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Summary 

This report contains a paper that was submitted to the Journal of the Mechanics and Physics of 

Solids, by Elsevier Science. The abstract of the paper is given below. 

 

A recently proposed crystal plasticity framework for single crystal Ni-based superalloys is 

extended with a precipitate phase constitutive model. Two precipitate deformation mechanisms, 

precipitate shearing and recovery climb, are discussed in detail and dislocation density based 

formulations are derived to describe their effect on the material mechanical behaviour. 

Furthermore, the typical anomalous yield behaviour of Ni3Al intermetallics is discussed and 

implemented in the framework. A database of experimental results on the commercial alloy 

CMSX-4 is used to determine the model parameters. It is shown that the material tensile 

response and creep behaviour for this alloy can be predicted for a range of temperatures, stress 

and strain rate levels.  
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Abstract 

A recently proposed crystal plasticity framework for single crystal Ni-based superalloys is 

extended with a precipitate phase constitutive model. Two precipitate deformation mechanisms, 

precipitate shearing and recovery climb, are discussed in detail and dislocation density based 

formulations are derived to describe their effect on the material mechanical behaviour. 

Furthermore, the typical anomalous yield behaviour of Ni3Al intermetallics is discussed and 

implemented in the framework. A database of experimental results on the commercial alloy 

CMSX-4 is used to determine the model parameters. It is shown that the material tensile 

response and creep behaviour for this alloy can be predicted for a range of temperatures, stress 

and strain rate levels.  

 

Keywords: A. dislocations; A. microstructures; A. strengthening and mechanisms; B. 

constitutive behaviour; B. crystal plasticity. 

 

1 Introduction 

The superior high temperature behaviour of single crystal nickel-based superalloys is attributed 

to their characteristic two-phase composite microstructure. This microstructure consists of a γ-

matrix containing a large volume fraction of γ'-particles (see Figure 1). The Ni3Al (γ') -

precipitates are cuboidal and are more or less regularly distributed in a Ni-matrix (γ-phase). The 

typical precipitate size is 0.5 μm and the matrix channel width is typically 60 nm. The material’s 

high resistance against inelastic deformation at elevated temperatures makes it very suitable for 

use as gas turbine blade material. 

                                                      
*
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The design process of gas turbine components, but also the maintenance and overhaul 

activities, require a reliable prediction of the thermo-mechanical deformation of the used 

materials. Therefore, modelling of the mechanical behaviour of superalloys has been subject of 

numerous studies. Initially the material was treated as a homogeneous single phase material 

(Ghosh et al., 1990; Hanriot et al., 1991; Jordan et al., 1993; Yue et al., 1996; Pan et al., 1997; 

Yue and Lu, 1998; Busso et al., 2000b; Rist et al., 2000; MacLachlan et al., 2002; Daniel et al., 

2002; Cailletaud et al., 2003; Shenoy et al., 2005). Since these solution approaches are 

addressing the macroscopic level, they can easily be used as a constitutive description in a finite 

element (FE) analysis, which is nowadays the common method used for component stress 

analysis and life time assessment.  

More recently, models were developed that take into account the two-phase nature of 

superalloys. In these microstructural models the shape, dimensions and properties of both 

phases are considered as model parameters. However, the length scale of the microstructure, 

which is in the order of micrometers, is much smaller than the engineering length scale. 

Modelling an entire macroscopic component taking into account all microstructural details is 

therefore not feasible in the engineering practice.  

 

 
Figure 1 Micrograph of a superalloy microstructure showing the cuboidal γ'-precipitates in a γ-

matrix (Moss et al., 1996). 

 

On the one hand, this difference in length scales can be covered by using a multi-scale 

approach in which an appropriate homogenization method is applied to connect the microscopic 

to the macroscopic level. A large number of multi-scale frameworks have been developed in the 

past decades for different materials (Eshelby, 1957; Bensoussan et al., 1978; Sanchez-Palencia, 

1980; Willis, 1981; Ponte Castañeda and Suquet, 1998; Michel et al., 1999; Miehe et al., 1999; 

Kouznetsova et al., 2002; Evers et al., 2002). Among these, Fedelich (1999, 2002) developed a 

model to describe the mechanical behaviour of Ni-based superalloys. The constitutive behaviour 

of the two phases was derived from the underlying dislocation based deformation mechanisms 

in the material.  
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On the other hand, the length scale problem can be overcome by using microstructural 

models that predict the material response in a closed-form set of equations on the level of a 

material point (Busso and McClintock, 1996; Svoboda and Lukas, 1997; Kuttner and Wahi, 

1998; Busso et al., 2000a; Svoboda and Lukas, 2000; Meissonnier et al., 2001; Choi et al., 

2005). The microstructural results are then used to develop constitutive descriptions that fit in 

traditional methods at the macroscopic level. Busso and co-workers (Busso and McClintock, 

1996; Busso et al., 2000a; Meissonnier et al., 2001) constructed a detailed unit cell FE model of 

an elastic γ'-precipitate embedded in an elasto-viscoplastic γ-matrix. Choi et al. (2005) extended 

this work using a more phenomenological crystal plasticity formulation.  

All the microstructural models mentioned above are based on a unit cell approach, in 

which a characteristic volume is defined that contains both γ- and γ'-phase material with their 

respective properties and dimensions. However, almost all models treat the precipitate phase as 

an elastic medium in which no plastic deformation occurs. Only Fedelich (1999, 2002) and 

Svoboda and Lukas (1997, 2000) developed models for Ni-based superalloys that include 

inelastic deformation of the precipitate.  

On the other hand, a lot of experimental research (Pollock and Argon, 1994; Sass and 

Feller-Kniepmeier, 1998; Svoboda and Lukas, 2000; Gunturi et al., 2000; Miura et al., 2000; 

Link et al., 2000; Srinivasan et al., 2000; Rae et al., 2001; MacLachlan et al., 2001; MacLachlan 

et al., 2002; Chen and Knowles, 2003) has been done on the plastic deformation of Ni3Al 

intermetallics, both as a separate phase and as a precipitate in superalloys. As a result, the 

deformation mechanisms in this material are relatively well understood. A moving dislocation 

in the matrix phase that encounters a precipitate can either cut through the particle or climb 

around it. Since the intermetallic is an ordered (L12) solid solution of Al in Ni, it forms a 

superlattice with a perfect dislocation which is twice as large as the matrix perfect dislocation. 

Therefore, on entering the precipitate, a matrix dislocation causes either an anti-phase boundary 

(APB) or a superlattice intrinsic stacking fault (SISF), depending on the dislocation dissociation 

mechanism. It appears that precipitate shearing becomes an important deformation mechanism 

in superalloys at temperatures above 950 oC and at larger strains (latest stages of steady-state 

creep). At lower temperatures, considerable stresses in the range of 500 to 600 MPa are required 

to initiate particle shearing. Finally, also the typical anomalous yield behaviour of this 

intermetallic has been subject of research (Lall et al., 1979; Qin and Bassani, 1992; Vitek et al., 

1996). Contrary to what is commonly observed in metals, the yield stress increases with 

temperature up to a peak temperature, Tp ≈ 500 – 900 oC, and then steadily decreases. In almost 

any superalloy constitutive model this non-Schmid behaviour is neglected. One exception is the 

simple constitutive model by Allan (1995), which is specifically developed to describe these 

effects. 

In this paper, a recently proposed crystal plasticity framework for nickel-based 

superalloys (Tinga et al., 2006) is extended with a precipitate phase constitutive model. The 
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original framework uses an efficient unit cell approach and distinguishes itself geometrically 

from the previously discussed superalloy unit cells (Svoboda and Lukas, 1997; Fedelich, 1999; 

Svoboda and Lukas, 2000; Fedelich, 2002) by the fact that special interface regions are included 

in the unit cell, whereby the role of the γ/γ'-interfaces is believed to play an important role in the 

material deformation behaviour. The material response is predicted accurately by using a non-

local strain-gradient crystal plasticity model for the matrix material. In (Tinga et al., 2006) it 

was assumed that the γ'-precipitates remain elastic during deformation. This means that the 

mechanisms of recovery climb and precipitate shearing by dislocations are not considered, 

which limits the applicability of this model at larger plastic strains   (0.5 - 2 %, depending on 

temperature) considerably. However, in gas turbine components local creep strains beyond these 

values occur, which means that the engineering practice requires a model that can be applied up 

to higher plastic strains. 

In the present paper, a constitutive model for the precipitate phase is proposed, that 

describes the actual physical processes. Existing formulations for both the precipitate shearing 

and climb mechanisms are evaluated and combined to form an accurate constitutive description. 

At a number of points the existing formulations are extended to better describe the observed 

superalloy behaviour. Both the threshold stress for precipitate shearing and the climb velocity 

are made temperature dependent. On the other hand, the formulations are adapted to fit in the 

crystal plasticity framework proposed in (Tinga et al., 2006). The addition of a detailed 

precipitate constitutive model extends the application range of the framework and thus relieves 

the previously mentioned limitation to small plastic strains. 

The model parameters are determined for the commercial turbine blade alloy CMSX-4, 

using experimental results from a European collaborative research project (Lecomte-Beckers et 

al., 2002) and additional open literature. For temperatures ranging from 750 oC to 950 oC, creep 

tests at different stress levels and tensile tests at different strain rates yield a consistent set of 

model parameters. Contrary to most of the other superalloy models, where separate sets of 

parameters are used for different temperature levels, the present model is shown to correctly 

describe the observed material behaviour for a range of conditions, using only one unique set of 

model parameters. Moreover, the formulation is validated by comparing model predictions to 

the results at other conditions than those used for the calibration.   

Finally, it is shown that the observed anomalous yield behaviour and non-Schmid 

effects can be incorporated into the model. The extension of the crystal plasticity theory by Qin 

and Bassani (1992) to describe non-Schmid effects can easily be integrated in the present 

framework. This addition enables the model to predict the experimentally observed tension-

compression asymmetry. A temperature dependent increase of the slip resistance is proposed, 

which incorporates the anomalous yield behaviour.   
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To summarize, the new and original aspects in this paper are the following:  

 combination of existing formulations for the precipitate shearing and climb mechanisms and 

incorporation in the crystal plasticity framework proposed in (Tinga et al., 2006),  

 extensions of the threshold stress for precipitate shearing and the climb velocity by adding a 

temperature dependence, 

 description of the precipitate anomalous yield behaviour by a temperature dependent 

increase of the slip resistance,   

 integration of the precipitate anomalous yield behaviour and other non-Schmid effects in a 

superalloy constitutive model,  

 determination of a unique set of model parameters for the commercial alloy CMSX-4, 

validated in a wide range of service conditions.    

In the next section the previously proposed (Tinga et al., 2006) multi-scale framework 

is summarized, providing definitions of the unit cell and the interaction laws. Section 3 

describes the underlying strain-gradient crystal plasticity concepts and considers the internal 

stresses, describing the formulation of misfit and back stresses. Section 4 focuses on the 

constitutive models that are used, starting with the previously proposed matrix phase model. In 

the second part of this section the new precipitate constitutive model is proposed by describing 

the different deformation mechanisms and defining formulations to model the mechanical 

response. Also, the role of the Ni3Al anomalous yield behaviour is discussed. In section 5, the 

model parameters are determined by fitting the model to experimental results on the Ni-based 

superalloy CMSX-4. In section 6 the model capabilities are demonstrated by comparing 

simulated macroscopic tensile and creep curves to experimental results for a range of 

temperatures, stresses and strain rates. Also the deformation of the individual regions on the 

microscopic level is shown and the effect of the precipitate anomalous yield behaviour on the 

alloy mechanical response is illustrated. Finally, section 7 forwards some concluding remarks.  

 

 

2 Multi-scale framework 

In this section the previously proposed (Tinga et al., 2006) multi-scale framework is 

summarized. First, the different length scales are illustrated, then the mesoscopic unit cell is 

defined, after which the scale transitions and interaction laws are described. 

The different length scales covered by the model are shown schematically in Figure 2a. 

The macroscopic length scale characterises the engineering level on which a finite element (FE) 

model is commonly used to solve the governing equilibrium problem. The mesoscopic length 

scale represents the scale of the microstructure at the level of a macroscopic material point. At 

this length scale the material is considered as a compound of two different phases: γ'-

precipitates embedded in a γ-matrix. Finally, the microscopic length scale reflects the 
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crystallographic nature of the individual material phases. The constitutive behaviour is defined 

on this level using a crystal plasticity framework.  

 

 

               
a)          b) 

 
Figure 2 Schematic overview of the model, showing (a) the multi-scale character and (b) the 
multi-phase unit cell, consisting of one precipitate (γ'), three matrix (γi ) and six double 
interface(Ii) regions. 

 

Considering the overall deformation level, a small strain approximation is used in the 

model. The intended application of the model is the analysis of gas turbine components in 

which deformations are small. Consequently, the initial and deformed states are geometrically 

nearly identical. The linear strain tensor ε will be used and the Cauchy stress tensor σ will be the 

appropriate stress measure.   

On the material point level the Ni-based superalloy microstructure, consisting of γ'-

precipitates in a γ-matrix, is represented by a unit cell containing 16 regions (see Figure 2b): 

▪ 1 γ'-precipitate region, 

▪ 3 γ-matrix channel regions (γj, j = 1… 3) with different orientations (normal along the 

[001], [010] and [100] direction), 

▪ 12 interface regions (Ik
m and Ik

p, k = 1… 6) containing the γ/γ'-interfaces. A matrix and a 

precipitate region together form a bi-crystal, which is located on each face of the γ'-

precipitate.  

The interface between the two different phases plays an important role in the mechanical 

behaviour of the material. Therefore, special interface regions were included in the model to 

take into account the processes that take place at the γ/γ'-interfaces. 
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In the present multi-scale approach the deformation (total strain) for a certain 

macroscopic material point during a time increment is provided by the macro scale and the 

stress response is returned after the computations at the mesoscopic level. The quantities used 

for this macro-meso scale transition are denoted as the mesoscopic average strain ( ε ) and the 

mesoscopic average stress ( σ ). The stress tensor σ is determined from the strain tensor ε based 

on the specified mesoscopic configuration and the local constitutive equations of the different 

phases at the micro level. 

The mesoscopic strain is obtained by volume averaging on their microstructural 

counterparts in each of the regions, defined as 

m
3

p
3

m
2

p
2

m
1

p
1321 I,I,I,I,I,I,γ,γ,γ,γ' if

i

ii εε  (1) 

where f i are the volume fractions and εi the total strain tensors in the different regions. The 

interface regions at opposite sides of the precipitate (e.g. I1
m and I4

m) are assumed to behave 

identically in terms of deformation, internal stress development, etc. Therefore, to the benefit of 

computational efficiency, only half of the interface regions is included in the equations, thereby 

effectively reducing the number of regions to 10.  

The relation between the mesoscopic and microscopic level is provided by the 

constitutive models, which relate the stress tensors to the individual strain tensors for all 10 

regions 
m
3

p
3

m
2

p
2

m
1

p
1321 I,I,I,I,I,I,γ,γ,γ,γ'boxveconstituti  iii σε  (2) 

The constitutive model on the micro level, for each phase, is based on a strain-gradient 

enhanced crystal plasticity theory and will be described in section 4. 

Inside each of the different regions, both stress and deformation are assumed to be 

uniform. To specify the coupling between the regions an interaction law has to be defined, 

where a modified Sachs approach is used for the present model: in the γ- and γ'-regions the 

stresses are required to be equal to the mesoscopic stress, whereas in each pair of interface 

regions only the average stress is enforced to be equal to the mesoscopic stress. This results in 

the following equations: 

- Sachs interaction between γ'- and γ-regions: 
σσσσσ  321'   (3) 

- Modified Sachs interaction for the bi-crystal interfaces: 

  3,2,1
mpmmpp IIIIII  kffff kkkkkk σσσ  (4) 

Traction continuity (across the interface) and kinematical compatibility (in the plane of 

the interface) are added as additional requirements for the interface regions. This leads to the 

following supplementary equations, where kn


is the unit normal vector on the kth interface:  
- Compatibility between the matrix )(Im

k and the precipitate side )(Ip
k of the kth  interface: 

    3,2,1
mp II  knnnn kkkk kk


IεIε  (5) 
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- Traction continuity at the same interface: 

3,2,1
mp II  knn kk kk


σσ  (6) 

 

 
3 Crystal plasticity and internal stresses 

A strain-gradient enhanced crystal plasticity approach (Evers et al., 2004a) is used to model the 

constitutive behaviour of the two phases. The next subsection gives a short description of the 

underlying crystal plasticity formulation. Further, the interface between the two different phases 

plays an important role in the mechanical behaviour of the multi-phase material, because of the 

development of significant internal stresses that interact with the externally applied stress. In 

section 3.2, the contribution of the internal stresses in the model is discussed. 

 

3.1 Strain-gradient crystal plasticity 

In a conventional crystal plasticity framework, the plastic deformation of metals naturally 

results from the process of crystallographic slip, which is carried by the movement of 

dislocations. Yet, also the hardening behaviour of metals is attributed to dislocations. Plastic 

deformation causes multiplication of dislocations and their mutual interaction impedes the 

motion of gliding dislocations, which causes strengthening. Based on their field characteristics, 

the total dislocation population can be considered to consist of two parts: 

▪ statistically stored dislocations (SSD), 

▪ geometrically necessary dislocations (GND) (Ashby, 1970). 

The SSDs are randomly oriented and therefore do not have any directional effect and no net 

Burgers vector. They accumulate through a statistical process. On the other hand, when a 

gradient in the plastic deformation occurs in the material, a change of the GND density is 

required to maintain lattice compatibility. Individual dislocations cannot be distinguished as 

SSDs or GNDs. The GNDs represent therefore the fraction of the total dislocation population 

with a non-zero net Burgers vector. Moreover, as will be shown later, a gradient in the GND 

density causes an internal stress which affects the plastic deformation. These strain-gradient 

dependent influences give the model a non-local character.  

For both phases of the considered superalloy, each with a face-centred cubic (FCC) 

lattice, 3 slip directions on each of the 4 octahedral slip planes can be identified, resulting in 12 

equivalent slip systems. The elastic material behaviour is modelled using a standard 

formulation for orthotropic materials with cubic symmetry. The three independent components 

of the elastic tensor 4C of both phases in CMSX-4 at 850 oC are given in Table 1 (Busso et al., 

2000a). Since no values are available at other temperatures, the temperature dependence of the 
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alloy (Table 2 (Lecomte-Beckers et al., 2002)) is used to scale the values for the individual 

phases.   

 
Table 1   4C elastic tensor components for CMSX-4 phases at 850 oC (Busso et al., 2000a). 

 γ-matrix γ'-precipitate

C1111 (GPa) 190.9 216.9 

C1122 (GPa) 127.3 144.6 

C1212 (GPa) 100.2 112.9 

 
Table 2   4C elastic tensor components for CMSX-4 at various temperatures (Lecomte-Beckers 
et al., 2002). 

T (oC) C1111 (GPa) C1122 (GPa) C1212 (GPa)

20 273.6 182.4 123.7 

550 239.4 159.6 121.3 

700 231.4 154.3 117.6 

800 223.9 149.3 114.6 

850 215.4 143.6 112.1 

900 207.6 138.4 111.5 

950 204.4 136.3 107.9 

 

3.2 Internal stresses 

In the present model the following internal stresses are incorporated: 

▪ misfit stress: stress that originates from the lattice misfit between the γ- and γ'-phases at the 

level of  the coherent interface that is formed, 

▪ back stress: stress that originates from deformation-induced plastic strain-gradients inducing 

a gradient in the GND density at the interfaces. 

These interface effects are only included in the interface regions of the model.   

 

Misfit 

The γ- and γ'-phases both have an FCC lattice structure with a slightly different lattice 

(dimension) parameter. They form a coherent interface, which means that the crystal lattice 

planes are continuous across the interface, but a misfit strain exists to accommodate the 

difference in lattice parameter. The unconstrained misfit is defined as (Porter and Easterling, 

1992) 




a

aa 
 '  (7) 

with aγ’ and aγ the lattice parameters of the γ'- and γ-phases, respectively. The coefficients of 

thermal expansion (λγ’ and λγ) are different for both phases, which makes that the difference in 
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lattice parameter changes with temperature. The temperature dependence of the misfit is then 

given by (Link et al., 2000) 

       rr TTTT    '  (8) 

where δ(Tr) is the misfit at a reference temperature Tr. Recalling that the elastic properties of γ 

and γ' are quite similar and supposing that the size of both phases is in the same order, it is 

assumed that the misfit is accommodated equally by both phases, leading to a misfit strain 
 




a

aa
misfit


 '2

1

 (9) 

in the matrix (in the two directions in the plane of the interface) and the same strain with 

opposite sign in the precipitate. This misfit strain represents an initial elastic strain, which is 

constant during deformation. 

Using the elastic stiffness properties of both phases and assuming that the stress 
perpendicular to the interface plane equals zero easily leads to the misfit stress tensor i

misfitσ in 

both phases. Since the misfit stresses are resulting from an internal interaction between two non-

fitting phases, the misfit stress is an internal stress that can be superposed to the calculated local 

stress (due to the externally applied load) to constitute an effective stress tensor. 

 

Back stress 

The back stress on a slip system originates from the spatial inhomogeneity of the dislocation 

distribution and is only related to the GND density. For SSDs, which on average have a random 

orientation, the back stress contribution will be negligible. The value of the back stress tensor is 

calculated by summation of the internal stress fields caused by the individual edge and screw 

dislocation densities. 
 intint

se σσσb   (10) 

where the minus-sign indicates its counteracting character. 

For a field of edge dislocations the stress field in a point is approximated by summation 

of the contributions of all dislocation systems ξ in a region with radius R around that point 

(Bayley et al., 2006), resulting in  

   



 



ppnnnnsnsnssssn

bR
GNDe


43

18

12

1

2
int 


 



σ  (11) 

where GND  is the GND density, the vectors s


 and n


 are in the direction of the Burgers vector 

and the slip plane normal, respectively, b is de magnitude of the Burgers vector and p


is defined 

as nsp


 , i.e. the dislocation line vector for an edge dislocation. In the original derivation of 

this relation for an isotropic material μ and ν are the shear modulus and the Poisson’s ratio 

respectively. For the considered orthotropic material, the equivalent elastic constants C1212 and 

C1122 / (C1111 + C1122) for the appropriate phase are used instead. 
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For the field of screw dislocations the stress field is given by  

 




snpnspspnpsn

bR
GNDs


 



18

13

2
int

4
σ  (12) 

where nsp    is now perpendicular to the dislocation line direction (since the Burgers vector 

is parallel to the dislocation line). Note that only a non-zero gradient of the GND densities 

causes a non-vanishing contribution. 

To calculate the back stress, it is necessary to know the distribution of  the dislocation 

densities for all individual slip systems. These densities can be obtained from the slip gradients 

in the material. Since the two phases form a coherent interface this can be done on the slip 

system level (Evers et al., 2004b; Bayley et al., 2006). Slip gradients in the direction of the slip 

will be accommodated by edge dislocations and slip gradients perpendicular to the slip direction 

by screw dislocations. For the edge dislocations (ξ = 1… 12) the GND densities are obtained 
from the slip gradients 


by   

  s
bGNDGND




1
0,  (13) 

and for the screw dislocations (ξ = 13… 18) by 

 2211
1

0,
  pp

bGNDGND


  (14) 

The screw dislocation densities are the result of the combined effect of the slip gradients on the 
two available slip planes α1 and α2. An initial value  0,GND of the GND densities can be used to 

account for pre-deformation effects, if necessary.  

Since the real deformation distribution in the unit cell is simplified by assuming 

uniform deformation inside each region, gradients in slip are captured through discrete steps in 

between regions only. The gradients in the dislocation density and slip, as used in the equations 

(11) to (14), are replaced by their piece-wise discrete analogons. Note that the Burgers vector is 

different in the two phases, so the choice for b in equations (13) and (14) is not unambiguous. 

However, this choice can be made arbitrarily, provided that it is done in a consistent manner. 

The matrix Burgers vector is selected to be used here. 

 

 

4 Constitutive models 

A summary of the previously proposed (Tinga et al., 2006) matrix phase constitutive model is 

given first. Then the newly proposed precipitate constitutive model will be elaborated. 

 

4.1 Matrix phase 

The basic ingredient of the crystal plasticity framework is the relation between the slip rates 
 and the resolved shear stresses τα for all the slip systems α. The following formulation is  
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used:  

 





 




 eff

n

or

eff

m

eff

s
signexp10








































   (15) 

where τor denotes the Orowan stress, sα  the actual slip resistance and m, n and 0 are material 

constants. The effective stress  eff on slip system α is obtained from the effective stress tensor 

σeff by  
 Pσ :effeff   (16) 

where Pα is the symmetric Schmid tensor defined as 
  snns


 2

1P  (17) 

The unit length vectors n


and s


are the slip plane normal and slip direction, respectively. The 

effective stress tensor is defined as the combination of the resolved shear stress, the back stress 

and the misfit stress (see section 3.2) according to 

bmisfiteff σσσσ   (18) 

The Orowan stress, which is the stress required to bow a dislocation line into the channel 

between two precipitates is given by (Yuan et al., 1998) as 

d

b

r

d

d

bor 

 










0

ln
2

 (19) 

where the shear modulus μ is equal to the elastic constant C1212, b the length of the Burgers 

vector, d the spacing between two precipitates (equal to the channel width) and r0 the 

dislocation core radius (in the order of b). A value of α = 0.85 was taken (Tinga et al., 2006).  

The slip resistance is related to the availability of mobile dislocations and the resistance 

of sessile / forest dislocations and therefore depends on the total dislocation density, composed 

of the SSDs and the GNDs. The relation between the slip resistance and the dislocation density 

is defined according to 







kT

Q
bcs GNDSSD exp   (20) 

where SSD and GND are the dislocation densities, Q is the activation energy to overcome slip 

barriers, k = 1.38 x 10-23 J K-1 is the Boltzmann constant and T the absolute temperature.  

The formulation of equation (20) requires the knowledge of all dislocation densities (12 

edge dislocation densities for the SSDs and 12 edge and 6 screw dislocation densities for the 

GNDs). The GND densities can be obtained from the plastic deformation gradients in the 

material as explained in section 3.2 dealing with the back stresses. The SSD densities are 

calculated on the basis of an appropriate evolution equation (Evers et al., 2004a), starting from 

an initial value ρSSD,0 : 

  0,0,2
11

SSDSSDSSDcSSD ty
Lb

 


 





    (21) 

This evolution equation reflects the net effect of dislocation accumulation (left term) and 

annihilation (right term). The parameter yc represents the critical annihilation length, i.e. the 
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average distance below which two dislocations of opposite sign annihilate spontaneously. The 

accumulation rate is linked to the average dislocation segment length of mobile dislocations on 

system α, which is determined by the current (total) dislocation state through 





 GNDSSD

K
L


  

(22) 

where K is a material constant. 

 

4.2 Precipitate phase 

Ni-based superalloys contain precipitates of the Ni3Al(Si) intermetallic phase. These 

precipitates can deform plastically by two different mechanisms, particle shearing and climb, 

which are described in the next subsection. In this subsection, the anomalous yield behaviour of 

Ni3Al is discussed as well. A crystal plasticity formulation for both mechanisms is proposed, 

properly incorporated in the slip law for the precipitate phase.  

 

4.2.1 Precipitate deformation mechanisms 

The major part of plastic deformation is accommodated by the matrix phase, where dislocations 

are moving through relatively narrow channels. When encountering a precipitate, a loop is 

created around the particle, enabling the dislocation to continue its motion on the slip plane 

behind the precipitate. This is illustrated in Figure 3 and, on the level of the crystal lattice, in 

Figure 4. The dislocation loop around the precipitate may disappear by two different 

mechanisms, both involving inelastic deformation of the precipitate.  

 

 
 
Figure 3  Illustration of a moving matrix dislocation line encountering a precipitate (1) and 
creating a loop around the particle (2-4).  

 

The first mechanism is particle shearing (Figure 5), where a dislocation line moves 

through the precipitate. This process can occur simultaneously with the movement of the 

dislocation line through the matrix channels between the precipitates, or in a later stage. In the 

latter case a dislocation loop is initially wrapped around the particle (after the line has passed 



  

NLR-TP-2006-641 

 

  18 

through the matrix channels, see Figure 3) and when it shears the particle, the loop disappears. 

This is again a slip process along crystallographic planes.  

 

 
a)       b) 

 
Figure 4  Cross-sectional view of the process shown in Figure 3 on the level of the crystal 
lattice. a) a grown-in dislocation is moving towards the precipitate. b) the moving dislocation 
passed the precipitate and created a loop around the precipitate. 

 

 

    
a)        b) 

 
Figure 5  a) Cross-sectional view of particle shearing. The precipitate deforms and the 
dislocation loop vanishes by annihilation of the positive and negative dislocation. b) The 
resulting deformation of the precipitate. 

 

Since the precipitate is an ordered (L12) solid solution of Al in Ni (Ni3Al), it forms a 

superlattice with a perfect dislocation (a<110>) which is twice as large as the nickel matrix 

perfect dislocation (½a<110>). Therefore, on entering the precipitate, a matrix dislocation 

causes either an anti-phase boundary (APB) or a superlattice intrinsic stacking fault (SISF), 

depending on the dissociation mechanism. The APB or SISF is recovered when the next matrix 

dislocation enters the precipitate. Therefore, in the precipitate dislocations always move in pairs, 

connected by an APB or SISF. This is illustrated in Figure 6 for a dislocation line that shears the 

precipitate without creating a loop around the particle. The respective energies determine which 

of the two mechanisms occurs. 

 



  

NLR-TP-2006-641 

 

  19 

 
 
Figure 6  Schematic representation of the shearing of the precipitate superlattice by a pair of 
matrix dislocations. 

 

Anomalous yield behaviour 

The pair-wise movement of dislocations causes a typical phenomenon, which is known as the 

anomalous yield behaviour of Ni3Al (Westbrook, 1996; Vitek et al., 1996). In experiments the 

following remarkable aspects are observed:  

 the yield stress increases with increasing temperature up to the peak temperature (Tp), 

 above Tp there is a strong strain-rate sensitivity of the flow stress, which disappears for 

temperatures below Tp, 

 the flow stress shows a tension-compression asymmetry. 

The latter two aspects cause the material to violate the Schmid law (non-Schmid behaviour). 

The origin of the anomalous yield behaviour is the thermally activated locking of 

superdislocations by cross slip, as will be explained next.  

The perfect superlattice dislocations (a<110>) can dissociate in a number of ways: 

1.           ]011[
2

]011[
2

]011[
a

APB
a

a   (23) 

with an APB between the superpartials. The two superpartials can further dissociate into 

two Shockley partials separated by a complex stacking fault (CSF) 

    ]112[
6

]211[
6

]011[
2

a
CSF

aa
  (24) 

 

2.          ]211[
3

]112[
3

]011[
a

SISF
a

a   (25) 

with a SISF between the two superpartials. The energy of this dissociation is relatively 

high, which means that it only occurs when the APB is unstable or its energy is very 

high.  

At low temperatures the pairs of dislocations can freely glide on the (111) planes. At higher 

temperatures however, screw dislocations can cross slip from (111) to (010) planes, on which 
they are sessile owing to the spreading of their cores onto (111) or  111  planes. Spreading of 
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the dislocation core means that two Shockley partials move away from each other (dislocation 

splitting), with the shear stress normal to the Burgers vector as the driving force. Before a 

dislocation core can spread onto another slip plane, it has to form a constriction (zero 

dislocation splitting) as shown in Figure 7.  

Furthermore it is assumed that cross slip only occurs locally along short segments of the 

dislocations, leading to the formation of pinning points. These pinning points then act as 

obstacles to the dislocation motion. This is also known as a Kears-Wilsdorf lock. The cross slip 

process is thermally activated and is therefore more frequent at higher temperatures. Therefore, 

the density of pinning points also increases with increasing temperature, resulting in the 

observed increase in yield strength.  

 

 
Figure 7  Schematic picture of a cross slipped screw dislocation with a core spread in a primary 
and secondary {111} plane, showing the shear stress components playing a role in the cross 
slip process. 

 

The second mechanism of precipitate deformation is climb or recovery, where the 

dislocation climbs around the precipitate. This process is thermally induced and involves 

diffusional processes and is therefore much slower than the previous mechanism. However, the 

threshold is much lower, which means that it prevails when the stress is below the threshold 

stress for particle shearing. The mechanism is illustrated in Figure 8. 

Precipitate atoms are diffusing from the one side of the precipitate to the other side 

along the dislocation loop (pipe diffusion). This diffusion process leads to climbing of the 

dislocation loop and simultaneous deformation of the precipitate. The deformation is limited to 

the original plane of the dislocation loop. When the dislocation loop has climbed towards the 

apex of the precipitate, the loop can annihilate and the deformation of the precipitate is 

equivalent to that caused by shearing of the particle by the matrix dislocation in its initial slip 

plane, as can be seen in Figure 8.  
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a)            b)   

               
Figure 8  a) The dislocation climbs out of the slip plane, assisted by diffusion of precipitate 
atoms along the dislocation loop. The precipitate deforms and the loop is in a new slip plane. b) 
Precipitate deformation at an intermediate stage of the climb process. The loop has climbed 
from position 1 to position 2. When the dislocation loop has reached the apex of the precipitate, 
the deformation will be equal to that after shearing (see Figure 5b). 

 

As in some other models (Svoboda and Lukas, 1997; Fedelich, 1999; Svoboda and 

Lukas, 2000; Fedelich, 2002), it will be assumed that precipitate deformation (by shearing or 

climb) only occurs when a complete loop around the precipitate is available. The precipitate 

deformation is therefore dependent on the matrix deformation (which generates the dislocation 

loops). On the other hand precipitate deformation decreases the number of deposited dislocation 

loops which decreases the back stress in the matrix region. 

 

4.2.2 Crystal plasticity formulation for particle shearing 

The γ'-particles do not contain grown-in dislocations (Svoboda and Lukas, 1997) like the matrix 

phase, so deformation of the precipitate can only occur when a matrix dislocation shears the 

particle. The matrix dislocation must overcome a threshold before it can enter the particle, and 

then the lattice slip resistance must be exceeded before it can move inside the precipitate. The 

magnitude of the slip rate is determined by the ratio between the effective stress and the lattice 

resistance, and the number of dislocations that shears the particle per unit of time. A generic 

equation for the slip rate, applicable to precipitate shearing, is proposed: 

 



 


 eff
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eff

s
signexp1

0
0


























   (26) 

which is similar to equation (15) for the matrix phase. The effective stress on slip system α,  eff , 

is commonly defined through equations (16) to (18). In the matrix phase, the lattice slip 

resistance is strongly dependent on the dislocation density. Since no large increase in 
dislocation density inside the precipitate is expected, 

0s is assumed to remain constant during 

deformation. The threshold for slip in (26) is defined as an exponential function, acting as a 

multiplier ranging from 0 to 1. If the effective stress is below the threshold, no slip can occur 
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and when the effective stress exceeds the threshold, the magnitude of the slip rate is given by 
the prefactor  0

 . The exponent p is a material constant.  

The magnitude of the slip rate is governed by the number of dislocations that shears the 

particle per unit of time. The dislocation threshold for entering the precipitate is related to the 

process of dissociation into superpartials and the accompanying lattice faults (APB, SISF). This 

threshold is generally defined as the ratio between the lattice fault energy and the Burgers vector 

of the perfect superlattice dislocation. Yuan et al. (1998) and Brown and Ham (1971) present a 

threshold stress for particle shearing by dislocations connected by an APB which depends on 

the particle volume fraction. This relation shows that with increasing particle volume fraction 

the threshold decreases, but the origin of this dependence is not clear. Therefore, the volume 

fraction dependence was not included in the present model. On the other hand, no temperature 

dependent formulation for the threshold stress has been found in the literature, whereas 

experimental observations show a clear decrease of the applied stress required to initiate 

precipitate shearing (see section 5). Therefore, a temperature dependent threshold is proposed 

here 
    0210, exp TTaaT cc     (27) 

in which  0,c is the threshold stress at a reference temperature T0 and a1 and a2 are constants. The 

values of  0,c , T0, a1 and a2 can be determined from experiments at different temperatures 

(section 5). 

Relations for the frequency of dissociation are given in two papers by Fedelich (1999, 

2002) for the SISF and APB shearing mechanisms, respectively. However, both formulations 

are not able to properly describe the observed behaviour of the superalloy CMSX-4. Since it is 

not possible to distinguish between the two mechanisms unambiguously, only the SISF 

mechanism is considered in the present model by modification of the relations used by Fedelich 

(1999). The frequency of dissociation is defined as  







 


kT

E
ffdiss exp0  (28) 

In this relation f0 is a constant and the activation energy ΔE given by 

 T

b
E

ceff

sisf

 







32
3

 
(29) 

where μ is the precipitate shear modulus, bsisf is the Burgers vector of the partial 
dislocation 1123

a and β is a constant. As long as the effective shear stress is below the 

threshold, no thermal activation is possible, fdiss = 0. For shear stresses exceeding the threshold, 
the frequency increases from 0 to f0 (for   ceff  ).  

Finally the slip rate is obtained by multiplying the dissociation frequency by the number 

of available dislocations at the interface, the Burgers vector b and some geometric quantities: 

intmin,0 Sf
V

bS
GNDdiss
    (30) 
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where S and V are the particle area swept by the dislocation and the particle volume, 

respectively and Sint is the area of the interface. Note that V, S and Sint can be expressed in terms 

of the microstructural dimensions. Finally, the Burgers vector in this case is the vector used to 

calculate the GND density. As emphasised in the section on back stresses, this is the matrix 

Burgers vector. 

The number of available dislocation loops can be obtained from the edge dislocation 

densities at the different interfaces. In general, GNDs are related to deformation gradients, but 

since in the current model deformation gradients are supposed to be concentrated at the 

interfaces between different regions (uniform strain inside regions), the GNDs represent the 

interface dislocations. It is assumed that only complete loops lead to precipitate deformation. A 

complete loop around the precipitate exists when a positive dislocation can be combined with a 

negative dislocation at the opposite side of the particle. However, the GND density only 

describes the net effect of positive and negative dislocations. Also, due to the orientation of the 

different slip systems relative to the particles, the slip direction s


is always parallel to one of the 

three precipitate-matrix interfaces in the {111} slip plane, see Figure 9. Edge dislocations are 

therefore only formed at two of the three interfaces, whereas only screw dislocations are formed 

at the third interface and consequently the edge GND densities are zero. Taking into account 
these considerations,  min,GND , that represents the number of available loops on the slip system 

α, can be obtained from the GND densities at the interfaces as 

 2,1,
min, ,min I

GND
I

GNDGND
    (31) 

where I1 and I2 are the two interfaces with non-zero edge GND densities, as indicated in Figure 

9. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9  A dislocation line moving in a {111} plane and <011> direction is passing a precipitate. 
A dislocation loop is created around the particle. Edge dislocations are formed at the interfaces 
I1 and I2 only. 
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Finally it should be mentioned that particle shearing reduces the GND densities at the 

interfaces, because the deformation gradient across the interface is reduced. Since the GND 

densities are calculated from the slip differences between two regions, according to equation 

(13) and (14), this effect is automatically incorporated in the model. 

 Qin and Bassani (1992) extended the standard crystal plasticity theory to describe non-

Schmid effects. The basic idea of their approach is that in addition to the Schmid stress (τpb, on 

the primary slip plane in the direction of the Burgers vector), also other stress components drive 

the slip behaviour. The additional stress components are (see Figure 7): 

τpe :  the stress on the primary slip plane normal to the Burgers vector, which drives the 

dislocation splitting on the primary slip plane, 

τse :  the stress on the secondary slip plane normal to the Burgers vector, which drives the 

dislocation splitting on the secondary slip plane, 

τcb :  the stress on the (010) cross slip plane in the direction of the Burgers vector. 

These three additional stress components play a role in the cross slip process and an effective 

shear stress is defined as  
  cbsepepbSchmidnon BA   (32) 

where both   sepe  and  cb decrease the effective stress due to their positive effect on the cross 

slip and spreading process resulting in a negative effect on the mobility. The parameter κ 

represents the relative importance of τpe and τse in the forming of a constriction, where the effect 

of both stress components is opposite: decrease of the dislocation splitting on the primary slip 

plane enhances formation of a constriction, and so does an increase of the splitting on the 

secondary slip plane. Therefore the difference of the two stress components quantifies the effect 

of core spreading. Finally τcb enhances the cross slip process and therefore has a negative effect 

on the effective stress. Note that the contribution of τpb and τcb to the generated slip simply 

reverses when the applied stress is reversed (from tensile to compressive), but that does not hold 

for the spreading mechanism governed by (τpe- κτse). An applied tensile stress leads to an 

increase of the splitting on the primary plane, which decreases the mobility and thus the 

(absolute value of the) effective stress, whereas a compressive stress decreases the splitting, 

increases the mobility and thus increases the (absolute value of the) effective stress. This 

tension-compression asymmetry is taken into account by the modulus operator in equation (32). 

The non-Schmid factors A, B and κ are material parameters which are temperature dependent. 
The effect can be included in the present model by replacing the external stress part of  eff  in 

equation (16) by the right-hand part of equation (32), according to: 
  bmisfitcbsepepbeff BA   (33) 

 



  

NLR-TP-2006-641 

 

  25 

The increase of the slip resistance with temperature due to the formation of pinning 
points is incorporated through a temperature dependent 

0s : 













 


D

TTk
ss

p

Tp
exp,00

  (34) 

where Tp is the peak temperature, 
pTs ,0 the slip resistance at Tp and D the activation energy. The 

decrease beyond the peak temperature is also represented by the temperature dependence of τc 

as given by equation (27). The reference temperature T0 can thus be associated to the peak 

temperature Tp, which is about 750 oC for Ni3Al (Vitek et al., 1996).  

In almost any superalloy constitutive model this non-Schmid behaviour is neglected, 

except for the simple model proposed by Allan (1995). Experimental results and the simulations 

in section 6.3 show that there is a clear effect on superalloy mechanical behaviour, which 

justifies the inclusion of the anomalous yield behaviour in the model. However, determination 

of the parameters in (33) requires very specific experimental results, which may not be readily 

available. Only when a detailed description of the typical Ni3Al behaviour is required, the effort 

to determine the parameters may be justified. In other cases the non-Schmid behaviour can be 

neglected by setting the constants A and B to zero, where it should be mentioned that the non-

Schmid effects particularly play a role at low temperatures (well below the peak temperature). 

 

4.2.3 Crystal plasticity formulation for climb  

The generic slip rate equation for climb is again very similar to those adopted for the previous 

mechanisms, i.e.: 
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


   (35) 

where the effective shear stress is again given by equations (16) to (18). While there is no 
distinct slip process, the lattice resistance has been replaced by a critical stress  cr . Furthermore 

the rate of the climb process is again stress and temperature driven, as will be shown later on. 

There are two processes enabling a dislocation line to pass an obstacle by climb: local 

climb, where the dislocation segment between particles remains in the glide plane and the 

remainder profiles the particle surface, and general climb, where the complete dislocation 

climbs out of the glide plane. For materials with a low particle volume fraction, the general 

climb mechanism is energetically more favourable due to the smaller increase of dislocation line 

length. For superalloys, with a large particle volume fraction, the difference between both 

mechanisms is negligible and they occur with the same probability. The threshold stress for 

general climb is given by (McLean, 1985; Brown and Ham, 1971) 

4
5

2
3

2

or

cr

f     (36) 
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The threshold stress is related to the Orowan stress, because the bowing of a dislocation 

between particles provides a stress amplification at the matrix-particle interface and thus 

influences the driving force for climb. The higher the Orowan stress is, the higher the threshold 

stress must be before the amplification effect can be used. For a high volume fraction of 

particles, the particle spacing is small and the dislocation line length increase for climbing 

around a particle is relatively high. Furthermore, in (McLean, 1985) a distinction is made 

between high and low stresses, but no values are specified. The threshold stresses for climb are 

lower than those for Orowan bowing or particle shearing, but the climb process is much slower 

due to the accompanying mass transfer. Therefore, the climb process only prevails if the stress 

is below the threshold stress for the other processes and hence the low stress threshold in 

(McLean, 1985)  was selected. 
The height of the cubic particle normal to the {111} plane is denoted 'H and 

equals 3 times the precipitate cube length. The average distance for a dislocation loop to climb 

towards the apex of the particle is then Hγ' /4. The climb velocity is governed by the diffusion of 

precipitate atoms around the particle. This process is temperature dependent and although the 

dislocation loop is moving out of the slip plane, the diffusing atoms causing this climb are 

moving in the original slip plane. Therefore, the resolved shear stress on that slip system is 

considered as the driving force, as was also concluded by Fedelich (2002) from energy-based 

considerations. Accordingly the following relation for the climb velocity is proposed: 













TR

Q
Cv

gas

c

effclimb exp   (37) 

where C is a proportionality constant that must be determined from experimental results. 

Contrary to the relation used by Fedelich, this relation contains a temperature dependence, 

which is derived from the underlying diffusion process. Qc is the activation enthalpy for 

diffusion and Rgas = 8.3144 J K-1mol-1 is the gas constant. The activation enthalpy for self-

diffusion of  nickel is 142 kJ/mol (Porter and Easterling, 1992). Diffusion along a dislocation 

line is easier than through the bulk material and the activation enthalpy is known to be reduced 

by a factor of 0.6 (Picu and Zhang, 2004). Therefore, a value of Qc equal to 85 kJ/mol is used.  

Finally the slip rate is obtained by dividing the climb velocity by the climb distance and 

multiplying by the Burgers vector, the minimum GND density and a number of geometric 

quantities, as was discussed in the previous section, leading to 

intmin,
'

0

4
S

VH

bSv
GND

climb 




    (38) 

Again V, S, Hγ' and Sint can be expressed in terms of the microstructural dimensions. Climb also 

reduces the GND densities at the interfaces, because the deformation gradient across the 

interface is reduced. 

 



  

NLR-TP-2006-641 

 

  27 

4.2.4 Total precipitate deformation  

Combining the contributions of shearing and climb (equations (26), (30), (35) and (38)) leads to 

the following expression for the precipitate slip rate: 
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If the stress is lower than the thresholds for particle shearing, climb still leads to precipitate 

deformation (but at a much lower rate). If shearing occurs, the climb contribution can be 

neglected. The effective resolved shear stress and temperature act as driving forces for slip in a 

similar way as in the γ-matrix constitutive model.  

 

 

5 Model parameter determination 

The presented model contains a significant number of model parameters. Therefore, a 

considerable amount of experimental data is required to determine the unique set of parameter 

values. In this section, the method that is used to determine the values for the commercial 

superalloy CMSX-4 is described. 

An overview of the required constants and material parameters for the model and their 

eventual values is given in Table 3. A distinction can be made between parameters with a clear 
physical meaning (δ, λγ, λγ’, α, k, b, bsisf, Tp, Q

c, Rgas , μm and μp ) and fit parameters (
0 , m, n, Q, 

c, yc, ρSSD,0, K, R,  A, B, κ, D, 
pTs ,0 , p, τc,0, a1, a2, f0, β, C). The latter ones have to be determined 

from experimental data.  

The CMSX-4 microstructure (Figure 1) is rather regular, so for the present model the 

precipitates are assumed to be cubic with a size of 500 nm. The matrix channel width is taken as 

60 nm. These values yield a γ' volume fraction of 72%. Experimental results for creep tests and 

tensile tests on CMSX-4 are obtained from a European collaborative research project (Lecomte-

Beckers et al., 2002). Additional data was collected from the open literature (Sass and Feller-

Kniepmeier, 1998; Reed et al., 1999; Link et al., 2000; Gunturi et al., 2000; Schubert et al., 

2000; MacLachlan et al., 2001; Knowles and Gunturi, 2002). An overview of the available tests 

used for the parameter determination and the model validation is given in Table 4. 

A least-squares fitting procedure was used to determine the model parameters. The 

multi-scale model is implemented in a subroutine that calculates a tensile or creep curve for a 

specific condition and a set of model parameters. An optimization routine then minimizes the 

sum of the squared differences between the calculated results and corresponding experimental 

values. Using knowledge of the physical mechanisms at the microscopic level, the complete set 

of parameters is split-up into a number of smaller sets that can be calibrated separately. 
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Table 3  Model parameters for CMSX-4. 
Model parameter Symbol Value Unit Used in equation 
Lattice misfit at 850oC δ -1.1 x 10-3  (8) 
Matrix coefficient of thermal expansion λγ 1.48 x 10-5 K-1 (8) 
Precipitate coefficient of thermal expansion λγ’ 1.32 x 10-5 K-1 (8) 
Reference slip rate 0  2.73 x 10-12 s-1 (15) 

Rate sensitivity exponent Orowan threshold n 3  (15) 
Rate sensitivity exponent slip resistance m 13.8  (15) 
Reference activation energy Q 3.62 x 10-20 J (20) 
Strength parameter c 0.034  (20) 
Matrix shear modulus μ 100.2  GPa (20) 
Matrix Burgers vector length b 0.254  nm (19),(20),(21) 
Orowan parameter α 0.85  (19) 
Critical annihilation length yc 3.67 nm (21) 
Initial SSD density ρSSD,0 1.0 x 1014  m-2 (21) 

Dislocation segment length parameter K 12  (22) 
Radius of dislocation influence region R 22 nm (11),(12) 

γ' lattice resistance at peak temperature 
pTs ,0  120 MPa (26) 

Stress exponent particle shearing p 4  (26) 
Frequency constant f0 4085 Hz (28) 
Energy constant β 2.4 x 10-3  (29) 
Partial dislocation Burgers vector bsisf 0.293 nm (29) 
Precipitate shear modulus μp 112.9 GPa (29) 
Threshold stress at Tp  τc,0 255 MPa (27) 
Peak temperature T0 = Tp 750 oC (27),(34) 
Threshold stress temperature dependence a1 296 MPa (27) 
 a2 0.0157  (27) 

A 0.3  (32),(33) 
B 0.1  (32),(33) 

Non-Schmid parameters 

κ 0.4  (32),(33) 
Slip resistance temperature dependence D ∞ J (34) 
Diffusion activation enthalpy Qc

 85 kJ mol-1 (37) 
Climb velocity constant C 9.4 x 10-18  (37) 

 
Table 4  Overview of available experimental data for the <001> orientation: for each 
temperature (oC) value stress (MPa) levels for the creep tests and strain rate (%/min) levels for 
the tensile tests are given. 

Creep tests  Tensile tests 
750oC 800 oC 850 oC 900 oC  800 oC 850 oC 950 oC 1000 oC 
725a 

820 
650  
750 

284a 
345a 
393a 
650a 

300 
325 

375a 
400a 
425 

 0.6a 
6.0a 

60a 

0.6 

6.0 
60 

6.0a 0.6 
4.3 

a tests used for fitting of the model parameters 

 

From experimental work it is known that the mechanism of particle shearing is only 

active at higher stresses, since the threshold for shearing must be exceeded. A survey of  

experimental work on CMSX-4 (Sass and Feller-Kniepmeier, 1998; Reed et al., 1999; Gunturi 

et al., 2000; Svoboda and Lukas, 2000; Miura et al., 2000; Schubert et al., 2000; Link et al., 
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2000; Srinivasan et al., 2000; Rae et al., 2001; MacLachlan et al., 2001; MacLachlan et al., 

2002; Chen and Knowles, 2003; Prasad et al., 2005) indicates the applied stress levels, as a 

function of temperature, where the shearing mechanism is observed to be either active or 

inactive. This is represented by the two solid lines in Figure 10 and illustrates the variation of 

the particle shearing threshold stress with temperature. Note that in the model the threshold is 

defined in terms of the effective resolved shear stress, equation (29), which is a combination of 

the applied stress and the internal stress, whereas Figure 10 shows the externally applied 
(normal) stress only. For a load in the <001> direction, the Schmid factor is 

6
1 for 8 of the 12 

slip systems and zero for the remaining 4 systems, resulting in a resolved shear stress equal to 

the applied tensile stress divided by 6 . In the early stages of deformation the back stress is 

assumed to be negligible, so only the effect of the misfit stress has to be accounted for. The 

variation of the misfit stress and the effective shear stress are also plotted in Figure 10 and the 

latter curve was used to determine the parameters τc,0 (at 750 oC), a1 and a2 in equation (27). 

Moreover, Figure 10 can be used to determine which experiments from Table 4 must be 

used for fitting a specific set of parameters. For the low stress levels in the lower left part of  

Figure 10 the shearing mechanism is inactive and these test results are used to determine the 

parameters for the matrix slip and climb mechanisms. Once these parameters are known, the 

tests at high stress levels are used to determine the shearing parameters. The conditions used for 

the fitting procedure are indicated in Table 4. 
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Figure 10  Activation of the precipitate shearing mechanism during creep tests as a function of 
stress and temperature. The solid lines are in terms of applied stress and are obtained from 
experimental observations. The effective stress is the sum of the applied stress and the 
temperature dependent misfit stress.  
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Climb is a very slow process, since it depends on diffusion of atoms around the 

precipitates. Therefore, the mechanism is not active at high strain rates during a tensile test. 

Further, the threshold stress for climb is related to the Orowan stress, equation (36), and has a 

value of 65 MPa for virgin CMSX-4. Due to the tensile misfit stresses in the precipitate, this 

threshold will be exceeded for any applied (tensile) stress, so the climb mechanism will be 

active for any condition. However, the climb mechanism cannot be separated from the matrix 

slip mechanism, since a certain GND density, and thus matrix slip, is required to initiate the 

climb mechanism. Therefore, the climb parameter C is determined simultaneously with the 

matrix parameters.  
The matrix slip parameters 

0 , c, yc, ρSSD,0 and K are determined from the tensile and 

creep tests at the conditions for which the precipitate shearing is inactive. Since deformation of 

the matrix phase causes the development of internal stresses, which might initiate particle 

shearing, only the primary part of the creep curves and the part of the tensile curves up to the 

maximum stress level are used. 
The precipitate shearing parameters p, f0, β and 

0s are then determined using the 

conditions where the shearing mechanism is active: creep tests at higher stress levels, the 

secondary part of the creep curves at lower stress levels and the complete tensile curves. Only a 

part of the complete creep curve can be used, i.e. the part up to 0.5 % (900 oC) or to 2 % (750 
oC) creep strain. At higher strains or temperatures the rafting mechanism becomes active, which 

is not incorporated in the present model. At temperatures beyond 950 oC rafting starts right from 

the beginning of plastic deformation.   

Finally there are a number of parameters that describe specific aspects of the material 

behaviour only. Determination of these parameters also requires specific experiments. The 
parameters that describe the non-Schmid behaviour, A, B, κ, D, Tp and 

pTs ,0 , can only be 

determined from tests that show the tension-compression asymmetry and the temperature 

dependence of the yield stress. Such tests are not readily available for CMSX-4, so the 

parameters for Ni3Al from (Vitek et al., 1996) were used for A,B, κ and Tp and the slip 

resistance temperature dependence was neglected by setting the value of D to infinity, resulting 
in 

pTss ,00  . The parameters n and R describe the size dependence and their values can be 

determined from tests on specimens with different microstructural dimensions. Their values 

were taken from (Tinga et al., 2006). 
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6 Results 

The model described in the previous sections has been applied to simulate the mechanical 

response of the single crystal Ni-based superalloy CMSX-4. Simulated creep curves and tensile 

curves are compared to experimental results to show that the model is able to accurately 

describe the material mechanical behaviour for a range of conditions. Moreover, simulation of 

curves for conditions not used for parameter fitting shows that the model also has predictive 

capabilities. Results on the micro-level are presented to illustrate that the underlying physical 

mechanisms are described properly by the model. Finally, the influence of non-Schmid effects 

in the model is demonstrated. 

 

6.1 Simulation of creep and tensile tests 

The simulated creep curves for a range of conditions are plotted in Figure 11 together with the 

experimental creep curves (mind the different scales along the axes). This figure shows all the 

cases that were used for the parameter determination.  
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Figure 11  Simulated (solid lines) and experimental creep curves (dashed lines with markers) for 
the conditions that were used for parameter determination. 

 

A wide range of temperatures and stress levels is used to determine one set of model parameters 

that covers all conditions. For these conditions the model simulates the real material behaviour 

quite well. Since the rafting process is not included in the model, it is not possible to apply the 

model at higher temperatures and / or longer creep times than those in Figure 11.   

       Figure 12 shows the comparison between simulated and experimental tensile curves for 

two different temperatures and several strain rates. The experiments are simulated quite well 

and especially the maximum and steady-state stress levels for the 800 oC curves are very close 

to the experimental values. The shape of the curves qualitatively matches the experiments. In 

general the curves show an initial peak followed by a decrease in stress, caused by the onset of 



  

NLR-TP-2006-641 

 

  32 

precipitate shearing, and then find their way towards the steady state stress level at which the 

combination of matrix and precipitate plastic flow agrees with the applied strain rate.    
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Figure 12  Simulated (solid lines) and experimental tensile curves (dashed lines with markers) 
for the conditions that were used for parameter determination. 

 

Since one set of model parameters has been determined for a wide range of 

experimental conditions, predictions can be made for other conditions than those used for 

parameter determination. This is demonstrated in Figure 13, where simulated tensile test and 

creep experiments are compared to experimental results for various conditions. This shows that 

the deviations between simulation and experiments are somewhat larger than for the previous 

conditions, but especially the simulated tensile curves at the lower strain rates and the creep 

curves at 750 and 900 oC match the experiments quite adequately. The initial part of the creep 

curves at 800 oC is predicted well, but the transition from the primary to the secondary creep 

regime is not covered correctly by the model.   
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Figure 13  Simulated tensile and creep curves (solid lines) compared to experimental results 
(dashed lines with symbols) for several conditions. 

 

Nevertheless, the results in this subsection show that the model is able to simulate the 

material behaviour quite well for a range of conditions by using only one set of model 

parameters. Other models are available (Fedelich, 1999; Fedelich, 2002) that may describe the 

behaviour for a specific loading case slightly better, since the associated set of parameters is 

determined specifically for that case. However, such models are generally never able to describe 

the material behaviour at other conditions without performing a new parameter fit procedure.  

The ability to describe the material behaviour for a wide range of conditions indicates 

that the model contains most of the right physical mechanisms governing the material response. 

The main aspect that is currently still missing in the present model is the rafting mechanism, but 

its inclusion will be subject of future work.    

 

6.2 Micro-level results 

Figure 11, 12 and 13 in the previous subsection show the macroscopic material response, which 

is the weighted average behaviour of all the constituents in the multi-phase unit cell. Since in a 

micro-mechanical approach the processes are modelled on a microstructural level, information 

on the contributions of the individual regions to the overall material behaviour is available, as 

shown in Figure 14. In this figure, the evolution of the plastic strain in several of the unit cell 

regions during a tensile test is plotted together with the macroscopic stress and strain. The 

positions of the curves can be explained qualitatively by the differences in stress state and 

threshold values. Matrix region 3 and the associated interface regions are normal to the applied 

load, which means that the misfit stress component in the direction of the applied stress is zero. 

At the matrix side of interface region 1 (or 2) the misfit stress is negative and at the precipitate 

side it is positive. This difference in the misfit stress explains why, at the matrix side, interface 3 

starts to flow earlier than interface 1, and at the precipitate side interface 1 is the first to deform 
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plastically. Since the misfit stresses are not considered in the matrix regions, there is no 

difference in effective stress level between matrix regions 1 and 3 and they therefore start to 

deform simultaneously. The deviation between the two curves after some deformation is caused 

by the difference in GND density evolution which affects the slip resistance. Finally it can be 

observed that the precipitate regions start to deform later than the matrix regions due to the high 

threshold stress of the precipitate shearing mechanism and the time required for the necessary 

interface dislocations to be formed. 
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Figure 14  Plastic strain evolution in the different regions of the unit cell during a tensile test at 
0.6 %/min and 800 oC. Matrix channel 1 and the associated interface regions are parallel to the 
applied load, channel 3  is perpendicular to the load.  

 

The contribution of the different deformation mechanisms to the overall deformation is 

illustrated in Figure 15. For two creep tests under different conditions the evolution of the 

plastic strain due to matrix slip, precipitate shearing and recovery climb is plotted. For the first 

test at a low temperature and a high stress level, the matrix slip process is the main contributor 

to the total deformation. The shearing mechanism is also active, because the high applied stress 

helps to exceed the shearing threshold stress. However, the resulting plastic deformation of the 

precipitate leads to a decrease of the γ/γ'-misfit. Consequently the effective stress in the 

precipitate decreases and in combination with decreasing GND densities at the γ/γ'-interfaces 

this leads to a rapid decrease in precipitate shearing. The climb process, on the other hand, is a 

slow diffusive process with a very low stress threshold, which also depends on the available 

GNDs at the interfaces. This means that initially there is no climb deformation, since all GNDs 
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shear the precipitate. But when this mechanism stops, the climb mechanism gives a rather 

constant contribution to the overall deformation.  

 For the second case at a high temperature and a relatively low stress level the situation 

is quite different. The effective stress is around or below the shearing threshold, which means 

that precipitate shearing can hardly take place. On the other hand, the strongly temperature 

dependent climb process is much more active at this condition and after some time even yields 

the major contribution to the overall deformation. 
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Figure 15  Contribution of the different deformation mechanisms to the total creep strain at 750 
oC / 725 MPa (left) and 900 oC / 425 MPa (right). 

 

6.3 Anomalous yield behaviour  

In subsection 4.2.1 the anomalous yield behaviour of Ni3Al was discussed. Since the superalloy 

is a compound of a Ni-matrix and Ni3Al-precipitates, the anomalous yield behaviour of the 

precipitates will also affect the alloy mechanical behaviour. In this section the effects are 

discussed and illustrated. 

 The tension-compression asymmetry of the precipitate yield stress is introduced in the 

present model through equation (33). In experiments on Ni3Al (Vitek et al., 1996) it is observed 

that for the <001> crystal orientation the tensile yield stress for the precipitates is higher than 

the compressive yield stress. The effect on the alloy response is shown in Figure 16, in which 

the simulated curves for opposite loads are compared to the simulation in which the non-Schmid 

effects are neglected (A = B = κ = 0). For a tensile load, the yielding of the precipitates starts at a 

higher stress, which results in a clear increase of the maximum stress level in the alloy tensile 

curve.  
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Figure 16  Effect of the precipitate tension-compression asymmetry on the alloy uniaxial loading 
curve at 800 oC and a strain rate of 60 %/min. 

 

Recent numerical work on CMSX-4 by Choi et al. (2006) also showed higher stresses at 

tensile loading (6 %/min). However, in that work the magnitude of the tension-compression 

asymmetry was much smaller, because it was caused only by a geometric constraint effect 

imposed by the γ/γ'-microstructure. The precipitates were treated as an elastic medium and 

consequently the intrinsic tension-compression asymmetry of the Ni3Al phase was neglected. 

Allan (1995) performed experiments on CMSX-4 at 750 oC and a strain rate of 0.6%/min, which 

show an effect that is even larger than in the present simulations. Also the relative position of 

the curves is reversed: the tensile curve is below the compressive curve (T < C). Simulations 

with the present model indicate that the applied strain rate has a large effect on the tension-

compression asymmetry. A strain rate of  0.6%/min T < C, as was observed by Allan (1995). At 

a strain rate of  6 %/min T and C are almost equal, which was also observed by Choi et al. 

(2006), and finally a rate of 60%/min resulted in T > C (see Figure 16). This illustrates that the 

present model is able to qualitatively predict the observed trends in alloy tension-compression 

asymmetry. 

The anomalous increase of the precipitate flow stress up to the peak temperature is 

hardly visible in the superalloy behaviour, since the initial yielding of the alloy is associated 

with matrix slip and not with precipitate deformation. Therefore, the precipitate slip resistance is 

assumed to be constant here and the normal decrease of yield stress beyond Tp is represented by 

the temperature dependence of the threshold stress τc as given by equation (27).   

 



  

NLR-TP-2006-641 

 

  37 

7 Conclusions 

A detailed precipitate phase constitutive model has been added to a recently proposed crystal 

plasticity framework for single crystal Ni-based superalloys. Original dislocation density based 

formulations for the two precipitate deformation mechanisms, precipitate shearing and recovery 

climb, are implemented in the framework and one consistent set of model parameters for the 

commercial alloy CMSX-4 is determined from a database of experimental results. The model is 

shown to predict the  material tensile response and creep behaviour for a range of temperatures 

and stress or strain rate levels. Also, the typical anomalous yield behaviour of Ni3Al-

intermetallics and other non-Schmid effects are  implemented in the framework and the effects 

on the superalloy mechanical behaviour are demonstrated.  

At present, the morphology of the microstructure is still assumed to remain static during 

deformation, which neglects the mechanism of rafting. Experimental work (Prasad et al., 2005) 

has shown that precipitate coarsening is completed rapidly at temperatures above 950 oC and at 

proportionally longer times at lower temperatures. Consequently, the assumption of a fixed 

morphology still limits the application region of the present model to temperatures below 950 
oC , but at lower temperatures the limitation in strain level is relieved considerably. Extension of 

the model beyond these limitations is the subject of forthcoming work, where the detailed 

formulation of the precipitate deformation mechanisms as presented here will assist in the 

accurate modelling of the rafting process. 
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