
DOCUMENT CONTROL SHEET

ORIGINATOR'S REF.
NLR TP 96338 U

SECURITY CLASS.
Unclassified

-

ORIGINATOR
National Aerospace Laboratory NLR, Amsterdam, The Netherlands

TITLE
Multiblock grid generation
Part 11: Multiblock aspects

PRESENTED AT
27th Computational Fluid Dynamics Course, at the Von Karman Institute
(VKI) for fluid dynamics, Belgium, 25-29 March 1996.

AUTHORS
S . P. Spekreij se, J. W. Boerstoel

DESCRIPTORS
Algorithms Hexahedrons Topology
Body-wing configurations Interpolation
Computational geometry Multiblock grids
Computational fluid dynamics Navier-Stokes equation
Domain decomposition* Shape functions
Grid generation (mathematics) Structured grids (mathematics)

ABSTRACT
Block-structured-grid-based methods offer a viable choice for solving
viscous flows over complex aerodynamic configurations. Body-fitted
structured grids are well suited for resolving the thin viscous layers
developing in the vicinity of solid surfaces at high Reynolds numbers
typically encountered in flight. A state-of-the-art structured flow
solver, like ENSOLV, is very efficient in computing aerodynamic flows in
the presence of such embedded boundary layers.
An important step in routine application of structured-grid methodology
to CFD applications is the grid generation process. At NLR and Fokker
this is done with ENDOMO and ENGRID.
The design of the domain decomposer ENDOMO and grid generator ENGRID has
been realized in close relationship between an NLR CFD team as supplier
and aerodynamic design and research teams from Fokker and NLR as
customer. The partnership between the CFD development team and the design
teams has led to user-friendly GUI based on concepts that automate much
of the low level grid generation tasks.

DATE
960523

PP ref
51 20

NLR TECHNICAL REPORT

TP 96338 U

MULTIBLOCK GRID GENERATION

Part II: Multiblock aspects

by

S.P. Spekreijse and J.W. Boerstoel

This report has been presented at the 27th Computational Fluid Dynamics Course, at the Von Karman
Institute (VKI) for fluid dynamics, Belgium, 25-29 March 1996.

This investigation has partly been canied out under a contract awarded by the Netherlands Agency for
Aerospace Programs, contract number 01 105N.

Division : Fluid Dynamics/Informatics

Prepared : SPSI # JWBI

Completed : 960523

Order number : 526.0041101.123

TP 96338 Part I1

Contents

1 Introduction 5

2 Blocked flow domains 8
2.1 Topological elements, connectivity relations, and local coordinate systems 8

2.2 Degenerations 11

2.3 Geomemcal shape of topological elements 12

2.4 Topology and Geometry file 15

3 Domain decomposition
3.1 Geomemcal elements

3.2 Construction of topological elements

3.3 Refacing

3.4 Interactive domain decomposition

4 Grid generation

4.1 Grid dimension specification

4.2 Computational spaces

4.3 Grid generation in elementary edges

4.4 Grid generation in elementary faces

4.5 Grid generation in blocks

4.6 Local Grid refinement

4.7 Interactive grid generation

5 Applications 27

6 Summary 28

-4-

TP 96338 Part I1

Appendices

A Piecewise cubic Hermite interpolation for curves

B Piecewise bicubic Hermite interpolation for surfaces

C Example of a topology file

References

57 Figures

(5 1 pages in total)

-5-

6 TP 96338 Part 11

&
1 Introduction

For CFD computations of 3D flows, grids are required. The construction of such grids in 3D
flow domains is nontrivial, when flow domain boundaries have complex shapes, like those of
a complete aircraft. In such cases, CFD computations are today based on either multiblock
structured grids, or on unstructured grids.

.4 multiblock grid may be described as a collection of blocks, with a grid in each block.
- Each block has the form of a deformed cube, and covers a part of the flow domain; a block has
thus the topology of a unit cube, and has six block faces, twelve block edges, and eight block
vertices, like the unit cube has. The blocks together should cover the flow domain completely.
Moreover, a part of the block faces should cover the flow-domain boundaries completely. The
covering of the flow domain by blocks may be arranged in various ways, see below for more
details.
- Each block is subsequently covered by hexahedral cells of a grid. These grid cells should
be packed cell-face-to-cell-face, and form a smooth, well-ordered, three-dimensional covering
of the complete block. Each cell vertex defines a grid point. The collection of cell vertex
points in a block defines the grid in the block. Because the grid cells in a block form a well-
ordered three-dimensional covering of the block, these grid points may be stored in simple
data structures, 3D arrays.

An unstructured grid may be described as a covering of the 3D flow domain by tetrahe-
dral cells. Each cell has thus four cell faces, and four cell vertices. These tetrahedral cells
are usually packed cell-face-to-cell-face, and should cover the flow domain completely. The
collection of all cell vertex points defines the grid. Because here the grid cells are not required
to cover the flow domain in a smooth, well-ordered way, the grid points cannot in general be
stored in simple data structures like 3D arrays.

Multiblock grids can be classified in three different types, based on the way of covering of
the flow domain by the blocks.
- In overlapped (overset) grids, adjacent blocks form 3D overlap regions, instead of e.g. inter-
face surfaces. An overlapped region is common to at least two blocks.
- In patched grids, adjacent blocks form common interface surfaces. An interface surface lies
in two block-face surfaces, one at either side of the interface surface. The two grids in the
two blocks induce in general two different subgrids in the common interface surface. When
this is true, the grid is called here a patched grid.
- In Co-continuous grids, adjacent blocks with a common interface surface have also a common
subgrid in that interface surface.

Overlapped grids, patched grids, and Co-continuous grids form thus a hierarchy of multi-
block structured grids of increasing structure. The covering of the flow domain by blocks is,
with overlapped grids, in principle completely unstructured. This is, to a lesser extent, also
the case for patched and Co-continuous grids. Go-continuous grids require extra information
to allow a coupling of the two grids in two adjacent blocks such that in common interface
surfaces a common subgrid is defined.

The advantages and disadvantages of unstructured grids and the various kinds of multi-
block structured grids with respect to each other should be considered Gom all viewpoints
which are relevant for industrial applications of CFD technology.
- Geomet ry manipulation. Complex surface shapes of 3D flow-domain boundaries, like
complete transport and fighter aircraft, can in fact only be efficiently processed for CFD work,
if accurate, flexible, and reliable surface-representation and -manipulation methods are used.

Q TP 96338 Part I1

This will be made clear in this report. For CFD-oriented surface-processing activities in grid
generators and flow solvers, CADCAM packages are not so useful, because they have a high
user-threshold for CFD specialists.
- Grid generation. Unstructured 3D grids require the smallest manhour effort for their
generation, and C0 continuous grids the most.
- Flow solvers. C0 continuous grids are the simplest and most convenient to deal with.
With C0 continuous grids it is easy to guarantee conservation across block interfaces, achieve
high numerical accuracy, and to apply efficient solution methods. Unstructured grid offer in
these respect still problems.
- Postprocessing. The more structure in the grids, the easier the graphical interactive
inspection of smoothness and accuracy of grids and numerical flow solutions.

Multiblock grid may be considered to provide a fair compromise between the advantages
and disadvantages of structured and unstructured grids. The structured grids within the
blocks allow high computational efficiency and numerical accuracy of computation results,
while the unstructurednes of block coverings of flow domains allow the treatment of complex
configurations. These advantages of multiblock grids come with a price of increased manhour
effort (compared to the situation about ten years ago, when monoblock grids were still usual).

The successful use of block-structured-grid-based methods for solving viscous flows over
complex aerodynamic configurations is demonstrated in recent conferences on grid generation
[1],[2],[3],[4], [5],[6]. Almost all aerospace organizations involved in CFD simulations have
some type of in-house multiblock grid generation capability. This suggests that the manhour
effort for multiblock grid generation is generally considered acceptable.

In this paper we will mainly consider only Co-continuous grids. Only a restrictive type of
patched grids, based on local grid refinement of the structured grids in the blocks, will also be
briefly described. For such restrictive patched grids it is also possible to preserve conservation
across block interfaces 191.

The generation of a C0 continuous grid involves three major subsequent processes:
a) surface modeling,
b) domain decomposition i.e. the construction of the blocks within the flow domain and
c) grid generation i.e. the construction of the structured grids within each block.

Grid generation processes start thus with surface modeling of flow boundaries with, in
general, CADCAM software. The purpose of surface modeling is to obtain the geometric
definition of configuration surfaces in a form which is acceptable for CFD work. Often,
configuration surfaces are provided with a computer file which was generated by a Computer-
Aided Design CAD system (like CATIA). Typical standard forms of such files are IGES and
VDA files. CAD geometries have usually to be edited and/or trimmed, to correct geometric
defects which are not acceptable in CFD work (i.e. gaps, or non-physical edges of surface
elements), or to modify the true geometry for the purpose of CFD analysis (i.e. remove parts
of the geometry that are not relevant for CFD analysis). Sometimes, surface definitions of
only the individual components of a configuration (e.g. wing, fuselage, pylon, nacelle) are
provided as input of CFD computations. The intersections of the various components have
then to be determined.

Surface modeling for CFD work may end with a geometric definition of the configuration
surface consisting of surface patches, each surface patch being pointwise defined by a 2D
array of points. These pointwise defined surface patches should abut cleanly, with no gaps,
overlaps, doubly defined regions, or non-physical protrusions. The creation of these surface
patches tends to be a time-consuming effort, requiring mastery of large, complex CAD-based

Tl? 96338 Part I1

systems like ICEMfCFD or Unigraphics. However, such CAD-based systems are further
well-equipped for this kind of surface-modeling work.

After completion of the surface modeling task, the domain-decomposition task has to be
executed. The physical flow domain is then subdivided into an unstructured collection of
blocks. Below, only decompositions with non-overlapping blocks will be considered. Domain
decomposition is an highly interactive task. An advanced Graphical User Interface (GUI) on
a good workstation are needed to support a user during domain decomposition. The GUI
should provide a user with a set of efficient functions, to facilitate the domain decomposition
process.Nowadays, the interactive generation of blocks is still the most time consuming and
difficult part of the multiblock grid generation process.

After domain decomposition, a blocked flow domain is available, and the grid generation
step can be executed, i.e. the construction of a structured grid in each block. Grid generation
is also a highly interactive task, but is much more simple and less time consuming than
domain decomposition. The result of the grid generation is a multiblock grid, which may be
used in a flow solver to compute solutions of Euler and/or Navier-Stokes equations.

A complete set of mutually tuned codes, for surface modeling, domain decomposition,
grid generation and flow calculation, is called a flow simulation system. Such a flow sim-
ulation system has been developed at NLR for the computation of flows about complete
aircraft configurations, including propulsion-system components. The system is known as
the ENFLOW (EulerINavier-Stokes FLOW) system [7],[8]. Fig.1 shows the layout of the
system and summarizes its use for CFD work. The commercial ICEM/CFD code is used
for CADCAM type surface modeling. The subdivision of a three dimensional flow domain
into blocks is done with the graphical interactive domain modeler ENDOMO. The graphical
interactive grid generator ENGRID is used for the computation of structured grids in the
blocks. Given a multiblock grid, the flow solver ENSOLV computes the solution of the Euler
and/or Navier-Stokes equations with respect to specified boundary conditions. The system
contains further about 20 auxiliary codes for all kinds of tasks which makes the life of CFD
specialists easier (visualization codes, file conversion codes, etc.). The ENFLOW system has
been used for industrial flow calculations around many kinds of configurations: various types
of transport aircraft configurations, various fighter configurations, space shuttles, wing bod-
ies, supersonic projectiles, etc. In the near future, the ENFLOW system will be extended
with grid adaptation of multiblock structured grids based on mesh movement [15],[16].

From the description above it should be apparent that multiblock grid generation with
the ENFLOW system is a user-in-the-loop task. Therefore, one of the goals of the software
design of ENDOMO and ENGRID has been to automate as much as possible, so that the
user may concentrate on handling of the topology of block decompositions and on providing
sufficient grid quality. This paper will describe some of the most important automation tools
that are used in the ENDOMO and ENGRID codes. An excellent general overview about
multiblock grids and its use in CFD can be found in [lo] and [Ill.

The paper is organized as follows. Section 2: Theory for blocked flow domains is described.
The topological elements of block decompositions and their connectivity relations are defined.
Compound edges and compound faces are introduced; these allow block decompositions to
be more or less unstructured collections of blocks. Degenerations of topological elements are
considered. The design of geometrical shape functions of topological elements is described.
Section 3: The domain-decomposition process is described. In ENDOMO, there is a clear
distinction between topological and geometrical elements. The user constructs geometrical
elements which are in turn used to build the topological elements. Section 4: Grid generation

-8-

6 TP 96338 Part I1

&
with ENGRID for the construction of structured grids in blocks is described. Section 5: Some
applications axe given. Section 6: The most important multiblock concepts and ideas, that
are used in the software design of ENDOMO and ENGRID are summarized.

2 Blocked flow domains

2.1 Topological elements, connectivity relations, and local coordinate sys-
tems

A blocked flow domain consists of topological elements. These elements are blocks, faces,
edges and vertices. The elements are topologically equivalent to, respectively, a unit cube,
unit square, unit interval, and point. These topological equivalences are the basis for the
construction of well-structured grids in each element.

A block has six faces, twelve edges, and eight vertices as topological boundary elements.
A face has four edges and four vertices as topological boundary elements. An edge has two
vertices as topological boundary elements.

Blocks, faces, edges and vertices are identified by labels B, F, E , V , respectively, from
sets { B) , { F) , { E) , and { V) , which are so-called "label sets". In practice, the labels are
integers in N: the set of positive natural numbers. For example, Bllz is block number 112,
F63 is face number 63, etc., and, in computer codes, only the integer subscripts are used to
identify block B112 and face F63.

The way how of blocks, faces, edges, and vertices are connected to each other over common
boundary elements defines the topology of a blocked flow domain. It appears that only five
types of connectivity relations between the above topological elements are sufficient to define
the complete topology of a blocked flow domain.

The first type concern block-to-face relations. Each block B is connected to its six faces,
and this is expressed by a mapping of the form

For reasons made clear below, the face labels are assumed to be ordered in pairs: faces Fl
and Fz should be in block B opposite to each other, faces F3 and Fq should also be opposite
to each other, and faces F5 and F6 are the remaining pair of opposite faces in block B.

For example, in a computer code, a relation defined by Eq.(l) could have the form

meaning that block Bl12 has the faces FZ3, F44, F2, F12, F9, and FZ12 as opposite pairs of
faces.

Two blocks will be connected to each other block-face-to-block-face, if they have a common
face label in their block-to-face relations.

The second type of connectivity relations concern face-to-edge connectivity relations. Each
face F is connected to its four edges, and this is expressed by a mapping of the form

V F E { F) : F H (El,Ez,Es,E4). (2)

Here, too, the edge labels are assumed to be ordered in pairs: edges El and E2 should be in
face F opposite to each other, and the two remaining edges E3 and E4 are then also opposite
to each other.

F-
Two faces will be connected to each other face-edge-to-face-edge, if they have a common

edge label in their face-to-edge relations.
The third type of connectivity relations concern edge-to-vertex relations. Each edge E is

related to its two vertices, and this is expressed by a mapping of the form

VE E {E) : E u (V1,Vz). (3)

The two vertex labels are here also to be considered ordered as a pair of opposite vertices, for
reasons explained below.

Two edges will be connected to each other edge-vertex-to-edge-vertex, if they have a
common vertex in their edge-to-vertex relations.

The topological equivalences between blocks, faces, edges and vertices with, respectively,
unit cubes, unit squares, unit intervals, and points, have as a consequence that the topological
boundary elements of each block, face, and edge must be connected to each as in the unit
cube, square, and interval. These properties should be (automatically!) built in the above
connectivity mappings during domain decomposition work.

The connectivity relations are such that each face has exactly four corner-vertices. Sim-
ilarly, each block has exactly eight corner-vertices and twelve boundary edges. The four
corner-vertices of a face, and the eight corner-vertices and twelve boundary-edges of a block
can be (completely automatically!) computed from the above connectivity relations Eqs.(l),
(2), (3), and lead to so-called derived connectivity relations.

The four corner-vertices of each face are then given by a derived connectivity relation of
the form:

V F E {F) : F u (Vl,V2,V3,V4). (4)

The topology of a face is shown in Fig. 3. In this example, vertex Vl is defined as the
intersection vertex of edge El and edge E3, thus as the common vertex label of the two
connectivity mappings of these edges.

The eight corner-vertices of a block are given by derived connectivity relations of the form:

The twelve boundary-edges of a block are given by derived connectivity relations of the form:

The topology of a block is shown in Fig. 2.
The three types of connectivity relations specified by Eqs.(l), (2), and (3) are sufficient

to describe the complete topology of block coverings of flow domains, in which the blocks are
packed block-face-to-block-face.

In order to allow more freedom in block coverings of flow domains, compound faces
and compound edges are introduced. These compound elements should allow partial block-
boundary interfacing. A face of a block can then be adjacent to more than one other block
[14]. This allows unstructurednes of block coverings of flow domains, and leads, compared
to block-face-to-block-face coverings, to much fewer and larger blocks. An illustration of this
effect is shown in Figs. 4, 5, 6 which is a simple 2D example of a block structured grid for
a part of the harbour of Rotterdam 1171. The use of compound elements also enhances the
flexibility of the domain decomposition process.

-10-

6 TP 96338 Part I1

s
A compound face is defined as consisting of two subfaces that are joined together at a

common edge (see Fig. 13). Each subface of a compound face is also allowed to be compound
again. A face which is not compound is elementary. The set of compound and elementary
faces are denoted as {Fc} and {Fe}. Thus {F) = {Fe} U {FC).

The fourth kind of connectivity relations mentioned at the beginning of this section are
compound-face-to-subfaces mappings. For each compound face F there is a mapping of the
form

V F E {FC} : F i-t (Fl,F2). (7)

giving the two subfaces Fl and F 2 of the compound face.
The fifth and last kind of connectivity relations are compound-edge-to-subedges relations.

A compound edge consists of two subedges, that are joined together at a common vertex (see
Fig. 12). The set of compound and elementary edges are denoted as {EC} and {Ee). Thus
{E} = {Eel U {EC}, and the fifth kind of connectivity relations are of the form

The derived connectivity relations of compound edges and compound faces must also obey
certain restrictions. For example, the two subfaces of a compound face, given by Eq.(7), must
have a unique common edge with one edge label. Similarly, the two sub-edges of a compound
edge, given by Eq.(8), must have a unique common vertex with one vertex label.

In a multiblock system, each topological element has its own local coordinate system.
The local computational coordinate system in a topological element is an example of such
a local coordinate system. But also the parametrization of the curve of an edge or the
surface of a face define a local coordinate system in the edge and face. The unit cube
for blocks, the unit square for face and the unit interval for edges can always be used
as the range of the local coordinates. For example, the normalized arclength u E [O, 11
can be used as parametrization of the curve of an edge. The computational coordinate
f E [O,l] of an edge can be defined as fi = i /N / i = 0 . . . N where N is the number of grid
cells on the edge. The computational space of a face can be defined as (f, q) E [O, 112 with
(f.. ., qt3 . .) - - (' z/N, j/M) / i = 0 . . . N, j = 0.. . M where N and M are the number of grid cells

in the two computational directions. The parametrization of the surface of a face can always be
defined as Z.D : (u, v) E [O, 11' i-t R3 where u and v are defined as normalized arclength along
the four boundaries of the surface of the face. The computational space of a block can be
defined as (fijk, qijk, Cijk) = (i/N, j/M, k/L) I i = 0. . . N, j = 0 . . . M, k = 0. . . L where N , M
and L are the number of grid cells in the three coordinate directions.

The topological connectivity relations are used to define the orientation of a local coor-
dinate system in a topological element. For a block B, with B i-t (FI, Fz, F3, Fq, Fj, Fs), the
orientation of the local coordinate system (f, q,C) E [O, 113 is such that f = 0 at face Fl, f = 1
at face F 2 , q = 0 at face F3, q = 1 at face Fq, C = 0 at face Fs, C = 1 at face Fs (see Fig.
2). For a face F, with F ct (El, Ez, E3, E4), the orientation of the local coordinate system
(f,q) E [O, 112 is such that f = 0 at edge El, f = 1 at edge E2, q = 0 at edge E3, q = 1 at edge
Eq (see Fig. 3). For an edge E , with E i-t (VI, VZ), the orientation of the local coordinate
system f E [O,1] is such that f = 0 at vertex Vl, f = 1 at vertex VZ.

Local coordinates are very useful to completely automatically relate to each other functions
of different topological elements, which must satisfy nontrivial continuity requirements. This
occurs for example during grid generation when a generated grid in an edge (face) must be
stored in all blocks to which the edge (face) belongs (see Section 4.2). It is also needed for

the construction of the geometrical shape function of a face for which it is required that the
surface of the face exactly fits the four curves of the face-edges (see Section 2.3).

2.2 Degenerations

During domain decomposition, it is someti~nes inevitable to use degenerated blocks (for ex-
ample in a polar grid region where a block with a block-face degenerated to a point or curve
is needed). Hence, degeneration of a topological element should be allowed. However there
are restrictions for the types of degeneration that are allowed. These restrictions are caused
by the following considerations.

In a multiblock grid, each topological element has its own structured grid. The orientation
of the computational space is defined by the topological connectivity relations. For a block B,
with B H (Fl, F 2 , F3, F 4 , Fj, Fs), the orientation of the computational space ([B , ~ B , ~ B) E
[O, 113 is such that f B = 0 at face Fl, fB = l at face F2, q~ = 0 at face F3, q~ = 1 at face F 4 ,

(B = 0 at face Fj, CB = 1 at face F6 (see Fig. 2). For a face F, with F H (El,E2,E3, Ed),
the orientation of the computational space ([~ , q p) E [O, 11' is such that EF = 0 at edge El,
(F = 1 at edge E 2 , q~ = 0 at edge E3, qp = 1 at edge Eq (see Fig. 3). For an edge E,
with E e (Vl, b), the orientation of the computational space cE E [O, 11 is such that fE = 0
at vertex VI, EE = 1 at vertex V2. The size of the computational space of a topological
element, i.e. the number of grid cells in each computational coordinate direction, is defined
during grid generation (see Section 4.1). For grid generation purposes, it is necessary that
the computational space of a topological element is uniquely embedded in the computational
space of a topological element to which it belongs (see Section 4.2). The embedding of
computational spaces into each other depends on topology and the size of the computational
spaces and is automatically determined when the grid dimensions are known. For example,
Fig. 7 shows how the computational space of an edge and face may be embedded in the
computational space of a block.

Degenerated topological elements are automatically identified by the topological connec-
tivity relations. An elementary edge which is degenerated to a point is characterized by the
connectivity relation E H (K,V2) with Vl = V2. Such an edge is called collapsed. The
orientation of the computational space of a collapsed edge is undefined, but can be chosen
arbitrarily (in a computer code) because all grid points along the edge will coincide with the
position of the vertex. A closed-curve edge with equal vertices can not be used because the
orientation is then not defined and can not be chosen arbitrarily. Only closed-edge curves
with different vertices (although their geometrical position is the same) are allowed. Thus
from a topological point of view, there are two types of elementary edges: collapsed and not-
collapsed. Collapsed edges are also very special in the sense that the number of grid points
along such an edge is not unique. This is illustrated in Fig.8 where edge E is a collapsed edge
with vertex V. The number of grid points along edge E depends on the block to which the
edge belongs and is not unique.

Degenerations of compound edges are not allowed. An elementary sub-edge of a compound
edge is not allowed to be collapsed. The reason for this is that size and orientation of the
computational space of a collapsed edge is not uniquely defined so that the embedding of
the computational space of a collapsed sub-edge in the computational space of the compound
edge is also not uniquely defined.

Allowed types of degenerated elementary faces are shown in Fig.9. An elementary face
will be degenerated to a curve if two opposite edges are equal (i.e. El = E2 or E3 = E4

-12-
TP 96338 Part 11

in Eq. (2)). In that case, one coordinate direction is undefined. An elementary face will
be degenerated to a point if both pairs of opposite edges are equal. Then both coordinate
directions are undefined

Allowed types of degenerated compound faces are illustrated in Fig.10. Not all possible
kinds of degenerations are allowed. The rule is that the computational space of a subface is
uniquely embedded in the computational space of the compound face.

Allowed types of degenerated blocks are illustrated in Fig.11. These types of degenerated
blocks have in common that the orientation of the computational space of the blocks is always
uniquely defined. For example, a block with two equal opposite faces is not allowed. This is
also not needed because such a block would be degenerated to a quadrilateral surface.

2.3 Geometrical shape of topological elements

Another very important aspect of blocked flow domains are the geometrical shape functions
of edges and faces. Each edge (face) is pointwise defined by an 1D (2D) array of control
points in physical space and piecewise cubic Hermite interpolation is used to construct a
smooth curve (surface) which is passing through the set of control points without introducing
spurious oscillations (as may occur with standard cubic spline interpolation).

Sometimes the pointwise definition of a face does not have a point-to-point match with
the pointwise definition of a face-edge. Correction functions are introduced so that this
mismatch is automatically repaired. These correction functions are needed to guarantee that
a multiblock grid, created with ENGRID, is C0 continuous. The need for correction functions
is often overlooked in the literature.

The geometrical shape of a vertex V is a point, given by Z" = (z, y, z) ~ . The geometrical
shape of an edge is a curve segment. Consider an elementary edge E with vertices Vl and fi
given by the connectivity relation E H (V1, V2). FTom a geometrical point of view, there are
two types of elementary edges: default edges and non-default edges. A default elementary
edge is an edge of which the edge-curve shape is a straight-line segment between the two
edge-vertices. The geometrical shape function of an default elementary edge is given by

where u E [O, 11, Vl and V2 are the two vertices of edge E. Notice that u is the normalized
arclength and ZE(O) = ZK and ZE(1) = Zv2. Also notice that the coordinate direction of u is
defined by the topological connectivity relations and is thus the same as for the computational
coordinate. This is a general rule which also holds for compound edges and elementary and
compound faces.

A non-default elementary edge is an edge of which the edge-curve shape is described by an
ordered one dimensional sequence of control points given by Zpl . . . Zp,. In computer codes,
an ordering of the control points is used such that the first control point Zpl is closest to vertex
Vl and the last control point Zp, is closest to vertex V2. This is done automatically. Piecewise
cubic Hermite interpolation between the control points is used to construct a smooth C1 curve
&',, : u E [O, 11 i-t R3 which is passing through the set of control points with a geometrical
shape as one would intuitively expect, without introducing spurious oscillations. Appendix A
describes Hermite interpolation between control points. Normalized arclength is used for the
coordinate u. Fig. 19 illustrates that Hermite interpolation gives a monotonic interpolation
curve while cubic spline interpolation may easily introduce unwanted oscillations.

-13-
TP 96338 Part 11

The first and last control point of a non-default edge may not match the edge-vertices
exactly. It is required that the edge-curve is passing exactly through the edge-vertices; oth-
erwise two edges which share the same vertex may not be continuously connected. This is
obtained by defining the geometrical shape function of a non-default elementary edge as

where 2ct,,,(u) is a correction function defined by

where 3Tpi, ZpN are the positions of the first and last control point, and Ho , HI are cubic
Hermite functions defined in Eq.(41) below. The result of the correction function is that
non-default edges also precisely obey that ZE(0) = Zv, and Z E (l) = Zv2.

A compound edge can be considered as a binary tree structure, with elementary edges at
the leaves and compound edges at the nodes. The geometrical shape function of a compound
edge is recursively defined in terms of the geometrical shape functions of its sub-edges.

Consider a compound edge E with sub-edges El and E2. Let ?E, (~ l) ,5E , (~2) be the two
geometrical shape functions of El and E2. Assume that the two sub-edges El and E2 are
situated in the compound edge E as shown in Fig. 12. Let L1 and L2 denote the length of
edges El and E2. Assume that ul and 212 are normalized arclength. Thus /I &?E] (u l) II= L1,
/I &ZE2 (212) I/= L2. Then ZE(u) is defined as

ZE] (U I) with u = L l u l / (L ~ + L2), u1 E [O, 11
Z E ~ (U Z) with u = (Ll + L ~ u ~) / (L I + L2), 212 E [O, 11 (12)

It is easily verified that ZE(U) is also arclength scaled, i.e. 11 &ZE(u) /I= L1 + L2. There are
in fact eight possibilities, defined by the topology, how the two sub-edges El and E2 can be
situated in the compound edge E. Fig. 14 show the eight possibilities. Each case has its own
unique definition of ZE(u); Eq.12 is just an example of one of the eight possibilities.

The final result of this recursive definition is that a compound edge-curve can be considered
as a composite curve consisting of L elementary edge-curves. The compound edge-curve is
defined on L intervals 0 = uo < . . . < U L = 1. Each interval is mapped to an elementary
edge-curve. The ratio of the size of two intervals is equal to the ratio of the length of the two
corresponding elementary edge-curves. The relation between the global coordinate u E [O,1]
of the compound-edge curve and a local coordinate ii E [0, 11 of an elementary edge-curve is
defined by the position of the corresponding interval and the orientation of the elementary
edge in the compound edge. Finally, notice that SE(u) is continuous and C1 in the interior
of the intervals.

The geometrical shape of a face is a quadrilateral surface. From a geometrical point of
view, there are two types of elementary faces: default faces and non-default faces. The
geometrical shape of a default elementary face is defined as a bilinearly blended Coon's
patch bounded by the four curves of the four face-edges. The geometrical shape function
ZF : (u ,v) E [O, 11' H R3 is thus defined as

-14-
TP 96338 Part 11

At the boundary, the geometrical shape function of a default face is equal to the geometrical
shape function of an edge, for example +(O,v) = ?E,(v). In Eq.13 is assumed that the
coordinate direction of the face edges correspond with the coordinate direction of the face
itself. If this is not the case,for example for edge El, then ?E, (1 - v) must be used instead of
ZEl(v) in Eq.13. Notice that the geometrical shape function of a compound edge is needed
in Eq.(13) if a face-edge is compound.

A non-default elementary face is a face of which the geometrical surface shape is described by
a well-ordered two-dimensional sequence of control points. In Appendix B is described how
piecewise bi-cubic Hermite interpolation between the control points is applied to construct
a smooth C 1 surface Zsu, : (u , v) E [O, 112 H R3 which is passing through the set of control
points with a geometrical shape as one would intuitively expect, without introducing spurious
oscillations.

It is also required that the surface of a face should fit the curves of the four edges of the face
exactly. Otherwise, two faces which share the same edge will not be continuously connected.
This is obtained by defining the geometrical shape function of a non-default elementary face
as

ZF(U, v) = Z S ~ ~ (~ , v) + ZCor(u, v) , (14)
where ?ct,,,(u) is a correction function defined by

In this way, we also obtain that at the boundary, the geometrical shape function of a non-
default face is equal to the geometrical shape function of an edge, for example ? F (O , V) =
FEJv) . In Eq.(15) is again assumed that the coordinate direction of the face edges correspond
with the coordinate direction of the face itself. If this is not the case,for example for edge El ,
then again ZE1 (1 - v) must be used instead of ZEl (v) in Eq.15.

A compound face can be considered as a binary tree structure with elementary faces at the
leaves and compound faces at the nodes. Therefore, it is sufficient to define the geometrical
shape function of a compound face given the geometrical shape functions of the two sub-faces.
In this way, the geometrical shape function of a compound face is recursively defined.

Consider a compound face F with sub-faces FI and F2. Let ZFl (u l , vl),ZF2 (uz, vz) be the
two geometrical shape functions of Fl and F2. Assume that ZFl (u l , v l) , Z ~ ~ (u2, v2) are arc
length scaled along the boundary. The two sub-faces Fl and F2 can be situated in a compound
face F in 256 different ways and each case is automatically recognized. Fig. 13 gives a
particular example. In each case, there is a unique relationship between the global coordinate
(u , v) of the geometrical shape function of the compound face and the local coordinates (u l , v l)
and (u z , v ~) of the sub-faces. Fig. 13 illustrates this relationship for a particular example.
As illustrated, the ratio between length of edges play an important role in establishing the
relationship between the coordinate systems. The geometrical shape function Z ~ (u , v) is in
general defined as

?F (u , v) = Z F ~ F ~ (~ I , ~ I) (~ 1 ~ ~ 1) E [0,112
? F ~ (u ~ ~ v ~) (~ 2 , ~ 2) E [o, 11'

It is easily verified that ZF(U,V) is then also arclength scaled along the boundary.

Part TT

w +
The final result of this recursive definition is that a compound face can be considered

as a composite surface consisting of L elementary sub-faces. The compound face is defined
on L patches in the unit square. Each patch corresponds with an elementary sub-face. The
relation between the global coordinate of the compound face and a local coordinate of an
elementary sub-face is defined by the position of the corresponding patch and the orientation
of the elementary face in the compound face. An illustration is shown in Fig.16. The local
coordinates (G, 6) E [O, 11' of an elementary face are related to the global coordinates C =
(u, v) ~ E [O, 112 of the compound face according to the bilinear relation:

Finally, notice that ZF(u, v) is continuous and C' in the interior of the patches.
The algorithms for the geometrical shape functions of edges and face are implemented in

the software of the domain modeler ENDOMO and the grid generator ENGRID. In ENGRID,
the geometrical shape function of an elementary face is used to compute a surface grid in
that face.The geometrical shape function of a compound face is used in ENDOMO for the
projection algorithm of block-faces on the input geometry.

2.4 Topology and Geometry file

The data specifying a blocked flow domain is defined on two files: a topology file and a
geometry file. The topological connectivity relations, given by Eqs.(1),(2),(3),(7),(8), are
specified on the topology file. The geometry file contains the (x , y, z) position of vertices,
and the (2, y, z) position of control points of non-default elementary edges and non-default
elementary faces The topology file and geometry file are the main output files of the domain
modeler ENDOMO and the main input files for the grid generator ENGRID.

As an illustration, consider the two partially connected blocks as shown in Fig. 15. The
contents of the corresponding topology file is given in Appendix C. The reader may easily
check that the contents of this file defines the arrangement of the two blocks as shown in Fig.
15.

3 Domain decomposition

The definition of a blocked flow domain is described in the preceding section. Here we
consider some of the main aspects concerning the construction of a blocked flow domain
with ENDOMO. The geometry model serves as input to ENDOMO. The geometry model is
obtained after surface modeling with ICEMICFD and consists of pointwise defined surface
patches, which abut cleanly, with no gaps, overlaps, doubly defined regions, or non-physical
protrusions. However, it is not needed that connected surface patches have a point-to-point
match.

In ENDOMO, these pointwise defined surface patches are called discrete surfaces (to
emphasize the pointwise definition). In ENDOMO, there is a clear distinction between top*
logical and geometrical elements. The geometrical elements that are used are points, discrete
curves, discrete surfaces, nurb curves and nurb surfaces. The topological elements are ver-
tices, edges, faces and blocks. The geometrical elements are used to support the definition of
the topological elements. The user constructs geometrical elements which are in turn used
to build the topological elements. The main difference between a topological element and a

-16-
TP 96338 Part 11

geometrical element is that a topological element is hierarchically defined by other topolog-
ical elements. The extraction of points from geometrical elements for the definition of the
geometrical shape of a topological element is highly automated in ENDOMO. A geometrical
element can also be created from a topological element by using the geometrical shape func-
tion of the topological element. A nice example of the simultaneous use of both topological
and geometrical elements is the projection algorithm for the creation of faces on the input
geometry model. This algorithm is called refacing and described in Section 3.3.

3.1 Geometrical elements

The following set of geometrical elements are available in ENDOMO to support the domain
decomposition process of a flow domain in blocks:

points.

discrete curves.

discrete surfaces

0 n u r b curves

n u r b surfaces.

A discrete curve is defined as a one-dimensional ordered sequence of points. A discrete
surface is defined as a two-dimensional ordered sequence of points. The geometry model
of a configuration Surface modeling ends with a geometric definition consists of pointwise
defined surface patches.These discrete surfaces are the basic elements with which the domain
decomposition process starts. Nurb curves and nurb surfaces are mainly used to support the
design of other curvilinear edges and faces. A nurb curve (surface) is a non-uniform rational
B-spline curve (surface). A nurb curve can be created by specifying its control polygon. Then
a cubic B-spline curve is created with a knot sequence based on chord length parametrization
(see [MI). The cubic B-spline curve is considered as a nurb curve with constant weights equal
to 1. The shape of a nurb curve can be changed by changing the position of a point of the
control polygon or by changing a weight at a point of the control polygon. The latter is
illustrated in Fig. 20 where a weight at a point of the control polygon has been enlarged. A
nurb curve can also be specified by interpolation. Then a cubic B-spline curve is generated
that passes through a given set of points (see Fig.20). Thus a nurb curve can be created out
of a discrete curve by considering the discrete curve as the defining control polygon or by
interpolation. Similarly, a nurb surface can be created out of a discrete surface by considering
the discrete surface as the defining control polygon or by interpolation. Fig.21 shows a nurb
surface together with its defining control polygon. Fig.22 shows a nurb surface obtained by
interpolation of the same control polygon. The shape of a nurb surface can also be changed
by changing the position of a point of the control polygon or by changing a weight a t a point
of the control polygon. An excellent treatise about nurb curves and nurb surfaces can be
found in [18],[19].

A discrete curve can be created by interpolation of a nurb curve. A discrete curve can
also be created by interpolation of an edge (elementary or compound), using the geometrical
shape function of the edge. In both cases, only the number of points has to be specified and a
discrete curve will be created consisting of equidistributed points on the edge or nurb curve.

-17-
TF' 96338 Part I1

A discrete curve can also be generated by assembling a set of points. A discrete curve can be
split into two sub-curves. The splitting occurs at an interior point. Two discrete curves can
also be joined together.

A discrete surface can be created by interpolation of a nurb surface. A discrete surface can
also be created by interpolation of a face (elementary or compound), using the geometrical
shape function of the face. In both cases,the number of points in both coordinate directions
have to be specified and an equidistributed point distribution will be created on the nurb
surface or face. A discrete surface can also be created by assembling a set of discrete curves
(with the restriction that the number of points are the same for all discrete curves). A discrete
surface can be split into two sub-surfaces. The splitting occurs at a boundary point. Two
discrete surfaces may also be joined together.

In ENDOMO are also available several transformation rules (rotation, translation, scaling,
reflection etc.) to transform geometrical elements.

3.2 Construction of topological elements

The extraction of points of discrete curves and discrete surfaces for the definition of the
geometrical shape of topological elements is highly automated in ENDOMO.

A vertex can be created by using a point which already exists (such as one which is part
of a discrete curve or discrete surface) or by creating a new one in space (either by typing in
coordinates or by translation of an existing vertex).

An elementary edge is created by specifying its two vertices. A non-default edge will be
automatically created when the position of the two vertices coincide with two different points
of a discrete curve. The control points of the non-default edge will become equal to a subset
of the points of the discrete curve. A non-default edge will also be automatically created
when the position of the two vertices coincide with two points on a row (column) of a discrete
surface.

A compound edge is created by specifying its two sub-edges.
An elementary face is created by specifying its four boundary edges. A non-default face

will be automatically created when the position of the four corner vertices coincide with four
corner points of a rectangular subset of points of a discrete surface. The control points of the
non-default face will become equal to this rectangular subset of points. An elementary face
can also be created by specifying its four corner vertices. Then the boundary edges of the
face, if they do not already exist, are also automatically created.

A compound face is created by specifying its two sub-faces.
A block is created by specifying its six boundary faces. A block can also be created by

specifying its eight corner vertices. Then the block-faces and block-edges, if they do not
already exist, are automatically created.

3.3 Refacing

An entire aerodynamic configuration is represented in ENDOMO as a collection of pointwise
defined surface patches. Block-faces can be easily defined on the surface patches as long as
the edges of the block-faces coincide with rows (columns) of points of the surface patches.
However, sometimes block-faces are needed on the aerodynamic configuration which cannot
be shaped along rows (columns) of the surface patches. Then a block face must be created

-18-
TP 96338 Part LI

by projection on a set of connected surface patches (which may not have a point-to-point
match).

Such a projection is performed as follows. The set of surface patches that are needed
to project a block-face are joined together to one compound face. Elementary faces are
created on each surface patch (the points of the surface patch become the control points of
the elementary face). The elementary faces are joined together by compound faces. Thus
after all there is only one compound face on which a block-face must be projected. Even
when the surface patches do not have a point-to-point match, the geometrical shape function
of the compound face still defines a smooth analytical representation on which the projection
must be performed, because correction functions automatically provide this smoothness.

Four discrete curves are created in the neighbourhood of the compound face. These
discrete curves are initial approximations of the final edges of the projected face. The four
discrete curves must define four corner points (which are the initial approximations of the
final vertices of the projected face). Furthermore, the number of points on two opposite
discrete curves must be the same. These discrete curves are in general created in ENDOMO
by interpolation of nurb curves.

Now, ENDOMO provides a facility to project these four discrete curves on the compound
face. After projection, the result is a discrete surface with points that are situated on the
compound face (and thus on the selected set of surface patches). The points of the discrete
surface may then be used a s control points of a projected block-face.

This procedure is a nice example of the simultaneous use of topological and geometrical
elements in ENDOMO. We will now describe the method to project four discrete curves on a
compound face. The method is illustrated in Fig. 18.

Pro jec t ion Algori thm
Consider a (compound) face F with a geometrical shape function defined by ZF : (u, v) E

[O, 112 H R3. Call (u, v) E [O, 11' the parameter space P,,. Consider four discrete curves in
the neighbourhood of the compound face, with an equal number of points on opposite curves,
as shown in Fig. 18. Then a discrete surface is created on the compound face as follows.

step 1 For each point 5, on a discrete curve, a corresponding coordinate point (u,, v,) E 'P,,
is defined such that

No Newton-like method can be used to find (u,, v,) because ZF(u, v) is only a continuous
function at the boundary of the patches in P,,, see Section 2.3. A brute-force two-
dimensional variant of the bisection algorithm is used to find (u,,~,). The function
ZF(u,v) is evaluated on a uniform mesh in parameter space 'P,,. Assume that 5ij =
ZF(uijrvij) is the nearest point to Zc of the uniform mesh. Then a small rectangular
sub-region is defined in P,, around this point (uij, vij). Again,the geometrical shape
function ZF(u, v) is evaluated, but now on a uniform mesh in this small rectangular
subregion. On this mesh, a new nearest point to Zc is determined and the process is
repeated until a sufficiently accurate approximation of (u,, v,) is found.

s t e p 2 The result of the algorithm described in step 1 are four discrete curves in parameter
space P,,. These four discrete curves define the four boundary edges of a simply
connected sub-region in 'P,,. An initial mesh inside this sub-region is generated based on

TP 96338 Part I1

transfinite interpolation. Also 2D elliptic grid generation, as described in [12], Section
2, can be used to generate an interior mesh.

s t e p 3 The geometrical shape function ?,v(u,v) is evaluated in the grid points of this initial
mesh in this sub-region. The result is a discrete surface with points on the compound
face. However, the position on the compound face of the interior points of this discrete
surface depend on the parametrization of E.F(u, v). The elliptic surface grid generation
method, as described in [12], Section 4, can now be directly applied to generate a
Laplace mesh on the compound face which is independent of the parametrization. Thus
the final result is a discrete surface which only depends on the shape of the surface of
the compound face and the position of the computed boundary grid points defined by
?F(Uc, we).

An illustration of the projection algorithm is shown in Fig.23 and Fig.24. Fig.23 shows
four surface patches which are smoothly connected although there is no point-to-point match
between the patches. These four patches are joined together in a compound face. Fig.24
shows a projected block-face on the compound face.

A less academic example, shown in Figs. 25,26 concerns the projection of block-faces on
the lower part of a wing.

3.4 Interactive domain decomposition

In general, blocking of a flow domain is done in a block-by-block process. The geometrical
elements are used to draw the boundary of a block. If a user is satisfied about the geometrical
shapes, then a block can be easily generated by specifying eight vertices, and the points of the
geometrical elements are automatically used for the geometrical shape of the automatically
generated block-edges and block-faces. The control polygon of a nurb curve is often nsed
to draw 3D curves in the interior of the flow domain. For blocks in the interior of the flow
domain, it is almost always sufficient to specify the geometrical shape of block-edges only.
The geometrical shape of a block-face is then defined as a bilinearly blended Coon's surface
bounded by four edge-curves. The points of the surface patches of the geometry model are
often nsed for block-faces on the aerodynamic configuration. Refacing must be applied if this
is not possible.

These tasks can only be done within a reasonable time with an advanced graphical nser
interface (GUI). Some of the most important aspects of the GUI are listed below.

Implementat ion. The graphical nser interface (GUI) of ENDOMO is implemented in C
using X Windows and Motif as the interface builder, and GL on the Silicon Graphics work-
stations as the graphics language. UIMX has been used to develop the GUI. As OpenGL
becomes readily available, ENDOMO can be easily ported and then will become available
for use on a variety of workstations. The numerical core of ENDOMO has been written in
FORTRAN. Only one main FORTRAN subroutine is used for the communication between
the GUI and the numerical core. Each domain decomposition task within the GUI, is finally
a call to this main subroutine. The result of the task (for example, creating a discrete sur-
face), is stored in a one-dimensional workspace array which the GUI may use to depict the
result on the screen. The advantage of this construction is that a Journa l file can be easily
constructed in order to replay an ENDOMO session.

-20-

6 TP 96338 Part 11

&
Topology check. It is possible to construct a blocked flow domain which is correct from a
topological point of view (i.e. satisfies all topology rules that are used within ENDOMO),
but which is unsuitable for multi-block grid generation (i.e. it is not possible to construct a
Co continuous grid). An example is shown in Fig.17. This figure shows that edge E3 is a
compound edge with sub-edges El and E2. Furthermore, edge E2 and edge E4 are opposite
edges in face F2, and edge E3 and edge E4 are opposite edges in face Fl. Thus the grid
dimension (i.e. the number of grid cells) must be equal for &,E4 and E3 so that the grid
dimension of edge El must be zero which is not allowed. In ENDOMO it is possible to check
if the topology of a blocked flow domain is correct in the sense that it can be used for the
construction of a C0 continuous grid. The algorithm finds out if there are edges with grid
dimension zero.

Other checks, for example to ensure that the block decomposition has no gaps or overlaps,
are also available in ENDOMO.

Visualization. During domain decomposition, a user does not always want to see all topo-
logical and geometrical elements on the computer screen at once. Often, a user wants to
see only those elements that are in the vicinity of the block he is creating. ENDOMO pro-
vides efficient interactive mechanisms to select the visibility of topological and geometrical
elements.

Highlighting visible elements, to visualize the geometrical shape and topological construc-
tion of an individual element is also very useful, especially for blocks, compound faces and
compound edges.

Boundary conditions All types of boundary conditions, to be used as input for the flow
solver ENSOLV, can be specified at elementary faces. The boundary condition data is written
on an output file BCDAT. This file can also be an input file, in order to change a specified
boundary condition.

4 Grid generation

Grid generation starts with the topology and geometry of a blocked flow domain. A topology
and geometry file, created by ENDOMO, are input files for the grid generator ENGRID. Two
other files are also important during grid generation: - a grid dimension file which contains
the information for the specification of the grid dimensions of the multi-block grid, and - a
grid control file which contains the grid control parameters for tuning of the grid. These two
files are input and/or output files of a the interactive grid generator.

A batch version of the grid generator is also available. The batch version is operational
on a supercomputer (NEC-SX3) and is especially useful to create fine grids.

The general way of working is as follows. Coarse or medium grids are generated during
an interactive grid generation session. The generated grids are defined according to the user
specified grid dimensions and grid control parameters. When the user is satisfied about
the grid quality of the created grids, then the grid dimensions and grid control parameters
are written to the grid dimension file and grid control file which are then output files of
the interactive grid generator. Next, the grid dimensions are enlarged by a constant factor
(the user has to modify, by an editor, only one number on the grid dimension file), and the
complete set of four input files (topology file, geometry file, grid dimension file and, grid
control file) is sent to the supercomputer where a fine grid is generated by the batch version
of the grid generator. This way of working is successful because of the fact that all grid

control parameters have a relative meaning with respect to the grid dimensions. The grid file
is the main input file for the flow solver ENSOLV, which also runs on the supercomputer.

4.1 Grid dimension specification

Starting with a blocked flow domain, the first task to be considered during an interactive grid
generation session is the specification of the grid dimensions, i.e. the number of grid cells in
all blocks, faces and edges. The specification of the grid dimension of a blocked flow domain
requires the grid dimension specification of only a few edges. This is due to the constraining
effect of the requirement that each grid line in each block must be continuous over any face
that the block has in common with any adjacent block (CO continuous grid). These constraint
relations depend only on the topology: each two opposite edges in a face must have the same
grid dimension, and each four opposite edges in a block must have the same grid dimension.
This observation makes it possible to subdivide the set of edges { E) into disjunct sets (called
groups) with the property that the grid dimension of all edges in the same group must be
the same, while the grid dimensions of two edges in different groups is generally different.
Furthermore, simple sum relations between the grid dimensions of different groups may exist
due to the existence of compound edges.If, for instance, a compound edge E with subedges
El, E2 belong to the groups G and G I , G2, respectively, then it is clear that the grid dimension
of group G is equal to the sum of the grid dimensions of groups G1 and G2.

The groups and the sum relations between the groups are automatically generated from
the topology. Suppose that a particular multi-block system contains N groups with M sum
relations between the groups. Then there are only N - M independent grid dimensions, and
the user has to specify the grid dimensions of only N - M suitable chosen edges in order to
define the grid dimensions of all groups, and consequently, of all edges, faces and blocks.

To give an example, consider again the two partially connected blocks in Fig.15. In this
case there are six groups, namely

and there is one sum relation: dim GI + dim Gz = dim GQ. Thus, in this case, the grid
dimension of only five suitable chosen edges has to be specified in order to define the grid
dimension of all edges, faces and blocks.

4.2 Computational spaces

In a multi-block grid, each topological element has its own computational space. The ori-
entation of the computational space of a topological element is defined by the topological
connectivity relations given by Eqs. (1),(2),(3).

For a block B, with B e (FI, F2, F3, Fq, F5, F6) , the orientation of the computational
space (EB,~B,[B) E [O, 113 is such that EB = 0 at face F I , cB = 1 at face F2, q~ = 0 at face
F3, q~ = 1 at face F 4 , [B = 0 at face Fj , (8 = 1 at face F6 (see Fig.2).

-22-
TP 96338 Part I1

For a face F, with F tt (El , E2, E3, E4), the orientation of the computational space
((F , ~ F) E [O, l j Z is such that EF = 0 at edge El, CF = 1 at edge E2, q~ = 0 at edge E3,
q~ = 1 at edge E4 (see Fig.3).

Finally, for an edge E, with E t-i (K, Vz), the orientation of the computational space
tE E [O,1] is such that EE = 0 at vertex Vl, EE = 1 at vertex &.

The size of the computational space of a topological element, i.e. the number of grid
cells in each computational coordinate direction, is defined after grid dimension specification.
At that moment it is possible to allocate computer memory space to store the grids in the
blocks. At the same time, it is also possible to derive automatically the embedding of the
computational space of all elementary edges and elementary faces in the computational spaces
of the blocks.

For an elementary edge E which is part of block B, the computational space EE of edge
E, is related to the computational space ((B, q ~ , CB) of block B by a linear transfer relation:

where the six constants ao . . . cl are the so-called transfer coefficients.
Similarly, for an elementary face F which is part of block B, the computational space

(EF,qF) of face F, is related to the computational space (E B , q ~ , C ~) of block B by a linear
transfer relation:

(21)

In this case there are nine transfer coefficients.
As an illustration, Fig.7 shows how the computational space of an elementary edge or

elementary face may be embedded in the computational space of a block. The transfer
coefficients depend on the topological connectivity relations (which define the orientation
of the computational spaces), and the grid dimension of each topological element (i.e. the
number of grid cells in each coordinate direction).

The transfer relations defined by Eqs.(20), (21) are extremely important during grid gen-
eration: Eq. (20) is used to store the result of a generated grid in an elementary edge, into
all the blocks to which this edge belongs to. Similarly, Eq. (21) is used to store the result of
a generated grid in an elementary face, into all the blocks of which the face is part of.

The derivation of the transfer relations defined by Eqs.(20),(21) is not trivial. As already
mentioned in Section 2.2, the computational space of a topological element is uniquely em-
bedded in the computational space of the topological element to which it belongs. This means
that - the computational space of a block-face is uniquely embedded in the computational
space of the block to which it belongs, - the computational space of a sub-face is uniquely
embedded in the computational space of the compound face to which it belongs, - the com-
putational space of a face-edge is uniquely embedded in the computational space of the face
to which it belongs, - the computational space of a sub-edge is uniquely embedded in the
computational space of the compound edge to which it belongs. Each embedding defines a
basic transfer relation. Eqs.(20),(21) are now found by composing these basic transfer relation
in the right order.

-23-
TP 96338 Part I1

4.3 Grid generation in elementary edges

Each elementary edge has a geometrical shape function

ZE : u 6 [O, 11 r-t (x ; y , t) 6 'R3, (22)

where is the normalized arclength (see Section 2.3). A grid control function U E of the form:

maps the computational space onto the parameter space. The orientation of the computa-
tional space and parameter space are the same and defined by the topology. A grid distribution
function maps the computational space onto the edge-curve and is defined as the composite
mapping ZE/; 01; U E (~) = ZE(uE([)) . Thus the grid points of an edge with N grid cells are
computed according to

Z E / ; 01; U E (t i) , E j = i l N , i = 0 . . . N. (24)

The general form of the function U E (~) is taken as

where the five coefficients aj,i = 0 . . . 4 are constants. The chosen form of the function
U E implies that the corresponding stretching function, defined as uklu;, is a polynomial
function. At an elementary edge a user may specify two boundary conditions at each vertex,
so that at most four boundary conditions exist. These four boundary conditions, together
with the constraint

are used to compute the five coefficients ai, i = 0.. .4. When the number of boundary condi-
tions is less than four, then the five coefficients are still uniquely determined by demanding
that the degree of the polynomial stretching function is as low as possible. The grid control
function will be the identity, i.e. uE(E) = E , when no boundary conditions are specified. In
that case, the edge will be equidistributed with grid points.

After grid generation in an elementary edge, the computed grid points are automatically
stored in all blocks to which the elementary edge belongs.

Grid generation in a compound edge is simply obtained by grid generation in all elementary
sub-edges of the compound edge. An algorithm for grid generation in compound edges is
therefore not needed.

4.4 Grid generation in elementary faces

The geometrical shape function of an elementary face is also defined in Section 2.3, and given
by:

5.p : (u; v) 6 [O, 112 r-t (x , y, t) E 'R3. (27)

The orientation of the parameter space (u , v) E [0, 112 is defined by the topology: u = 0 at
edge El, u = 1 at edge E2, v = 0 at edge E3; v = 1 at edge E4. At the boundary, the

TP 96338 Part II

function Z.P coincides with the geometrical shape functions of the four face-edges (which may
be compound edges):

Thus u and v are normalized arclength along the boundary of the surface (see Section 2.3).
Similarly as for elementary edges, a grid control function maps the computational space

onto the parameter space:

The orientation of the computational space and parameter space are the same. The grid
distribution function cF/; o / ; GF maps the computational space onto the surface. The grid
points of a face with N x M grid cells are found by

Grid generation in an elementary face is automatically preceded by grid generation in
the four face-edges. Thus the grid points along the four face-edges are known and also
their corresponding u and v values. What remains is the computation of the grid points in
the interior of the face, with the grid points at the four face-edges as Dirichlet boundary
conditions.

The computation of the grid control function GF is equivalent with the computation of
the two functions

= ~ (t , v) , v = v(E,v). (31)

These two functions are known at the boundary of the unit square in the computational
domain:

Note that the functions U&, U E ~ , VE,, VE, are monotonously increasing.
The most simple and robust way to compute (u, v) for values of (E,q) in the interior of

the unit square is obtained by the same "algebraic straight line transformation" as used in
elliptic grid generation, described in [12], Section 2.1. Thus

Eq. (33) implies that a grid line < = const. is mapped to the parameter space as a straight
line: u is a linear function of v. Eq. (34) implies that a grid line q = const. is also mapped to
the parameter space as a straight line: v is a linear function of u. For given values of t and q
the corresponding u and u values are found as the intersection point of the two straight lines.
I t can be easily verified that the grid control function which corresponds to this system has
a positive Jacobian i.e. J = u p , - u,,v~ > 0.

-25-
TP 96338 Part II

The main advantage of this algebraic grid generation method is that it is fast, and robust
with respect to grid folding. A disadvantage is that there is no grid control about grid line
slopes and grid cell lengths along the boundary. Another disadvantage is that the generated
grid is not independent of the parametrization of the face. These disadvantages do no appear
in elliptic surface grid generation method as described in [12], Section 4. The algebraic grid
generation method in a face is mainly used during the tuning of the grid point distribution
along the four face-edges. When a user is satisfied about the boundary grid point distribution,
the final grid in the interior of the face is usually computed by the elliptic surface grid
generation method.

After grid generation in an elementary face, the computed grid points in the interior of
the face are automatically stored in all blocks to which the elementary face belongs.

Grid generation in a compound face is simply obtained by grid generation in all elementary
sub-faces of the compound face. An algorithm for grid generation in compound faces is
therefore not needed.

4.5 Grid generation in blocks

Grid generation in a block is automatically preceded by grid generation in the six block-faces.
Thus, the grid point distribution on the six block faces is known, and what is left to be done
is the computation of the grid in the interior of the block with the grid points in the six
block-faces as Dirichlet boundary conditions.

The computation of an interior grid in a block is almost always done with the elliptic
grid generation method described in [12], Section 5. The method appears to be extremely
robust and the quality of the generated grid is good w.r.t. smoothness, grid point distribution
and regularity. A disadvantage of the elliptic grid generation method, compared to algebraic
grid generation, is that the method is computationally expensive and requires much computer
memory usage. Therefore the method is in general not used during interactive grid generation
but only in batch during the computation of the final fine grid on the supercomputer.

4.6 Local Grid refinement

A user may want to relax the constraint on grid continuity (Co continuous grids) in order to
achieve a grid which is efficient of its placement of its grid points. With local grid refinement,
the structured grid in a particular block can be refined without changing the grid in the
surrounding blocks, so that refined grids can be used in blocks located in regions where large
flow gradients are expected.

The grid refinement in a particular block is user-specified by three grid refinement factors
in each computational direction of that block.

There is one restriction about the way local grid refinement can be applied. When local
grid refinement is applied, there are in general two different grids at a particular internal
block-face, which belongs to the two blocks which have this block-face in common. The
restriction is that one of the two grids in the block-face is coarse with respect to the other,
so that the grid points of the coarse grid is a coarsening in the I and J direction of the grid
points of the fine grid. Each grid cell in the coarse grid is then connected to a fixed number
of fine grid cells in the fine grid. This property facilitates a flow solver to remain conservative
across block-faces: the flux through a coarse grid-cell-face is given by the sum of the of fluxes
through the corresponding fine grid-cell-faces [9].

-26-
TP 96338 Part I1

An example of an application of local grid refinement is illustrated in Figs. 27, 28, 29, 30.

4.7 Interactive grid generation

The graphical user interface (GUI) of ENGRID is implemented in C using FORMS [20] as
the interface builder, and GL on the Silicon Graphics workstations as the graphics language.
The numerical core of ENGRID, and also the batch version, has been written in FORTRAN.

During an interactive session, the first action of a user is to read the topology and geometry
file of a blocked flow domain.

After that, grid dimensions have to be specified. The mouse is used to select an edge
from the screen, and a number is given (by keyboard) which defines the number of grid cells
along the edge. With the group concept described in Section 4.1, the program automatically
identifies those edges which obtain the same grid dimension value. If there are compound
edges, then the sum relations between the groups are used to check if it is possible to compute
the dimensions of other edges. If an edge dimension is known then the colour of the edge on
the screen is changed and the grid dimension value appears at the middle of the edge.

This process is repeated until the dimensions of all edges are known. The user may then
write the grid dimension file which defines the grid dimensions of the multi-block system. If
a grid dimension file already exists then the process of specifying the grid dimensions may be
skipped and the user can simply read the grid dimension file.

Next, the grid tuning process may start. Along elementary edges, grid control is available
only at the two vertices of the edges. The user may specify a grid density p at a vertex of
an elementary edge by selecting the edge and vertex (via their labels) from the screen by
mouse and by defining p by keyboard. The resuIt is that the first grid cell length along the
edge at the vertex becomes pLIN where L is the length of the edge and N is the number
of grid cells along the edge. It is also possible to specify a stretching value R at a vertex
of an elementary edge. The result is that the ratio between the second and first grid cell
length at the vertex becomes 1 + (RIN). The user may also "connect" edges. If an edge
E2 at vertex V2 is connected to an edge El at vertex Vl then the first grid cell length along
edge E2 at V2 becomes equal to the first grid cell length along edge El at Vl . In this way
large chains of connected edges may be constructed, and if the grid in the "mother" edge is
changed, the grid in all other edges in the chain are then also automatically changed. The
program automatically takes care that a chain is not closed. The connection of edges is very
useful to construct smooth grids across connected elementary edges. Finally, the user may
link an elementary edge to another elementary or compound edge. In that case, the grid
point distribution of the elementary edge will become the same as the grid point distribution
of the "mother" elementary or compound edge. If the grid point &stribution of the mother
edge is changed then the grid point distribution of all edges that are linked to that edge
are also automatically changed. Linking of edges is especially useful to copy the grid point
distribution of a (compound) face-edge to the opposite elementary edge of that face.

During grid tuning, the user selects elementary faces by picking its label with the mouse.
ENGRID computes and shows the grid in the selected elementary face. Grid point distri-
bution along edges are always shown via the grid point distribution in an elementary face
to which the edge belongs. The grid in the interior of an elementary face is computed with
the automatically computed grid points at the four face-edges as Dirichlet boundary condi-
tions. The previously described algebraic and elliptic grid generation methods can be used
to compute the interior grid points. With the elliptic method, it is possible to orthogonalize

-27-
TP 96338 Part 11

the interior grid at the boundary of the face. This is done by picking face-edges with the
mouse. No controlling parameters are available (and also not needed). Minimal surface grid
generation can be applied for default elementary faces (faces with no control points and a
face shape defined as a Coon's patch bounded by the four face-edge curves). In that case,
the face shape will be no longer a Coon's surface but will become a minimal surface. Min-
imal surface grid generation [12],Section 3, is especially useful for elementary faces with the
four face-edges lying in a plane. Then the minimal surface is a plane surface bounded by
the four edges. Finally, a mixed algebraic-elliptic grid generation method is available [13].
This method allows grid tuning by specifying grid-line-slope and/or first-grid-cell height at
arbitrarily locations along the four face-edges.

Grid generation in the interior of a block is computed with the automatically computed
grid points at the six block-faces as Dirichlet boundary conditions. The previously described
elliptic grid generation methods can be used to compute the interior grid points. No con-
trolling parameters are available (and also not needed). However, elliptic grid generation in
a block is hardly ever done during interactive grid generation because the method requires
much computation time and computer memory.

During the interactive session the user may change at any moment the grid dimension
of an edge. The selected grids in the elementary faces shown on the computer screen are
then automatically recomputed. The user may also apply local grid refinement at any mo-
ment. The refinement of a structured grid in a block is performed by specifying the grid
refinement/coarsening factors in the three computational directions of a block.

One interactive session is in general not sufficient to tune the complete grid for a complex
configuration. Therefore at the end of a session the user may write a grid dimension file (which
contains the specification of the grid dimensions of a multiblock grid) and a grid control file
(which contains all grid tuning parameters). Then, in a next session, the user can read these
files and continue the grid generation process.

There are of course more additional "tools" in the interactive grid generator. For example,
for grid inspection it is necessary to zoom, rotate and translate. These additional tools are
evident and need no further description.

5 Applications

The usability of the ENFLOW system is demonstrated for a few rather different types of
applications. A hydrodynamic application, created at Delft Hydraulics, is shown in Fig. 31
and Fig. 32. These figures show a multiblock grid in a part of the river Rhine. High grid
density is not required a t the boundary of the blocks but in the interior of the river. Another,
completely different hydrodynamic application is shown in Fig. 33 and Fig. 34.

A multi-block grid about a space capsule is shown in Fig. 35 through Fig. 38. Refacing has
been applied at the fore-body of the capsule. The mesh is used for Navier-Stokes calculations.

A multiblock grid of a wing-body-pylon-nacelle configuration is shown in Fig. 39 and Fig.
40. This grid has been used for Euler calculations.

A domain decomposition about a generic fighter is depicted in Fig. 41 and Fig. 42.
Finally, Fig. 43 through Fig. 57 is a rather comprehensive illustration of a multiblock

grid for a wing-body-pylon-nacelle-propeller disk configuration. The grid has been used for
Navier-Stokes calculations. The total number of grid points is about 2.5 million, the total
number of blocks is 106. The challenge of this domain decomposition was to combine a C-type

-28-
TP 96338 Part I1

grid around the wing with a C-type grid around the pylon and with an 0-type grid around
the nacelle. The C-type grid around the pylon is illustrated in Fig. 46 through Fig. 49. The
C-type grid around the wing is illustrated in Fig. 50 and Fig. 51. The 0-type grid around
the nacelle is shown in Fig. 54, Fig. 55 and Fig. 56. Fig. 57 shows the 0-type grid around
the wing tip. The interaction of these topologies are illustrated in Fig. 52, Fig. 53 and also in
Fig. 54 and Fig. 55. After surface modeling, it took about two weeks man-work to construct
this domain decomposition with ENDOMO. Multi-block grid generation with ENGRID took
about one week man-work.

Many other multiblock grids for complex geometries have also been constructed at NLR
and Fokker, such as transport aircraft configurations, space shuttles, wing bodies, supersonic
projectiles, etc.

6 Summary

Block-structured-grid-based methods offer a viable choice for solving viscous flows over com-
plex aerodynamic configurations. Body-fitted structured grids are well suited for resolving
the thin viscous layers developing in the vicinity of solid surfaces at high Reynolds numbers
typically encountered in flight.A state-of-the-art structured flow solver: like ENSOLV, is very
efficient in computing aerodynamic flows in the presence of such embedded boundary layers.

An important step in routine application of structured-grid methodology to CFD appli-
cations is the grid generation process. At NLR and Fokker this is done with ENDOMO and
ENGRID.

The design of the domain decomposer ENDOMO and grid generator ENGRID has been
realized in close relationship between an NLR CFD team as supplier and aerodynamic design
and research teams from Fokker and NLR as customer. The partnership between the CFD
development team and the design teams has led to a user-friendly GUI based on concepts
that automate much of the low level grid generation tasks. The most important concepts that
are applied are described in this paper and can be summarized as follows:

Use of compound edges and compound faces for partial block boundary interfacing.

The use of topological relations to define degenerations and computational directions

Use of Hermite interpolation, for geometrical shape functions of edges and faces, for
monotonic interpolation.

Use of correction functions, for geometrical shape functions of edges and faces, to guar-
antee Go continuous grids.

Use of Nurb curves (surfaces) to design curvilinear edges (faces) in 3D physical space.

The automatic extraction of points of geometrical elements during the creation of topo-
logical elements.

The use of an advanced projection algorithm for the projection of block-faces on the
original input geometry.

e Automatic topology check during domain decomposition.

0 Highly automated grid dimension specification.

-29-

6 TP 96338 Part 11

&
The use of advanced elliptic grid generation methods, for surface grid generation and
volume grid generation, with no need to specify non-intuitive controlling parameters.

0 The use of local grid refinement to achieve an efficient placement of grid points

* Both ENDOMO and ENGRID have in common that they provide the user only a limited
number of powerful options which are always very intuitive. This makes these systems
easy to learn. This is in contrast to CAD/CAM systems which in general contain
hundreds of options so that these systems can only be handled by an expert.

0 Recomputing a multiblock grid is completely automated when only small changes are
made in the input geometry, so that no changes are needed in the multi-block topology.
This is achieved via the Journal file of ENDOMO and the input files of the batch
version of ENGRID.

A Piecewise cubic Hermite interpolation for curves

Consider a set of control points {?j = (x, y, 2): I i = 0. . . N). We wish to construct a
smooth C1 curve ? : u E [O, 11 ++ x3 which is passing through the set of control points with a
geometrical shape as one would intuitively expect. Furthermore, spurious oscillations should
be prevented. For this reason, cubic spline interpolation is not safe. Instead, piecewise cubic
Hermite interpolation is applied. The extra freedom to model the tangent vectors is used to
prevent unwanted oscillations. The parameter u is defined as normalized arc length.

Compute the distance between succeeding control points:

Define the length of the curve by
N

and the normalized distances as

Define the knot sequence {ui I i = 0.. . N) by uo = 0 and

Hence, 0 = uo < u1 < . . . < UN = 1. Patch i is defined as the interval [ui-1, ui]. In patch i,
we relate a local variable a E [O, 11 to the global variable u by

For the moment, suppose that the tangent vectors {Zui = g (u i) , i = 0. . . N) are known.
How these tangent vectors are modeled is shown below. The shape of the curve at patch i is
then defined as

-30-

6 TP 96338 Part I1

s
where Ho, H I , Hz, H3 are cubic Hermite interpolation functions defined as

with 0 5 Q. 5 1.
It can be easily verified that g (u i -) = z (u i +) = Zu;, so that the piecewise cubic curve

Z(u) is indeed C 1 .
The tangent vectors {Zui, i = 0 . . . N) are computed as follows. Define the chord vectors

Note that 1 1 Zu. , / /= L. The tangent vectors at the interior knots i = 1 . . . N - 1 are modeled
1-5

as

with

ci = 1 1 Zi - 112 - - d? , i = l ... N - 1 . I I zi - Zi-1 11' + 1 1 Zi+l - Zi 112 d? + d,2+1
(44)

If 1 1 Zi - Zi-1 I / < < I I ?i+l - Zi 1 1 then q = 0 and Zui z xUi++. + This implies that high curvature
will be restricted to small patches which is a behaviour as one would intuitively expect.
Spurious oscillations are also prevented.

Quadratic end conditions are used to compute the end tangent vectors Zuo and TUN.
The quadratic end conditions require that the cubic polynomial function Z (a) is a quadratic
function of a in patch 1 and in patch N . It is easily verified that this implies that

Fig.19 illustrates that cubic Hermite interpolation prevents spurious oscillations, in con-
trast to cubic spline interpolation.

B Piecewise bicubic Hermite interpolation for surfaces

Consider a set of control points {ZQ = (x , y , z)& I i = 0 . . . N , j = 0. . . M). We wish to
construct a smooth C 1 surface Z : (u, v) E [0, lj2 H R3 which is passing through the control
points with a geometrical shape as one would intuitively expect. As for curves, spurious
oscillations should be prevented. For this reason, bicubic spline interpolation is not safe.
Instead, piecewise bicubic Hermite interpolation is applied. The extra freedom to model the
tangent vectors and twist vectors is used to prevent unwanted oscillations.

Consider a row of points {Zi,i / i = 0 . . . N) with j E (0 . . . M) fixed. This row of points
is considered as a discrete curve and it is therefore possible to compute a knot sequence
{ u i j / i = 0 . . . N) in exactly the same way as described in the previous section. In the same
way, consider a column of points {Zi I j = 0.. . M) with i E (0 . . . N) fixed, and compute
the knot sequence { ~ i , ~ I j = 0 . . . M) .

TP 96338 Part I1

To construct a smooth surface, one knot sequence is used for all rows and for all columns.
These two knot sequences are obtained by averaging:

Patch (i, j) is defined as the rectangle [ui-l,ui] x [vj- l ,u j] . In patch (i, j) we relate local
variables (a, P) E [O, 112 to the global variables (u , v) by

with $ = ui - ui-1 and q = vj - uj-1.

For the moment, suppose that the tangent vectors ?ui,j = u i > v j) , ?v;,j = g (u i > u i) ,
and twist vectors ?u,,i,j = g (u i , v i) are known for all knots (i, j) . How these tangent and
twist vectors are modeled is shown below.

The shape of the surface at patch (i, j) is then defined as

where the matrix M$ is defined by

From these definitions, it can be easily verified that the piecewise bicubic surface Z(u , v) is
C'.

The tangent vectors ?ui,j are computed as follows (the tangent vectors ?ui,j are computed
in the same way). Define the chord vectors

and use the same non-linear averaging formula as used for curves, thus

with
+ I 1 xi,j - zi-1,j \ I 2

Cif = - - , i = l . . . N - 1 , j=O ... M. I I Xi,j - Xi -1 , j \ I 2 + 1 1 ?i+l,j - ?i,j 11' (52)

Quadratic end conditions are used again to compute the end tangent vectors.
A modification of Adini's method [I91 is used to compute the twist vectors. Consider patch

(i, j) with local variables (a ,P) . Assume that the tangent vectors Zu, are known at the four
corner points of the patch. Introduce the abbreviate notation Coo = Zi-l,j-l, 510 = ?i , j - l ,

Zol = Zi-l,j, Zl l = ?i,j. Use Eqs.(48),(49) to find G (O , 0) = dyTu j _ l , ? = (I ; 0) = q Z u i , j - , ,

-32-

&?
T?? 96338 Part 11

F
Za(O,l) = d ~ Z u i - l , j , Z a (l , I) = $Zu(, j , Zo(0,O) = q Z v i-l , Zo(1,O) = dyZ,,i,j-l, Zo (0 , l) =
Z i l , j , Z f l (l) = d , . Compute the boundary curves of the patch by cubic Hermite
interpolation. Thus, for example

and the other three boundary curves are computed by similar formulas. Define the shape of
the surface patch as a bilinearly blended Coon's patch

\~ ~~,
Compute the corner twist vectors Zap(O, 0) , Z a f l (l , 0) , Zap(O, l) , Z a p (l , 1) from Eq.(54). Use
Eq.(47) to find the corresponding twist vectors w.r.t. the global variables (u, v): Zu,i-l,j-, =
Zao(O, O)/d:dy etc..

Thus at the four corners of each patch, an estimation is found for the twist vector Zu,.
Consider an interior knot (i, j) . Then four estimations for the twist vector Zu,i,j are found
in respectively patches (i, j) , (i + 1, j) , (i , j + 1) and (i + 1, j + 1). Write those estimations
as respectively Z:Y, Z:,", Zgw, ZgE. A similar averaging procedure as applied for tangent
vectors is used to define a unique value Zu,i,j :

where Ai,j is the area of patch (i, j) defined as

This non-linear averaging procedure guarantees that large changes in twist will be restricted
to small patches. At a boundary knot, there are only two estimations for the twist vector.
It is evident how the averaging procedure must be applied in that case. At the four corner
knots, only one estimation is available and averaging is thus not needed.

C Example of a topology file

The contents of the following topology file corresponds with the two-blocks as shown in Fig.
15.

'TOPOLOGY FILE OF TWO PARTIALLY CONNECTED BLOCKS'
'ENDOMO '
'2.10 '
'95-07-21'
'12:22:52'
NUMBER OF BLOCKS:

2
BLOCK <--------------FACES-------------> IDENT

1 5 3 9 8 13 12 'BLOCK'
2 7 6 1 4 11 10 'BLOCK'

NUMBER OF ELEMENTARY FACES:
1 2

FACE <-------EDGES--------> IOENT
1 2 5 7 8 'FACE'
2 1 4 8 9 'FACE'
4 24 25 1 0 11 'FACE'
5 22 23 1 2 13 'FACEJ
6 1 4 1 5 2 24 'FACE'
7 5 25 1 6 1 7 'FACE'
8 22 3 18 1 9 'FACE'
9 23 6 20 2 1 'FACE'

1 0 1 5 1 7 8 11 'FACE'
11 7 1 0 1 4 1 6 'FACE'
1 2 13 9 19 2 1 'FACE'
13 1 2 7 18 20 'FACE'

NUMBER OF COMPOUND FACES:
1

FACE <--FACES-> <-------EDGES--------> IDENT
3 1 2 7 9 3 6 'FACE'

NUMBER OF ELEMENTARY EDGES:
2 3

EDGE <VERTICES> IDENT
1 1 2 'EDGE'
2 1 3 'EDGE'
4 4 5 'EDGE'
5 4 6 'EDGE'
7 3 6 'EDGE'
8 1 4 'EDGE'
9 2 5 'EDGE'

1 0 7 9 'EDGE'
11 8 1 0 'EDGE'
1 2 11 13 'EDGE'
13 1 2 1 4 'EDGE'
1 4 3 7 'EDGE'
15 1 8 'EDGE'
1 6 6 9 'EDGE'
17 4 10 'EDGE'
18 11 3 'EDGE'
1 9 1 2 2 'EDGE'
20 13 6 'EDGE'
2 1 1 4 5 'EDGE'
22 11 1 2 'EDGE'
2 3 13 1 4 'EDGE'
24 7 8 'EDGE'
2 5 9 1 0 'EDGE'

NUMBER OF COMPOUND EDGES:
2

-34-
TP 96338 Part I1

EDGE <--EDGES-> <VERTICES> IDENT
3 1 2 2 3 'EDGE'
6 4 5 5 6 'EDGE '

References

[I] N.P. Weatherill, P.R. Eiseman, J. Hauser, J.F. Thompson (eds), Numerical Grid Gen-
eration in Computational Fluid Dynamics and Related Fields, Proceedings of the 4th
International Conference, Swansea, Wales, Pineridge Press, 1994.

[2] A.S. Arcill, J. Hauser, P.R. Eiseman,, J.F. Thompson (eds), Numerical Grid Generation
in Computational Fluid Dynamics and Related Fields, Proceedings of the 3th Interna-
tional Conference, Barcelona, Spain, Elsevier Science Publishers, 1991.

[3] Y. K. Choo (ed), Surface Modeling, Grid Generation, and Related Issues in Computa-
tional Fluid Dynamic (CFD) Solutions, NASA CP 3291. Proceedings of a workshop held
at NASA Lewis, Cleveland, Ohio, 1995.

[4] R.E. Smith (ed), Software Systems for Surface Modeling and Grid Generation, NASA
CP 3143, Proceedings of a workshop held at NASA Langley, Hampton, VA, 1992.

[5] N.P. Weatherill (ed), Grid Generation, VKI Lecture Series 1994-02, 1994.

[6] N.P. Weatherill (ed), Numerical Grid Generation, VKI Lecture Series 1990-06, 1990.

[7] J.W. Boerstoel, ENFLOW, A System of CFD Codes for Industrial CFD Analysis of
Flows Around Aircraft Including Propulsion Systems Modelling, NLR-CR-93519, 1993.

[8] J.W. Boerstoel, S.P. Spekreijse, P.L. Vitagliano, The Design of a System of Codes for In-
dustrial Calculations of Flows around Aircraft and other Complex Aerodynamic Config-
urations, NLR-TP-92190, AIAA paper 92-2619, 10th Applied Aerodynamics Conference,
Palo Alto, 1992.

[9] A. Kassies, R. Tognaccini, Boundary Conditions for Euler Equations at Internal Block
Faces of Multiblock Domains, using Local Grid Refinement, NLR-TP-90134, AIAA paper
90-1590, 1990.

[lo] J.F. Dannenhoffer, Multiblock Grid Generation, in VKI-Lecture-Series 1994-02: Grid
Generation, 1994.

[ll] V.N. Vatsa, M.D. Sanetrik, E.B. Parlette, Block-Structured Grids for Complex Aerody-
namic Configurations: Current Status, in Proceedings Surface Modeling, Grid Genera-
tion, and Related Issues in Computational Fluid Dynamic (CFD) Solutions, NASA-CP-
3291, 1995.

[12] S.P. Spekreijse, J.W. Boerstoel, Multiblock Grid Generation. Part 1: Elliptic Grid Gen-
eration Methods for Structured Grids. This VKI-Lecture-Serie. 1996.

[I31 S.P. Spekreijse, J.W. Boerstoel, J.L. Kuyvenhoven, M.J. van der Marel, Surface Grid
Generation for Multi-block Structured Grids, NLR-TP-92267, in: Proceedings of the
First European Computational Fluid Dynamics Conference 1992,Ch. Hirsch et a1 (eds),
vol 2,pp. 937-944,Elsevier Science Publishers, 1992.

[14] S.P. Spekreijse, J.W. Boerstoel, New Concepts for Multi-Block Grid Generation for Flow
Domains around Complex Aerodynamic Configurations, NLR-TP-91046, in: Numerical
Grid Generation in Computational Fluid Dynamics and Related Fields, Proceedings of
the 3th International Conference, Barcelona, Spain, Elsevier Science Publishers, 1991.

[15] R. Hagmeijer, Grid Adaptation based on Modified Anisotropic Diffusion Equations for-
mulated in the Parametric Domain, Journal of Computational Physics, 115, 169-183,
1994.

[16] R. Hagmeijer, Adaptive generation of structured grids. This VKI-Lecture-Serie, 1996

[17] M.J. van der Marel, Evaluation of ENGRID and ENDOMO. Delft Hydraulics report
Q997, 1991.

[18] G.Farin, Curves and Surfaces for Computer Aided Geometric Design, A practical guide,
Academic Press, San Diego, 1990.

[19] F.Yamaguchi, Curves and Surfaces in Computer Aided Geometric Design, Springer Ver-
lag, Berlin, 1988.

[20] M.H. Overmars, FORMS, A Graphical User Interface Toolkit for Silicon Graphics Work-
stations, Department of Computer Science, Utrecht University, Utrecht, Netherlands,
version 2.3, 1995.

TP 96338 Part I .

aerodynamic
lnput geometry I

EULER / NAVIER-STOKES
FLOW CALCULATION SYSTEM

\

17

I ENFLOW 6

r.

results of 1 flow calculation I

multi-block
gr~d generation i r.

Figure 1: The NLR ENFLOW system.

ICEM-CFD codes ENDOMO code ENGRID code

block decom osition
of 3D flow &main

ENSOLV code various codes

flow
computation

"1 5 5
Planar graph

Figure 2: Topology of a block.

r. graphical
visualtzat~on I

-37-
TP 96338 Part I1

Figure 3: Topology of a face. Figure 4: Complete block boundary interfac-
ing.

I !
, . i
L --

Figure 5: Partial block boundary interfacing. Figure 6: Block structured grid.

-38-
TP 96338 Part I1

Figure 7: Embedding of an edge and face into Figure 8: Number of grid points along col-

the computational space of a block. lapsed edge E is not unique.

4 vertices 3 vertices 2 vertices 1 vertex

Figure 9: Allowed types of elementary faces.

Figure 10: Allowed types of compound faces.

-39-
TP 96338 Part I1

el) 4verticor

Figure

c214 "miser

11: Allowed types of blocks.

0 " t

/ Y
Compound edge = union of two edges -lalion beween coordinate syslems -

X

Figure 12: Relation between the coordinate systems of two sub-edges edges in a compound
edge.

L

Figure 13: Example of the relation between the coordinate systems of two sub-faces in a
compound face.

-40-
TP 96338 Part I1

Figure 14: The eight possibilities how two sub-edges El and Ez can be situated in a compound
edge.

Two partially connected blocks '-',&!&-

"7

Figure 15: Topology of two partially connected blocks.

TP 96338 Part II

Figure 16: Relation between the coordinate Figure 17: Example of a topological construc-
systems of elementary faces in a compound tion which can not be used for multi-block
face.The compound face consists of 7 elemen- grid generation.
tary faces.

-.:I.* .1.
... ../

Compound face

7 .

Pmiened boundary wink in parameter space

I

Figure 18: Illustration of the projection

L

Computed mesh in parameter space

algorithm on a compound face.

Figure 19: Comparison of cubic Hermite and Figure 20: Non-Uniform Rational B-spline
cubic spline interpolation. curve and its control polygon.

Figure 21: Non-Uniform Rational B-spline Figure 22: NURB surface obtained by inter-
surface and its control polygon. polation.

Figure 23: Four surface patches joined t* Figure 24: Projected block-face on the com-
gether in a compound face. pound face.

Figure 25: Lower part of a wing. Figure 26: Projected block-faces on wing.

TP 96338 Part 11

Figure 27: Block decomposition around Figure 28: Block decomposition and grid di-
RAE2822 airfoil. mension for RAE2822 airfoil.

Figure 29: Local grid refinement. Figure 30: Grid near RAE2822 airfoil

Figure 31: Block decomposition in part of Figure 32: Corresponding grid.
river Rhine.

Figure 33: Block decomposition of a water- Figure 34: Corresponding grid.
power station.

Figure 35: Illustration of a block decomposi- Figure 36: Close-up of block decomposition.
tion of a space capsule.

Figure 37: Grid. Figure 38: Close-up of grid.

TP 96338 Part I1

Figure 39: Block decomposition on the surface Figure 40: Corresponding surface grid.
of a wing body nacelle pylon configuration.

Figure 41: Block decomposition about a Figure 42: Close-up.
generic fighter.

TP 96338 Part I1

Figure 43: Block decomposition and medium surface grid of a configuration consisting
fuselage, wing, pylon,nacelle, and propeller disk.

Figure 44: Block decomposition on the wing Figure 45: Fine grid on the wing upper sur-
upper surface. face.

-49-
TP 96338 Part 11

Figure 46: Block decomposition on the wing Figure 47: Fine grid on the wing lower surface.
lower surface.

Figure 48: Block decomposition on the nacelle Figure 49: Blow up of fine grid on the nacelle
upper surface. upper surface.

-50-
TP 96338 Part I1

Figure 50: Block decomposition on the fuse- Figure 51: Fine grid on the fuselage,
lage.

Figure 52: Block decomposition in the nacelle Figure 53: Fine grid in the nacelle symmetry
symmetry plane. plane.

Figure 54: Block decomposition through the Figure 55: Fine grid in plane through the
trailing edge of the wing. trailing edge of the wing.

Figure 56: Blow up of fine grid near nacelle. Figure 57: Blow up of fine grid near the wing
tip.

