fl and F2 can be situated in a compound 
face F in 256 different ways and each case is automatically recognized. Fig. 13 gives a 
particular example. In each case, there is a unique relationship between the global coordinate 
( u ,  v )  of the geometrical shape function of the compound face and the local coordinates ( u l ,  v l )  
and ( u z , v ~ )  of the sub-faces. Fig. 13 illustrates this relationship for a particular example. 
As illustrated, the ratio between length of edges play an important role in establishing the 
relationship between the coordinate systems. The geometrical shape function Z ~ ( u , v )  is in 
general defined as 

?F ( u ,  v) = Z F ~ F ~ ( ~ I , ~ I )  ( ~ 1 ~ ~ 1 )  E [0,112 
? F ~ ( u ~ ~ v ~ )  ( ~ 2 , ~ 2 )  E [o, 11' 

It is easily verified that ZF(U,V)  is then also arclength scaled along the boundary. 
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The final result of this recursive definition is that a compound face can be considered 

as a composite surface consisting of L elementary sub-faces. The compound face is defined 
on L patches in the unit square. Each patch corresponds with an elementary sub-face. The 
relation between the global coordinate of the compound face and a local coordinate of an 
elementary sub-face is defined by the position of the corresponding patch and the orientation 
of the elementary face in the compound face. An illustration is shown in Fig.16. The local 
coordinates (G, 6) E [O, 11' of an elementary face are related to the global coordinates C = 
(u, v ) ~  E [O, 112 of the compound face according to the bilinear relation: 

Finally, notice that ZF(u, v) is continuous and C' in the interior of the patches. 
The algorithms for the geometrical shape functions of edges and face are implemented in 

the software of the domain modeler ENDOMO and the grid generator ENGRID. In ENGRID, 
the geometrical shape function of an elementary face is used to compute a surface grid in 
that face.The geometrical shape function of a compound face is used in ENDOMO for the 
projection algorithm of block-faces on the input geometry. 

2.4 Topology and Geometry file 

The data specifying a blocked flow domain is defined on two files: a topology file and a 
geometry file. The topological connectivity relations, given by Eqs.(1),(2),(3),(7),(8), are 
specified on the topology file. The geometry file contains the ( x ,  y, z) position of vertices, 
and the (2, y, z) position of control points of non-default elementary edges and non-default 
elementary faces The topology file and geometry file are the main output files of the domain 
modeler ENDOMO and the main input files for the grid generator ENGRID. 

As an illustration, consider the two partially connected blocks as shown in Fig. 15. The 
contents of the corresponding topology file is given in Appendix C. The reader may easily 
check that the contents of this file defines the arrangement of the two blocks as shown in Fig. 
15. 

3 Domain decomposition 

The definition of a blocked flow domain is described in the preceding section. Here we 
consider some of the main aspects concerning the construction of a blocked flow domain 
with ENDOMO. The geometry model serves as input to ENDOMO. The geometry model is 
obtained after surface modeling with ICEMICFD and consists of pointwise defined surface 
patches, which abut cleanly, with no gaps, overlaps, doubly defined regions, or non-physical 
protrusions. However, it is not needed that connected surface patches have a point-to-point 
match. 

In ENDOMO, these pointwise defined surface patches are called discrete surfaces (to 
emphasize the pointwise definition). In ENDOMO, there is a clear distinction between top* 
logical and geometrical elements. The geometrical elements that are used are points, discrete 
curves, discrete surfaces, nurb curves and nurb surfaces. The topological elements are ver- 
tices, edges, faces and blocks. The geometrical elements are used to support the definition of 
the topological elements. The user constructs geometrical elements which are in turn used 
to build the topological elements. The main difference between a topological element and a 
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geometrical element is that a topological element is hierarchically defined by other topolog- 
ical elements. The extraction of points from geometrical elements for the definition of the 
geometrical shape of a topological element is highly automated in ENDOMO. A geometrical 
element can also be created from a topological element by using the geometrical shape func- 
tion of the topological element. A nice example of the simultaneous use of both topological 
and geometrical elements is the projection algorithm for the creation of faces on the input 
geometry model. This algorithm is called refacing and described in Section 3.3. 

3.1 Geometrical elements 

The following set of geometrical elements are available in ENDOMO to support the domain 
decomposition process of a flow domain in blocks: 

points. 

discrete curves. 

discrete surfaces 

0 n u r b  curves 

n u r b  surfaces. 

A discrete curve is defined as a one-dimensional ordered sequence of points. A discrete 
surface is defined as a two-dimensional ordered sequence of points. The geometry model 
of a configuration Surface modeling ends with a geometric definition consists of pointwise 
defined surface patches.These discrete surfaces are the basic elements with which the domain 
decomposition process starts. Nurb curves and nurb surfaces are mainly used to support the 
design of other curvilinear edges and faces. A nurb curve (surface) is a non-uniform rational 
B-spline curve (surface). A nurb curve can be created by specifying its control polygon. Then 
a cubic B-spline curve is created with a knot sequence based on chord length parametrization 
(see [MI). The cubic B-spline curve is considered as a nurb curve with constant weights equal 
to 1. The shape of a nurb curve can be changed by changing the position of a point of the 
control polygon or by changing a weight at a point of the control polygon. The latter is 
illustrated in Fig. 20 where a weight at a point of the control polygon has been enlarged. A 
nurb curve can also be specified by interpolation. Then a cubic B-spline curve is generated 
that passes through a given set of points (see Fig.20). Thus a nurb curve can be created out 
of a discrete curve by considering the discrete curve as the defining control polygon or by 
interpolation. Similarly, a nurb surface can be created out of a discrete surface by considering 
the discrete surface as the defining control polygon or by interpolation. Fig.21 shows a nurb 
surface together with its defining control polygon. Fig.22 shows a nurb surface obtained by 
interpolation of the same control polygon. The shape of a nurb surface can also be changed 
by changing the position of a point of the control polygon or by changing a weight a t  a point 
of the control polygon. An excellent treatise about nurb curves and nurb surfaces can be 
found in [18],[19]. 

A discrete curve can be created by interpolation of a nurb curve. A discrete curve can 
also be created by interpolation of an edge (elementary or compound), using the geometrical 
shape function of the edge. In both cases, only the number of points has to be specified and a 
discrete curve will be created consisting of equidistributed points on the edge or nurb curve. 
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A discrete curve can also be generated by assembling a set of points. A discrete curve can be 
split into two sub-curves. The splitting occurs at  an interior point. Two discrete curves can 
also be joined together. 

A discrete surface can be created by interpolation of a nurb surface. A discrete surface can 
also be created by interpolation of a face (elementary or compound), using the geometrical 
shape function of the face. In both cases,the number of points in both coordinate directions 
have to be specified and an equidistributed point distribution will be created on the nurb 
surface or face. A discrete surface can also be created by assembling a set of discrete curves 
(with the restriction that the number of points are the same for all discrete curves). A discrete 
surface can be split into two sub-surfaces. The splitting occurs at  a boundary point. Two 
discrete surfaces may also be joined together. 

In ENDOMO are also available several transformation rules (rotation, translation, scaling, 
reflection etc.) to transform geometrical elements. 

3.2 Construction of topological elements 

The extraction of points of discrete curves and discrete surfaces for the definition of the 
geometrical shape of topological elements is highly automated in ENDOMO. 

A vertex can be created by using a point which already exists (such as one which is part 
of a discrete curve or discrete surface) or by creating a new one in space (either by typing in 
coordinates or by translation of an existing vertex). 

An elementary edge is created by specifying its two vertices. A non-default edge will be 
automatically created when the position of the two vertices coincide with two different points 
of a discrete curve. The control points of the non-default edge will become equal to a subset 
of the points of the discrete curve. A non-default edge will also be automatically created 
when the position of the two vertices coincide with two points on a row (column) of a discrete 
surface. 

A compound edge is created by specifying its two sub-edges. 
An elementary face is created by specifying its four boundary edges. A non-default face 

will be automatically created when the position of the four corner vertices coincide with four 
corner points of a rectangular subset of points of a discrete surface. The control points of the 
non-default face will become equal to this rectangular subset of points. An elementary face 
can also be created by specifying its four corner vertices. Then the boundary edges of the 
face, if they do not already exist, are also automatically created. 

A compound face is created by specifying its two sub-faces. 
A block is created by specifying its six boundary faces. A block can also be created by 

specifying its eight corner vertices. Then the block-faces and block-edges, if they do not 
already exist, are automatically created. 

3.3 Refacing 

An entire aerodynamic configuration is represented in ENDOMO as a collection of pointwise 
defined surface patches. Block-faces can be easily defined on the surface patches as long as 
the edges of the block-faces coincide with rows (columns) of points of the surface patches. 
However, sometimes block-faces are needed on the aerodynamic configuration which cannot 
be shaped along rows (columns) of the surface patches. Then a block face must be created 
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by projection on a set of connected surface patches (which may not have a point-to-point 
match). 

Such a projection is performed as follows. The set of surface patches that are needed 
to  project a block-face are joined together to one compound face. Elementary faces are 
created on each surface patch (the points of the surface patch become the control points of 
the elementary face). The elementary faces are joined together by compound faces. Thus 
after all there is only one compound face on which a block-face must be projected. Even 
when the surface patches do not have a point-to-point match, the geometrical shape function 
of the compound face still defines a smooth analytical representation on which the projection 
must be performed, because correction functions automatically provide this smoothness. 

Four discrete curves are created in the neighbourhood of the compound face. These 
discrete curves are initial approximations of the final edges of the projected face. The four 
discrete curves must define four corner points (which are the initial approximations of the 
final vertices of the projected face). Furthermore, the number of points on two opposite 
discrete curves must be the same. These discrete curves are in general created in ENDOMO 
by interpolation of nurb curves. 

Now, ENDOMO provides a facility to project these four discrete curves on the compound 
face. After projection, the result is a discrete surface with points that are situated on the 
compound face (and thus on the selected set of surface patches). The points of the discrete 
surface may then be used a s  control points of a projected block-face. 

This procedure is a nice example of the simultaneous use of topological and geometrical 
elements in ENDOMO. We will now describe the method to project four discrete curves on a 
compound face. The method is illustrated in Fig. 18. 

Pro jec t ion  Algori thm 
Consider a (compound) face F with a geometrical shape function defined by ZF : (u, v) E 

[O, 112 H R3. Call (u, v) E [O, 11' the parameter space P,,. Consider four discrete curves in 
the neighbourhood of the compound face, with an equal number of points on opposite curves, 
as shown in Fig. 18. Then a discrete surface is created on the compound face as follows. 

step 1 For each point 5, on a discrete curve, a corresponding coordinate point (u,, v,) E 'P,, 
is defined such that 

No Newton-like method can be used to find (u,, v,) because ZF(u, v )  is only a continuous 
function at the boundary of the patches in P,,, see Section 2.3. A brute-force two- 
dimensional variant of the bisection algorithm is used to find (u,,~,).  The function 
ZF(u,v) is evaluated on a uniform mesh in parameter space 'P,,. Assume that 5ij = 
ZF(uijrvij) is the nearest point to Zc of the uniform mesh. Then a small rectangular 
sub-region is defined in P,, around this point (uij, vij). Again,the geometrical shape 
function ZF(u, v) is evaluated, but now on a uniform mesh in this small rectangular 
subregion. On this mesh, a new nearest point to  Zc is determined and the process is 
repeated until a sufficiently accurate approximation of (u,, v,) is found. 

s t e p  2 The result of the algorithm described in step 1 are four discrete curves in parameter 
space P,,. These four discrete curves define the four boundary edges of a simply 
connected sub-region in 'P,,. An initial mesh inside this sub-region is generated based on 
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transfinite interpolation. Also 2D elliptic grid generation, as described in [12], Section 
2, can be used to generate an interior mesh. 

s t e p  3 The geometrical shape function ?,v(u,v) is evaluated in the grid points of this initial 
mesh in this sub-region. The result is a discrete surface with points on the compound 
face. However, the position on the compound face of the interior points of this discrete 
surface depend on the parametrization of E.F(u, v). The elliptic surface grid generation 
method, as described in [12], Section 4, can now be directly applied to generate a 
Laplace mesh on the compound face which is independent of the parametrization. Thus 
the final result is a discrete surface which only depends on the shape of the surface of 
the compound face and the position of the computed boundary grid points defined by 
?F(Uc, we). 

An illustration of the projection algorithm is shown in Fig.23 and Fig.24. Fig.23 shows 
four surface patches which are smoothly connected although there is no point-to-point match 
between the patches. These four patches are joined together in a compound face. Fig.24 
shows a projected block-face on the compound face. 

A less academic example, shown in Figs. 25,26 concerns the projection of block-faces on 
the lower part of a wing. 

3.4 Interactive domain decomposition 

In general, blocking of a flow domain is done in a block-by-block process. The geometrical 
elements are used to draw the boundary of a block. If a user is satisfied about the geometrical 
shapes, then a block can be easily generated by specifying eight vertices, and the points of the 
geometrical elements are automatically used for the geometrical shape of the automatically 
generated block-edges and block-faces. The control polygon of a nurb curve is often nsed 
to draw 3D curves in the interior of the flow domain. For blocks in the interior of the flow 
domain, it is almost always sufficient to specify the geometrical shape of block-edges only. 
The geometrical shape of a block-face is then defined as a bilinearly blended Coon's surface 
bounded by four edge-curves. The points of the surface patches of the geometry model are 
often nsed for block-faces on the aerodynamic configuration. Refacing must be applied if this 
is not possible. 

These tasks can only be done within a reasonable time with an advanced graphical nser 
interface (GUI). Some of the most important aspects of the GUI are listed below. 

Implementat ion.  The graphical nser interface (GUI) of ENDOMO is implemented in C 
using X Windows and Motif as the interface builder, and GL on the Silicon Graphics work- 
stations as the graphics language. UIMX has been used to  develop the GUI. As OpenGL 
becomes readily available, ENDOMO can be easily ported and then will become available 
for use on a variety of workstations. The numerical core of ENDOMO has been written in 
FORTRAN. Only one main FORTRAN subroutine is used for the communication between 
the GUI and the numerical core. Each domain decomposition task within the GUI, is finally 
a call to this main subroutine. The result of the task (for example, creating a discrete sur- 
face), is stored in a one-dimensional workspace array which the GUI may use to depict the 
result on the screen. The advantage of this construction is that a Journa l  file can be easily 
constructed in order to replay an ENDOMO session. 
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Topology check. It is possible to construct a blocked flow domain which is correct from a 
topological point of view (i.e. satisfies all topology rules that are used within ENDOMO), 
but which is unsuitable for multi-block grid generation (i.e. it is not possible to construct a 
Co continuous grid). An example is shown in Fig.17. This figure shows that edge E3 is a 
compound edge with sub-edges El and E2. Furthermore, edge E2 and edge E4 are opposite 
edges in face F2, and edge E3 and edge E4 are opposite edges in face Fl. Thus the grid 
dimension (i.e. the number of grid cells) must be equal for &,E4 and E3 so that the grid 
dimension of edge El must be zero which is not allowed. In ENDOMO it is possible to check 
if the topology of a blocked flow domain is correct in the sense that it can be used for the 
construction of a C0 continuous grid. The algorithm finds out if there are edges with grid 
dimension zero. 

Other checks, for example to ensure that the block decomposition has no gaps or overlaps, 
are also available in ENDOMO. 

Visualization. During domain decomposition, a user does not always want to see all topo- 
logical and geometrical elements on the computer screen at once. Often, a user wants to 
see only those elements that are in the vicinity of the block he is creating. ENDOMO pro- 
vides efficient interactive mechanisms to select the visibility of topological and geometrical 
elements. 

Highlighting visible elements, to visualize the geometrical shape and topological construc- 
tion of an individual element is also very useful, especially for blocks, compound faces and 
compound edges. 

Boundary conditions All types of boundary conditions, to be used as input for the flow 
solver ENSOLV, can be specified at elementary faces. The boundary condition data is written 
on an output file BCDAT. This file can also be an  input file, in order to change a specified 
boundary condition. 

4 Grid generation 

Grid generation starts with the topology and geometry of a blocked flow domain. A topology 
and geometry file, created by ENDOMO, are input files for the grid generator ENGRID. Two 
other files are also important during grid generation: - a grid dimension file which contains 
the information for the specification of the grid dimensions of the multi-block grid, and - a 
grid control file which contains the grid control parameters for tuning of the grid. These two 
files are input and/or output files of a the interactive grid generator. 

A batch version of the grid generator is also available. The batch version is operational 
on a supercomputer (NEC-SX3) and is especially useful to create fine grids. 

The general way of working is as follows. Coarse or medium grids are generated during 
an interactive grid generation session. The generated grids are defined according to the user 
specified grid dimensions and grid control parameters. When the user is satisfied about 
the grid quality of the created grids, then the grid dimensions and grid control parameters 
are written to the grid dimension file and grid control file which are then output files of 
the interactive grid generator. Next, the grid dimensions are enlarged by a constant factor 
(the user has to modify, by an editor, only one number on the grid dimension file), and the 
complete set of four input files (topology file, geometry file, grid dimension file and, grid 
control file) is sent to the supercomputer where a fine grid is generated by the batch version 
of the grid generator. This way of working is successful because of the fact that all grid 



control parameters have a relative meaning with respect to the grid dimensions. The grid file 
is the main input file for the flow solver ENSOLV, which also runs on the supercomputer. 

4.1 Grid dimension specification 

Starting with a blocked flow domain, the first task to be considered during an interactive grid 
generation session is the specification of the grid dimensions, i.e. the number of grid cells in 
all blocks, faces and edges. The specification of the grid dimension of a blocked flow domain 
requires the grid dimension specification of only a few edges. This is due to the constraining 
effect of the requirement that each grid line in each block must be continuous over any face 
that the block has in common with any adjacent block (CO continuous grid). These constraint 
relations depend only on the topology: each two opposite edges in a face must have the same 
grid dimension, and each four opposite edges in a block must have the same grid dimension. 
This observation makes it possible to subdivide the set of edges { E )  into disjunct sets (called 
groups) with the property that the grid dimension of all edges in the same group must be 
the same, while the grid dimensions of two edges in different groups is generally different. 
Furthermore, simple sum relations between the grid dimensions of different groups may exist 
due to the existence of compound edges.If, for instance, a compound edge E with subedges 
El, E2 belong to the groups G and G I ,  G2, respectively, then it is clear that the grid dimension 
of group G is equal to the sum of the grid dimensions of groups G1 and G2. 

The groups and the sum relations between the groups are automatically generated from 
the topology. Suppose that a particular multi-block system contains N groups with M sum 
relations between the groups. Then there are only N - M independent grid dimensions, and 
the user has to specify the grid dimensions of only N - M suitable chosen edges in order to 
define the grid dimensions of all groups, and consequently, of all edges, faces and blocks. 

To give an example, consider again the two partially connected blocks in Fig.15. In this 
case there are six groups, namely 

and there is one sum relation: dim GI + dim Gz = dim GQ. Thus, in this case, the grid 
dimension of only five suitable chosen edges has to be specified in order to define the grid 
dimension of all edges, faces and blocks. 

4.2 Computational spaces 

In a multi-block grid, each topological element has its own computational space. The ori- 
entation of the computational space of a topological element is defined by the topological 
connectivity relations given by Eqs. (1),(2),(3). 

For a block B, with B e (FI, F2, F3, Fq, F5, F6) ,  the orientation of the computational 
space (EB,~B,[B) E [O, 113 is such that EB = 0 at  face F I ,  cB = 1 at face F2, q~ = 0 at face 
F3, q~ = 1 at face F 4 ,  [B = 0 at  face Fj ,  (8 = 1 at  face F6 (see Fig.2). 
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For a face F, with F tt (El ,  E2, E3, E4), the orientation of the computational space 
( ( F , ~ F )  E [O, l j Z  is such that EF = 0 at edge El, CF = 1 at edge E2, q~ = 0 at edge E3, 
q~ = 1 at edge E4 (see Fig.3). 

Finally, for an edge E, with E t-i (K, Vz), the orientation of the computational space 
tE E [O,1]  is such that EE = 0 at vertex Vl, EE = 1 at vertex &. 

The size of the computational space of a topological element, i.e. the number of grid 
cells in each computational coordinate direction, is defined after grid dimension specification. 
At that moment it is possible to allocate computer memory space to store the grids in the 
blocks. At the same time, it is also possible to derive automatically the embedding of the 
computational space of all elementary edges and elementary faces in the computational spaces 
of the blocks. 

For an elementary edge E which is part of block B, the computational space EE of edge 
E, is related to the computational space ((B, q ~ ,  CB) of block B by a linear transfer relation: 

where the six constants ao . . . cl are the so-called transfer coefficients. 
Similarly, for an elementary face F which is part of block B, the computational space 

(EF,qF) of face F, is related to the computational space ( E B , q ~ , C ~ )  of block B by a linear 
transfer relation: 

(21) 

In this case there are nine transfer coefficients. 
As an illustration, Fig.7 shows how the computational space of an elementary edge or 

elementary face may be embedded in the computational space of a block. The transfer 
coefficients depend on the topological connectivity relations (which define the orientation 
of the computational spaces), and the grid dimension of each topological element (i.e. the 
number of grid cells in each coordinate direction). 

The transfer relations defined by Eqs.(20), (21) are extremely important during grid gen- 
eration: Eq. (20) is used to store the result of a generated grid in an elementary edge, into 
all the blocks to which this edge belongs to. Similarly, Eq. (21) is used to store the result of 
a generated grid in an elementary face, into all the blocks of which the face is part of. 

The derivation of the transfer relations defined by Eqs.(20),(21) is not trivial. As already 
mentioned in Section 2.2, the computational space of a topological element is uniquely em- 
bedded in the computational space of the topological element to which it belongs. This means 
that - the computational space of a block-face is uniquely embedded in the computational 
space of the block to which it belongs, - the computational space of a sub-face is uniquely 
embedded in the computational space of the compound face to which it belongs, - the com- 
putational space of a face-edge is uniquely embedded in the computational space of the face 
to which it belongs, - the computational space of a sub-edge is uniquely embedded in the 
computational space of the compound edge to which it belongs. Each embedding defines a 
basic transfer relation. Eqs.(20),(21) are now found by composing these basic transfer relation 
in the right order. 
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4.3 Grid generation in elementary edges 

Each elementary edge has a geometrical shape function 

ZE : u  6 [O, 11 r-t ( x ;  y ,  t )  6 'R3, (22) 

where is the normalized arclength (see Section 2.3). A grid control function U E  of the form: 

maps the computational space onto the parameter space. The orientation of the computa- 
tional space and parameter space are the same and defined by the topology. A grid distribution 
function maps the computational space onto the edge-curve and is defined as the composite 
mapping ZE/;  01; U E ( ~ )  = ZE(uE([)) .  Thus the grid points of an edge with N grid cells are 
computed according to 

Z E / ;  01; U E  ( t i ) ,  E j  = i l N ,  i = 0 . .  . N. (24) 

The general form of the function U E ( ~ )  is taken as 

where the five coefficients aj,i = 0 . .  . 4  are constants. The chosen form of the function 
U E  implies that the corresponding stretching function, defined as uklu;, is a polynomial 
function. At an elementary edge a user may specify two boundary conditions at each vertex, 
so that at most four boundary conditions exist. These four boundary conditions, together 
with the constraint 

are used to compute the five coefficients ai, i = 0..  .4. When the number of boundary condi- 
tions is less than four, then the five coefficients are still uniquely determined by demanding 
that the degree of the polynomial stretching function is as low as possible. The grid control 
function will be the identity, i.e. uE(E) = E ,  when no boundary conditions are specified. In 
that case, the edge will be equidistributed with grid points. 

After grid generation in an elementary edge, the computed grid points are automatically 
stored in all blocks to which the elementary edge belongs. 

Grid generation in a compound edge is simply obtained by grid generation in all elementary 
sub-edges of the compound edge. An algorithm for grid generation in compound edges is 
therefore not needed. 

4.4 Grid generation in elementary faces 

The geometrical shape function of an elementary face is also defined in Section 2.3, and given 
by: 

5.p : (u; v )  6 [O, 112 r-t ( x ,  y, t)  E 'R3. (27) 

The orientation of the parameter space (u ,  v )  E [0, 112 is defined by the topology: u = 0 at 
edge El, u  = 1 at  edge E2, v = 0 at edge E3; v  = 1 at edge E4. At the boundary, the 
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function Z.P coincides with the geometrical shape functions of the four face-edges (which may 
be compound edges): 

Thus u and v are normalized arclength along the boundary of the surface (see Section 2.3). 
Similarly as for elementary edges, a grid control function maps the computational space 

onto the parameter space: 

The orientation of the computational space and parameter space are the same. The grid 
distribution function cF/; o / ;  GF maps the computational space onto the surface. The grid 
points of a face with N x M grid cells are found by 

Grid generation in an elementary face is automatically preceded by grid generation in 
the four face-edges. Thus the grid points along the four face-edges are known and also 
their corresponding u and v values. What remains is the computation of the grid points in 
the interior of the face, with the grid points at the four face-edges as Dirichlet boundary 
conditions. 

The computation of the grid control function GF is equivalent with the computation of 
the two functions 

= ~ ( t , v ) ,  v = v(E,v). (31) 

These two functions are known at  the boundary of the unit square in the computational 
domain: 

Note that the functions U&, U E ~ ,  VE,, VE, are monotonously increasing. 
The most simple and robust way to compute (u, v) for values of (E,q) in the interior of 

the unit square is obtained by the same "algebraic straight line transformation" as used in 
elliptic grid generation, described in [12], Section 2.1. Thus 

Eq. (33) implies that a grid line < = const. is mapped to the parameter space as a straight 
line: u is a linear function of v. Eq. (34) implies that a grid line q = const. is also mapped to 
the parameter space as a straight line: v is a linear function of u. For given values of t and q 
the corresponding u and u values are found as the intersection point of the two straight lines. 
I t  can be easily verified that the grid control function which corresponds to this system has 
a positive Jacobian i.e. J = u p ,  - u,,v~ > 0. 
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The main advantage of this algebraic grid generation method is that it is fast, and robust 
with respect to grid folding. A disadvantage is that there is no grid control about grid line 
slopes and grid cell lengths along the boundary. Another disadvantage is that the generated 
grid is not independent of the parametrization of the face. These disadvantages do no appear 
in elliptic surface grid generation method as described in [12], Section 4. The algebraic grid 
generation method in a face is mainly used during the tuning of the grid point distribution 
along the four face-edges. When a user is satisfied about the boundary grid point distribution, 
the final grid in the interior of the face is usually computed by the elliptic surface grid 
generation method. 

After grid generation in an elementary face, the computed grid points in the interior of 
the face are automatically stored in all blocks to which the elementary face belongs. 

Grid generation in a compound face is simply obtained by grid generation in all elementary 
sub-faces of the compound face. An algorithm for grid generation in compound faces is 
therefore not needed. 

4.5 Grid generation in blocks 

Grid generation in a block is automatically preceded by grid generation in the six block-faces. 
Thus, the grid point distribution on the six block faces is known, and what is left to be done 
is the computation of the grid in the interior of the block with the grid points in the six 
block-faces as Dirichlet boundary conditions. 

The computation of an interior grid in a block is almost always done with the elliptic 
grid generation method described in [12], Section 5. The method appears to be extremely 
robust and the quality of the generated grid is good w.r.t. smoothness, grid point distribution 
and regularity. A disadvantage of the elliptic grid generation method, compared to algebraic 
grid generation, is that the method is computationally expensive and requires much computer 
memory usage. Therefore the method is in general not used during interactive grid generation 
but only in batch during the computation of the final fine grid on the supercomputer. 

4.6 Local Grid refinement 

A user may want to relax the constraint on grid continuity (Co continuous grids) in order to 
achieve a grid which is efficient of its placement of its grid points. With local grid refinement, 
the structured grid in a particular block can be refined without changing the grid in the 
surrounding blocks, so that refined grids can be used in blocks located in regions where large 
flow gradients are expected. 

The grid refinement in a particular block is user-specified by three grid refinement factors 
in each computational direction of that block. 

There is one restriction about the way local grid refinement can be applied. When local 
grid refinement is applied, there are in general two different grids at a particular internal 
block-face, which belongs to the two blocks which have this block-face in common. The 
restriction is that one of the two grids in the block-face is coarse with respect to the other, 
so that the grid points of the coarse grid is a coarsening in the I and J direction of the grid 
points of the fine grid. Each grid cell in the coarse grid is then connected to a fixed number 
of fine grid cells in the fine grid. This property facilitates a flow solver to remain conservative 
across block-faces: the flux through a coarse grid-cell-face is given by the sum of the of fluxes 
through the corresponding fine grid-cell-faces [9]. 
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An example of an application of local grid refinement is illustrated in Figs. 27, 28, 29, 30. 

4.7 Interactive grid generation 

The graphical user interface (GUI) of ENGRID is implemented in C using FORMS [20] as 
the interface builder, and GL on the Silicon Graphics workstations as the graphics language. 
The numerical core of ENGRID, and also the batch version, has been written in FORTRAN. 

During an interactive session, the first action of a user is to read the topology and geometry 
file of a blocked flow domain. 

After that, grid dimensions have to be specified. The mouse is used to select an edge 
from the screen, and a number is given (by keyboard) which defines the number of grid cells 
along the edge. With the group concept described in Section 4.1, the program automatically 
identifies those edges which obtain the same grid dimension value. If there are compound 
edges, then the sum relations between the groups are used to check if it is possible to compute 
the dimensions of other edges. If an edge dimension is known then the colour of the edge on 
the screen is changed and the grid dimension value appears at the middle of the edge. 

This process is repeated until the dimensions of all edges are known. The user may then 
write the grid dimension file which defines the grid dimensions of the multi-block system. If 
a grid dimension file already exists then the process of specifying the grid dimensions may be 
skipped and the user can simply read the grid dimension file. 

Next, the grid tuning process may start. Along elementary edges, grid control is available 
only at the two vertices of the edges. The user may specify a grid density p at a vertex of 
an elementary edge by selecting the edge and vertex (via their labels) from the screen by 
mouse and by defining p by keyboard. The resuIt is that the first grid cell length along the 
edge at the vertex becomes pLIN where L is the length of the edge and N is the number 
of grid cells along the edge. It is also possible to specify a stretching value R at a vertex 
of an elementary edge. The result is that the ratio between the second and first grid cell 
length at the vertex becomes 1 + (RIN). The user may also "connect" edges. If an edge 
E2 at vertex V2 is connected to an edge El at vertex Vl then the first grid cell length along 
edge E2 at V2 becomes equal to the first grid cell length along edge El at Vl .  In this way 
large chains of connected edges may be constructed, and if the grid in the "mother" edge is 
changed, the grid in all other edges in the chain are then also automatically changed. The 
program automatically takes care that a chain is not closed. The connection of edges is very 
useful to construct smooth grids across connected elementary edges. Finally, the user may 
link an elementary edge to another elementary or compound edge. In that case, the grid 
point distribution of the elementary edge will become the same as the grid point distribution 
of the "mother" elementary or compound edge. If the grid point &stribution of the mother 
edge is changed then the grid point distribution of all edges that are linked to that edge 
are also automatically changed. Linking of edges is especially useful to copy the grid point 
distribution of a (compound) face-edge to the opposite elementary edge of that face. 

During grid tuning, the user selects elementary faces by picking its label with the mouse. 
ENGRID computes and shows the grid in the selected elementary face. Grid point distri- 
bution along edges are always shown via the grid point distribution in an elementary face 
to which the edge belongs. The grid in the interior of an elementary face is computed with 
the automatically computed grid points at the four face-edges as Dirichlet boundary condi- 
tions. The previously described algebraic and elliptic grid generation methods can be used 
to compute the interior grid points. With the elliptic method, it is possible to orthogonalize 
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the interior grid at the boundary of the face. This is done by picking face-edges with the 
mouse. No controlling parameters are available (and also not needed). Minimal surface grid 
generation can be applied for default elementary faces (faces with no control points and a 
face shape defined as a Coon's patch bounded by the four face-edge curves). In that case, 
the face shape will be no longer a Coon's surface but will become a minimal surface. Min- 
imal surface grid generation [12],Section 3, is especially useful for elementary faces with the 
four face-edges lying in a plane. Then the minimal surface is a plane surface bounded by 
the four edges. Finally, a mixed algebraic-elliptic grid generation method is available [13]. 
This method allows grid tuning by specifying grid-line-slope and/or first-grid-cell height at 
arbitrarily locations along the four face-edges. 

Grid generation in the interior of a block is computed with the automatically computed 
grid points at  the six block-faces as Dirichlet boundary conditions. The previously described 
elliptic grid generation methods can be used to compute the interior grid points. No con- 
trolling parameters are available (and also not needed). However, elliptic grid generation in 
a block is hardly ever done during interactive grid generation because the method requires 
much computation time and computer memory. 

During the interactive session the user may change at  any moment the grid dimension 
of an edge. The selected grids in the elementary faces shown on the computer screen are 
then automatically recomputed. The user may also apply local grid refinement at  any mo- 
ment. The refinement of a structured grid in a block is performed by specifying the grid 
refinement/coarsening factors in the three computational directions of a block. 

One interactive session is in general not sufficient to tune the complete grid for a complex 
configuration. Therefore at  the end of a session the user may write a grid dimension file (which 
contains the specification of the grid dimensions of a multiblock grid) and a grid control file 
(which contains all grid tuning parameters). Then, in a next session, the user can read these 
files and continue the grid generation process. 

There are of course more additional "tools" in the interactive grid generator. For example, 
for grid inspection it is necessary to zoom, rotate and translate. These additional tools are 
evident and need no further description. 

5 Applications 

The usability of the ENFLOW system is demonstrated for a few rather different types of 
applications. A hydrodynamic application, created at  Delft Hydraulics, is shown in Fig. 31 
and Fig. 32. These figures show a multiblock grid in a part of the river Rhine. High grid 
density is not required a t  the boundary of the blocks but in the interior of the river. Another, 
completely different hydrodynamic application is shown in Fig. 33 and Fig. 34. 

A multi-block grid about a space capsule is shown in Fig. 35 through Fig. 38. Refacing has 
been applied at the fore-body of the capsule. The mesh is used for Navier-Stokes calculations. 

A multiblock grid of a wing-body-pylon-nacelle configuration is shown in Fig. 39 and Fig. 
40. This grid has been used for Euler calculations. 

A domain decomposition about a generic fighter is depicted in Fig. 41 and Fig. 42. 
Finally, Fig. 43 through Fig. 57 is a rather comprehensive illustration of a multiblock 

grid for a wing-body-pylon-nacelle-propeller disk configuration. The grid has been used for 
Navier-Stokes calculations. The total number of grid points is about 2.5 million, the total 
number of blocks is 106. The challenge of this domain decomposition was to combine a C-type 
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grid around the wing with a C-type grid around the pylon and with an 0-type grid around 
the nacelle. The C-type grid around the pylon is illustrated in Fig. 46 through Fig. 49. The 
C-type grid around the wing is illustrated in Fig. 50 and Fig. 51. The 0-type grid around 
the nacelle is shown in Fig. 54, Fig. 55 and Fig. 56. Fig. 57 shows the 0-type grid around 
the wing tip. The interaction of these topologies are illustrated in Fig. 52, Fig. 53 and also in 
Fig. 54 and Fig. 55. After surface modeling, it took about two weeks man-work to construct 
this domain decomposition with ENDOMO. Multi-block grid generation with ENGRID took 
about one week man-work. 

Many other multiblock grids for complex geometries have also been constructed at NLR 
and Fokker, such as transport aircraft configurations, space shuttles, wing bodies, supersonic 
projectiles, etc. 

6 Summary 

Block-structured-grid-based methods offer a viable choice for solving viscous flows over com- 
plex aerodynamic configurations. Body-fitted structured grids are well suited for resolving 
the thin viscous layers developing in the vicinity of solid surfaces at high Reynolds numbers 
typically encountered in flight.A state-of-the-art structured flow solver: like ENSOLV, is very 
efficient in computing aerodynamic flows in the presence of such embedded boundary layers. 

An important step in routine application of structured-grid methodology to CFD appli- 
cations is the grid generation process. At NLR and Fokker this is done with ENDOMO and 
ENGRID. 

The design of the domain decomposer ENDOMO and grid generator ENGRID has been 
realized in close relationship between an NLR CFD team as supplier and aerodynamic design 
and research teams from Fokker and NLR as customer. The partnership between the CFD 
development team and the design teams has led to a user-friendly GUI based on concepts 
that automate much of the low level grid generation tasks. The most important concepts that 
are applied are described in this paper and can be summarized as follows: 

Use of compound edges and compound faces for partial block boundary interfacing. 

The use of topological relations to define degenerations and computational directions 

Use of Hermite interpolation, for geometrical shape functions of edges and faces, for 
monotonic interpolation. 

Use of correction functions, for geometrical shape functions of edges and faces, to guar- 
antee Go continuous grids. 

Use of Nurb curves (surfaces) to design curvilinear edges (faces) in 3D physical space. 

The automatic extraction of points of geometrical elements during the creation of topo- 
logical elements. 

The use of an advanced projection algorithm for the projection of block-faces on the 
original input geometry. 

e Automatic topology check during domain decomposition. 

0 Highly automated grid dimension specification. 
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& 
The use of advanced elliptic grid generation methods, for surface grid generation and 
volume grid generation, with no need to specify non-intuitive controlling parameters. 

0 The use of local grid refinement to achieve an efficient placement of grid points 

* Both ENDOMO and ENGRID have in common that they provide the user only a limited 
number of powerful options which are always very intuitive. This makes these systems 
easy to learn. This is in contrast to CAD/CAM systems which in general contain 
hundreds of options so that these systems can only be handled by an expert. 

0 Recomputing a multiblock grid is completely automated when only small changes are 
made in the input geometry, so that no changes are needed in the multi-block topology. 
This is achieved via the Journal  file of ENDOMO and the input files of the batch 
version of ENGRID. 

A Piecewise cubic Hermite interpolation for curves 

Consider a set of control points {?j = (x, y, 2): I i = 0. .  . N). We wish to construct a 
smooth C1 curve ? : u E [O, 11 ++ x3 which is passing through the set of control points with a 
geometrical shape as one would intuitively expect. Furthermore, spurious oscillations should 
be prevented. For this reason, cubic spline interpolation is not safe. Instead, piecewise cubic 
Hermite interpolation is applied. The extra freedom to model the tangent vectors is used to 
prevent unwanted oscillations. The parameter u is defined as normalized arc length. 

Compute the distance between succeeding control points: 

Define the length of the curve by 
N 

and the normalized distances as 

Define the knot sequence {ui I i = 0.. . N) by uo = 0 and 

Hence, 0 = uo < u1 < . . . < UN = 1. Patch i is defined as the interval [ui-1, ui]. In patch i, 
we relate a local variable a E [O, 11 to the global variable u by 

For the moment, suppose that the tangent vectors {Zui = g ( u i ) ,  i = 0. .  . N) are known. 
How these tangent vectors are modeled is shown below. The shape of the curve at patch i is 
then defined as 
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s 
where Ho, H I ,  Hz, H3 are cubic Hermite interpolation functions defined as 

with 0 5 Q. 5 1. 
It can be easily verified that g ( u i - )  = z ( u i + )  = Zu;, so that the piecewise cubic curve 

Z(u )  is indeed C 1 .  
The tangent vectors {Zui, i  = 0 . .  . N )  are computed as follows. Define the chord vectors 

Note that 1 1  Zu. , / /=  L. The tangent vectors at the interior knots i  = 1 . .  . N  - 1  are modeled 
1-5 

as 

with 

ci = 1 1  Zi - 112 - - d? , i = l  ... N - 1 .  I I  zi - Zi-1 11' + 1 1  Zi+l - Zi 112 d? + d,2+1 
(44) 

If 1 1  Zi - Zi-1 I / < < I I  ?i+l - Zi 1 1  then q = 0 and Zui z xUi++. + This implies that high curvature 
will be restricted to small patches which is a behaviour as one would intuitively expect. 
Spurious oscillations are also prevented. 

Quadratic end conditions are used to compute the end tangent vectors Zuo and TUN.  
The quadratic end conditions require that the cubic polynomial function Z ( a )  is a quadratic 
function of a in patch 1 and in patch N .  It is easily verified that this implies that 

Fig.19 illustrates that cubic Hermite interpolation prevents spurious oscillations, in con- 
trast to cubic spline interpolation. 

B Piecewise bicubic Hermite interpolation for surfaces 

Consider a set of control points {ZQ = ( x ,  y ,  z)& I i = 0 . .  . N ,  j = 0. .  . M). We wish to 
construct a smooth C 1  surface Z : (u, v )  E [0, lj2 H R3 which is passing through the control 
points with a geometrical shape as one would intuitively expect. As for curves, spurious 
oscillations should be prevented. For this reason, bicubic spline interpolation is not safe. 
Instead, piecewise bicubic Hermite interpolation is applied. The extra freedom to model the 
tangent vectors and twist vectors is used to prevent unwanted oscillations. 

Consider a row of points {Zi,i / i = 0 .  . . N )  with j E ( 0 .  . . M )  fixed. This row of points 
is considered as a discrete curve and it is therefore possible to compute a knot sequence 
{ u i j  / i = 0 . .  . N )  in exactly the same way as described in the previous section. In the same 
way, consider a column of points {Zi I j = 0.. . M )  with i E ( 0 . .  . N )  fixed, and compute 
the knot sequence { ~ i , ~  I j = 0 . .  . M ) .  
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To construct a smooth surface, one knot sequence is used for all rows and for all columns. 
These two knot sequences are obtained by averaging: 

Patch (i, j )  is defined as the rectangle [ui-l,ui] x [vj- l ,u j] .  In  patch (i, j )  we relate local 
variables (a,  P )  E [O, 112 to the global variables (u ,  v )  by 

with $ = ui - ui-1 and q = vj - uj-1. 

For the moment, suppose that the tangent vectors ?ui,j = u i > v j )  , ?v;,j = g ( u i > u i )  , 
and twist vectors ?u,,i,j = g ( u i , v i )  are known for all knots (i, j ) .  How these tangent and 
twist vectors are modeled is shown below. 

The shape of the surface at  patch (i, j )  is then defined as 

where the matrix M$ is defined by 

From these definitions, it can be easily verified that the piecewise bicubic surface Z(u , v )  is 
C'. 

The tangent vectors ?ui,j are computed as follows ( the tangent vectors ?ui,j are computed 
in the same way ). Define the chord vectors 

and use the same non-linear averaging formula as used for curves, thus 

with 
+ I 1  xi,j - zi-1,j \ I 2  

Cif = - - , i = l  . . .  N - 1 ,  j=O ... M. I I  Xi,j - Xi -1 , j  \ I 2  + 1 1  ?i+l,j - ?i,j 11' (52) 

Quadratic end conditions are used again to compute the end tangent vectors. 
A modification of Adini's method [I91 is used to compute the twist vectors. Consider patch 

(i, j )  with local variables (a ,P ) .  Assume that the tangent vectors Zu, are known at  the four 
corner points of the patch. Introduce the abbreviate notation Coo = Zi-l,j-l, 510 = ?i , j - l ,  

Zol = Zi-l,j, Zl l  = ?i,j. Use Eqs.(48),(49) to find G ( O ,  0 )  = dyTu j _ l ,  ? = ( I ;  0 )  = q Z u i , j - , ,  
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Za(O,l)  = d ~ Z u i - l , j ,  Z a ( l , I )  = $Zu(, j ,  Zo(0,O) = q Z v  i-l ,  Zo(1,O) = dyZ,,i,j-l, Zo (0 , l )  = 
Z i l , j ,  Z f l ( l )  = d , .  Compute the boundary curves of the patch by cubic Hermite 
interpolation. Thus, for example 

and the other three boundary curves are computed by similar formulas. Define the shape of 
the surface patch as a bilinearly blended Coon's patch 

\~ ~~, 
Compute the corner twist vectors Zap(O, 0 ) ,  Z a f l ( l ,  0 ) ,  Zap(O, l ) ,  Z a p ( l ,  1 )  from Eq.(54). Use 
Eq.(47) to find the corresponding twist vectors w.r.t. the global variables (u, v): Zu,i-l,j-, = 
Zao(O, O)/d:dy etc.. 

Thus at the four corners of each patch, an estimation is found for the twist vector Zu,. 
Consider an interior knot (i, j ) .  Then four estimations for the twist vector Zu,i,j are found 
in respectively patches (i, j ) , ( i  + 1, j ) , ( i ,  j  + 1 )  and (i + 1, j  + 1). Write those estimations 
as respectively Z:Y, Z:,", Zgw, ZgE.  A similar averaging procedure as applied for tangent 
vectors is used to define a unique value Zu,i,j : 

where Ai,j is the area of patch (i, j )  defined as 

This non-linear averaging procedure guarantees that large changes in twist will be restricted 
to small patches. At a boundary knot, there are only two estimations for the twist vector. 
It is evident how the averaging procedure must be applied in that case. At the four corner 
knots, only one estimation is available and averaging is thus not needed. 

C Example of a topology file 

The contents of the following topology file corresponds with the two-blocks as shown in Fig. 
15. 

'TOPOLOGY FILE OF TWO PARTIALLY CONNECTED BLOCKS' 
'ENDOMO ' 
'2.10 ' 
'95-07-21' 
'12:22:52' 
NUMBER OF BLOCKS: 

2 
BLOCK <--------------FACES-------------> IDENT 

1 5 3 9 8 13 12 'BLOCK' 
2 7 6 1 4 11 10 'BLOCK' 



NUMBER OF ELEMENTARY FACES: 
1 2  

FACE <-------EDGES--------> IOENT 
1 2 5 7 8 'FACE' 
2 1 4 8 9 'FACE' 
4 24 25  1 0  11 'FACE'  
5 22 23  1 2  13 'FACEJ 
6 1 4  1 5  2 24 'FACE' 
7 5 25  1 6  1 7  'FACE' 
8 22 3 18 1 9  'FACE' 
9 23  6 20  2 1  'FACE' 

1 0  1 5  1 7  8 11 'FACE' 
11 7 1 0  1 4  1 6  'FACE' 
1 2  13 9 19 2 1  'FACE' 
13 1 2  7 18 20 'FACE' 

NUMBER OF COMPOUND FACES: 
1 

FACE <--FACES-> <-------EDGES--------> IDENT 
3 1 2 7 9 3 6 'FACE' 

NUMBER OF ELEMENTARY EDGES: 
2 3  

EDGE <VERTICES> IDENT 
1 1 2 'EDGE' 
2 1 3 'EDGE' 
4 4 5 'EDGE' 
5 4 6 'EDGE' 
7 3 6 'EDGE' 
8 1 4 'EDGE' 
9 2 5 'EDGE' 

1 0  7 9 'EDGE' 
11 8 1 0  'EDGE' 
1 2  11 13 'EDGE' 
13 1 2  1 4  'EDGE' 
1 4  3 7 'EDGE' 
15 1 8 'EDGE' 
1 6  6 9 'EDGE' 
17 4 10 'EDGE' 
18 11 3 'EDGE' 
1 9  1 2  2 'EDGE' 
20  13 6 'EDGE' 
2 1  1 4  5 'EDGE' 
22 11 1 2  'EDGE' 
2 3  13 1 4  'EDGE' 
24  7 8 'EDGE' 
2 5  9 1 0  'EDGE' 

NUMBER OF COMPOUND EDGES: 
2 
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EDGE <--EDGES-> <VERTICES> IDENT 
3 1 2 2 3 'EDGE' 
6 4 5 5 6 'EDGE ' 
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Figure 1: The NLR ENFLOW system. 
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Figure 3: Topology of a face. Figure 4: Complete block boundary interfac- 
ing. 
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Figure 5: Partial block boundary interfacing. Figure 6: Block structured grid. 
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Figure 7: Embedding of an edge and face into Figure 8: Number of grid points along col- 

the computational space of a block. lapsed edge E is not unique. 

4 vertices 3 vertices 2 vertices 1 vertex 

Figure 9: Allowed types of elementary faces. 

Figure 10: Allowed types of compound faces. 
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Figure 12: Relation between the coordinate systems of two sub-edges edges in a compound 
edge. 

L 

Figure 13: Example of the relation between the coordinate systems of two sub-faces in a 
compound face. 
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Figure 14: The eight possibilities how two sub-edges El and Ez can be situated in a compound 
edge. 
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Figure 15: Topology of two partially connected blocks. 
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Figure 16: Relation between the coordinate Figure 17: Example of a topological construc- 
systems of elementary faces in a compound tion which can not be used for multi-block 
face.The compound face consists of 7 elemen- grid generation. 
tary faces. 
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Figure 18: Illustration of the projection 
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algorithm on a compound face. 



Figure 19: Comparison of cubic Hermite and Figure 20: Non-Uniform Rational B-spline 
cubic spline interpolation. curve and its control polygon. 

Figure 21: Non-Uniform Rational B-spline Figure 22: NURB surface obtained by inter- 
surface and its control polygon. polation. 



Figure 23: Four surface patches joined t* Figure 24: Projected block-face on the com- 
gether in a compound face. pound face. 

Figure 25: Lower part of a wing. Figure 26: Projected block-faces on wing. 
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Figure 27: Block decomposition around Figure 28: Block decomposition and grid di- 
RAE2822 airfoil. mension for RAE2822 airfoil. 

Figure 29: Local grid refinement. Figure 30: Grid near RAE2822 airfoil 



Figure 31: Block decomposition in part of Figure 32: Corresponding grid. 
river Rhine. 

Figure 33: Block decomposition of a water- Figure 34: Corresponding grid. 
power station. 



Figure 35: Illustration of a block decomposi- Figure 36: Close-up of block decomposition. 
tion of a space capsule. 

Figure 37: Grid. Figure 38: Close-up of grid. 
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Figure 39: Block decomposition on the surface Figure 40: Corresponding surface grid. 
of a wing body nacelle pylon configuration. 

Figure 41: Block decomposition about a Figure 42: Close-up. 
generic fighter. 
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Figure 43: Block decomposition and medium surface grid of a configuration consisting 
fuselage, wing, pylon,nacelle, and propeller disk. 

Figure 44: Block decomposition on the wing Figure 45: Fine grid on the wing upper sur- 
upper surface. face. 
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Figure 46: Block decomposition on the wing Figure 47: Fine grid on the wing lower surface. 
lower surface. 

Figure 48: Block decomposition on the nacelle Figure 49: Blow up of fine grid on the nacelle 
upper surface. upper surface. 
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Figure 50: Block decomposition on the fuse- Figure 51: Fine grid on the fuselage, 
lage. 

Figure 52: Block decomposition in the nacelle Figure 53: Fine grid in the nacelle symmetry 
symmetry plane. plane. 



Figure 54: Block decomposition through the Figure 55: Fine grid in plane through the 
trailing edge of the wing. trailing edge of the wing. 

Figure 56: Blow up of fine grid near nacelle. Figure 57: Blow up of fine grid near the wing 
tip. 




