
NLR-TP-2001-363

Multitime multigrid convergence accelerationMultitime multigrid convergence accelerationMultitime multigrid convergence accelerationMultitime multigrid convergence acceleration
for periodic problems with future applicationsfor periodic problems with future applicationsfor periodic problems with future applicationsfor periodic problems with future applications
to rotor simulationsto rotor simulationsto rotor simulationsto rotor simulations

H. van der Ven, O.J. Boelens and B. Oskam

NationaalNationaalNationaalNationaal Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TP-2001-363

Multitime multigrid convergence accelerationMultitime multigrid convergence accelerationMultitime multigrid convergence accelerationMultitime multigrid convergence acceleration
for periodic problems with future applicationsfor periodic problems with future applicationsfor periodic problems with future applicationsfor periodic problems with future applications
to rotor simulationsto rotor simulationsto rotor simulationsto rotor simulations

H. van der Ven, O.J. Boelens and B. Oskam

This report is based on a presentation held at the Parallel Computational Fluid Dynamics
2001 Conference, Egmond aan Zee, 21-23 May, 2001.

The contents of this report may be cited on condition that full credit is given to NLR and
the authors.

Division: Fluid Dynamics
Issued: October 2001
Classification of title: Unclassified

- 2 -
NLR-TP-2001-363

Summary

The simulation of certain time-dependent flow phenomena can pose a grand challenge to Compu-

tational Fluid Dynamics. In this paper, a multitime multigrid convergence acceleration algorithm

is introduced which significantly reduces the turnaround time to reach time-periodic solutions.

The application of this convergence acceleration algorithm will lead to time-efficient simulations

of helicopter rotors in forward flight. A comparison between multitime multigrid acceleration

and the classical serial time multigrid acceleration shows that an order of magnitude reduction in

turnaround time can be achieved at the expense of an order of magnitude increase in memory use.

- 3 -
NLR-TP-2001-363

Contents

1 Introduction 4

1.1 Applications 4

1.2 Parallel algorithm development 4

1.3 Outline 5

2 Helicopter rotor in forward flight 6

3 Multigrid acceleration 8

3.1 Background 8

3.2 A multitime multigrid algorithm 8

4 Results 11

5 Conclusions 14

5.1 Time-periodic simulations 14

5.2 Helicopter rotor in forward flight 14

5.3 Parallel algorithm development 15

1 Table

3 Figures

(17 pages in total)

- 4 -
NLR-TP-2001-363

1 Introduction

The simulation of certain time-dependent flow phenomena can pose a grand challenge to Com-

putational Fluid Dynamics (CFD). Turnaround times of time-accurate simulations can be large if

the characteristic bandwidth of the time dependent periodic flow solution is large. Bandwidth is

defined as the ratio of the maximum and minimum frequency of the Fourier spectrum of the time

periodic solution. In this paper, a new convergence acceleration algorithm is introduced which

significantly reduces the turnaround time for time-periodic solutions with large bandwidth. The

new algorithm will be applied to a space-time discontinuous Galerkin (DG) method (Ref. 10).

1.1 Applications

Main application area for the DG method is the simulation of the flow around helicopter rotors,

in both hover and forward flight conditions. Rotor flows are characterised by complicated aerody-

namic phenomena, such as blade-vortex interaction and compressibility effects at the advancing

blade, leading to high noise levels. Present day CFD technology is sufficiently mature to accu-

rately resolve these aerodynamic phenomena (for details, see Ref. 2), but at a prohibitively high

computational cost. For a typical helicopter rotor in steady state forward flight the mimimum

frequency is the blade passing frequency, and the maximum frequency is dominated by the short

duration Blade-Vortex Interaction events, given rise to a bandwidth of the order of one hundred.

1.2 Parallel algorithm development

For the development of parallel algorithms the ultimate goal is reduction of turnaround time.In

a first approximation, turnaround time is computed as work divided by speed, where work is the

required number of floating point operations per simulation, and speed is the number of floating

point operations per second achieved by the algorithm on a certain architecture. So one can either

increase the speed, or decrease the required flop count (increase the algorithm efficiency), in order

to decrease the turnaround time per simulation.

It is important to recall that optimising only speed, or work, may lead to suboptimal algorithms.

Maximising speed may lead to foolish algorithms, which for instance keep recomputing storable

data to increase the flop rate, whereas the turnaround time stays the same. On the other hand, algo-

rithms minimising work may not benefit from the peak speed of existing hardware architectures. If

a ‘minimum work’ algorithm is neither vectorisable nor parallelisable, nobody will even consider

it. More realistically, dynamic grid algorithms usually are more efficient in terms of flop count

since the same solution can be obtained with less grid cells, but the dynamically evolving grids

imply load balancing on parallel machines, which is poorly scalable. Hence, parallel algorithm

- 5 -
NLR-TP-2001-363

development should be motivated by the miminisation of the quotient work over speed, resulting

in a minimum turnaround time.

1.3 Outline

The outline of the paper is as follows. In Section 2 rotor flow simulations are briefly presented.

In Section 3 the new convergence acceleration algorithm is presented and results are given in

Section 4. Conclusions with respect to forward flight simulations with a minimum turnaround

time and parallel algorithm development are drawn in Section 5.

- 6 -
NLR-TP-2001-363

2 Helicopter rotor in forward flight

In recent years at NLR the flow solver based on a discontinuous Galerkin finite element discretisa-

tion of the unsteady compressible Euler equations, which was originally designed for fixed wing

applications (Ref. 9, 10), has been modified to enable the simulation of helicopter rotor flows

(Ref. 1).

The vortex capturing capability through grid adaptation has successfully been used in the simula-

tion of the Caradonna-Tung helicopter rotor in hover, and the simulation of the Operational Loads

Survey (OLS) helicopter rotor in forward flight.

Before turning to the forward flight simulation, which is the relevant measure used to assess the

minimum turnaround time of a CFD code, the steady simulation of the Caradonna-Tung rotor

in hover is discussed, since the efficiency of the grid adaptation algorithm for this simulation is

exemplary of what we want to achieve for time-accurate forward flight simulations.

A rotor in hover is considered as a steady state problem in the rotating reference frame. A sim-

ulation of the Caradonna-Tung rotor (Ref. 4) using a collective pitch of twelve degrees and a tip

Mach number of 0.61 has been performed (for details see Ref. 1). The simulation was performed

on both a fine grid and a locally refined coarse grid. The locally refined mesh is shown in Figure 1,

where the vortex locations can be clearly seen in the grid structure. Both grids demonstrated the

same vortex persistence, with the locally refined mesh containing only 15% of the number of grid

cells of the fine mesh. Hence, local grid refinement displays an algorithmic speedup of six.

X

Y

Z

Vortex blade2

Vortex blade 1

Vortex blade 2

Blade 1

Fig. 1 Local grid refinement based on the vortex sensor applied to the Caradonna-Tung rotor

in hover. Shown are the vertical periodic plane and a horizontal cross-section below the

rotor blade.

- 7 -
NLR-TP-2001-363

A similar simulation has been performed for the OLS rotor in forward flight, with the difference

that this simulation is time-dependent in the inertial frame, and that the vortex position in the grid

changes over time. The OLS rotor has been simulated using a tip Mach number of 0.664, an

advance ratio of 0.164, and a thrust coefficient of 0.054. The blade motion schedule was obtained

by trimming the rotor as a whole using the CFD code, and not a lifting line vortex code. Good

agreement with experiments was obtained (Ref. 2).

On the downside, the complete simulation using 288 time steps per period for only three periods

on a final refined mesh of 1.2 million grid points took 60 hours (20 hours per period) on the eight

processor NEC SX-5/8B, at a congregate speed of 24 Gflop/s (about 40% peak) and using 13

GB of memory. For an analysis tool such a computing time is too large, and inhibits its use in

helicopter performance analysis tool sets.

- 8 -
NLR-TP-2001-363

3 Multigrid acceleration

3.1 Background

Multigrid acceleration (Ref. 3) combines classical iterative techniques, such as point relaxation

or local time stepping, with coarse level corrections to yield a method superior to the iterative

techniques alone. In the present paper two types of multigrid acceleration are considered:
� STMG, serial time multigrid, where the coarse level corrections only pertain to the spatial

operator,
� MTMG, multitime multigrid, where the coarse level corrections pertain to both space and

time discretisations.

For periodic time-dependent problems STMG acceleration yields an asymptotic convergence rate

of
� � � � �
 � � �

, with
�

the time step and T the period, which is the same rate as classical itera-

tive techniques for steady-state problems. MTMG acceleration restores the superior convergence

acceleration, where the asymptotic convergence rate is bounded away from one, independent of

space and time discretisation. The above will be illustrated in Section 4.

3.2 A multitime multigrid algorithm

Following the ideas of Horton, Vandewalle, and Worley for parabolic equations (Ref. 5, 6, 12) we

propose to solve the problem for all time steps simultaneously. Periodic problems, such as the

rotor in forward flight, can be considered as steady state problems in the space-time domain, so

this would seem like a feasible idea.

Horton and VandeWalle (Ref. 6) considered parabolic PDE’s, and introduced a space-time multi-

grid method in which all time-levels are treated simultaneously. They showed that for parabolic

equations it is not possible to treat the time as just another space dimension, and they had to revert

to semi-coarsening techniques in order to maintain multigrid convergence. Their restriction and

prolongation operators in time take the direction of time into account. As smoother they applied a

coloured pointwise Gauss-Seidel relaxation.

These ideas are extended to hyperbolic PDE’s in a straightforward way. The equations to be solved

remain the same, but all time steps are solved simultaneously. The system can be solved in parallel.

The solution strategy of the system is basically the same as for a system of equations derived using

a spatial discretisation. A pseudo-time is introduced and the solution is marched to a steady state

using standard acceleration techniques such as local time stepping, grid sequencing and multigrid.

One important difference is that the multi-level techniques will be applied to the space-time grid,

and not be restricted to the space grid only. Hence the method is called a multitime multigrid

- 9 -
NLR-TP-2001-363

(MTMG) acceleration algorithm.

In contrast with Horton et al. we treat the time as just another space dimension. The restriction

and prolongation operators in time are identical to the space operators. A five stage Runge-Kutta

scheme is used as a smoother. No semi-coarsening techniques have been applied in the multigrid

algorithm.

Let � � be the DG discretisation operator for a given time slab, � �� the solution in the time slab�
 � �
 � 	 �
 , which satisfies the equations

� � � � �� � � � � �� � � � �
where � � � �� is the solution in the previous time slab. For a periodic problem the equations are�� � � � � � �� � � � � �� � � � � � � � � ! �� #� � � %� �
if the period is divided into

!
time slabs.

In the STMG algorithm the equations are solved in pseudo-time ' as()� ��(' + � � �)� �� � � � � �� � � � � . � � � / � 2 2 2 � 5
where � #� is the inital solution, upon convergence we set � �� �)� �� , and proceed to the next time

step. In the MTMG approach the equations are solved as()� ��(' + � � �)� �� �)� � � �� � � � � � � � � ! �
simultaneously, with the periodic boundary condition

)� #� �)� %� .

The 8 9 -residual ; per of a solution obtained with the MTMG algorithm is defined as

; 9
per

� �! %<
� = �

? � � �)� �� �)� � � �� � ? 99 � (1)

where
? @ ? 9 is the 8 9 -norm in the time slab. In the STMG approach the single time step residual; A � CD is measured:

; A � CD � ? � � �)� �� � � � � �� � ? 9 � � . F � �
(2)

- 10 -
NLR-TP-2001-363

but this residual does not measure the convergence to a periodic solution. Given a series
)� � % 	 �� �

2 2 2 �)� A � 	 � C %� of solutions in the
�

-th period, define the solution vectors
)� �� �)� � % 	 �� ,

� � � � !
.

Considering
)� � as a periodic solution, we compute ; per as follows:

; 9
per

� �

!
� ? � � �)� �� �)� %� � ? 99 +

%<
� = 9

? � � �)� �� �)� � � �� � ? 99 �
� �

!
� ? � � �)� � % 	 �� �)� A � 	 � C %� � ? 99 +

%<
� = 9

? � � �)� � % 	 �� �)� � % 	 � � �� � ? 99 �
� �

!
� ? � � �)� � % 	 �� �)� A � 	 � C %� � ? 99 +

%<
� = 9

� ; A � % 	 � CD � 9 � 2 (3)

- 11 -
NLR-TP-2001-363

4 Results

The MTMG method has been applied to two-dimensional transonic flow over an harmonically

oscillating NACA0012 foil. The freestream Mach number is 0.8, the angle of attack oscillates

between
� � 2 � � and � 2 � � with a non-dimensional frequency of 0.314. The space-time mesh consists

of / � � �
� / 	 � / �

elements, where the last dimension is the time dimension. In Figure 2 the

convergence of the MTMG method is compared with that of the conventional STMG method. For

the STMG method at each time step the implicit system is solved in pseudo-time, and six time

steps are shown. At each time step . the residual ; A � CD is converged to �
@ � � �
 . For the MTMG

method full multigrid has been applied, with 150 iterations on the coarsest mesh with � � � � / � �

grid cells, 200 multigrid cycles on the next finer level, and 500 multigrid cycles on the fine mesh.

For both methods V cycles with one prerelaxation and one postrelaxation have been used. The

convergence rate of the MTMG method is comparable to the convergence rate of the multigrid

algorithm for the space DG discretisation operator for steady state problems.

cycles

ε s(n
)

1250 1500 1750 2000
10-7

10-6

10-5

10-4

10-3

10-2

cycles

ε pe
r

200 400 600 800
10-7

10-6

10-5

10-4

10-3

10-2 L2

L2-ξ
L2-η
L2-τ

Fig. 2 Convergence history of the residual ; A � CD of six time steps of the STMG method (left)

and the complete convergence history of the residual ; per of the MTMG method with full

multigrid (right).

The time-dependent pressure distribution on the upper side of the airfoil is shown in Figure 3(a).

The motion of the shock is clearly visible. Moreover, the comparison of MTMG with STMG

is good. In Figure 3(b) the polar plots of the lift coefficient � � are shown for both methods:

agreement is good, but not excellent, considering the fact that both methods solve the same set of

discrete equations. Upon convergence both STMG and MTMG schemes should result in solutions

that are equal up to machine accuracy.

- 12 -
NLR-TP-2001-363

X

T

0 0.25 0.5 0.75 1

2

4

6

8

10

12

14

16

18

20

X

T

0 0.25 0.5 0.75 1

2

4

6

8

10

12

14

16

18

20

solid: STMG after 5 periods
dashed: MTMG after 500 cycles

(a) Pressure distribution

angle of attack

C
L

0 1 2 3 4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(b) Polar plot of � �
Fig. 3 Comparison of itwo final iterates, one reached after five periods with STMG, and one after

500 cycles of MTMG

In order to compare the flow solutions of the different methods, we compute the periodic residual

for the solution obtained with the STMG method over the first five periods. Using (3) we have

; 9
per

� �

!
� ? � � �)� � % 	 �� �)� A � 	 � C %� � ? 99 +

� ! � � � �
�

@ � � �

� 9 � 2 (4)

In Table 1 this residual is shown for five consecutive periods of the STMG iterates. Clearly, con-

vergence in 8 9 -norm to a time periodic solution is slow, and the residual
? � � �)� � % 	 �� �)� A � 	 � C %� � ? 9

dominates the time step residual ; A � CD . This may cause the differences in the flow results. Note that

based on the aerodynamic coefficients in Figure 3 one would conclude convergence in about three

periods.

period ; per

1
� 2 	 � @ � � � �

2
� 2 �

� @ � � � �
3

� 2 � �
@ � � � �

4
� 2 / �

@ � � � �
5

� 2 / � @ � � � �
Table 1 Residual ; per defined in (4) of the STMG simulation.

Since the discretised equations are the same for both the STMG and the MTMG acceleration

algorithms, the number of floating point operations per grid cell per time step per iteration are

- 13 -
NLR-TP-2001-363

equal. There is only negligible difference in the computational cost of the multigrid algorithm,

since the coarse grids in the MTMG algorithm are smaller than in the STMG algorithm, since

the MTMG grid levels are also coarsened in the time direction. Hence, 150 multigrid cycles for

MTMG require the same amount of floating point operations as 150 multigrid cycles per time step

for a complete period in the STMG algorithm.

Based on the 8 9 -norm, the MTMG algorithm would require only 25 fine grid cycles to reach

the same residual level as five periods of the STMG algorithm. Since the average number of

fine grid cycles per time step of the STMG algorithm is 150, this would imply that MTMG is
� �

�
�

� �
� � / �

�
�

�
times faster than the STMG algorithm. The speedup is this large since

the STMG acceleration performs poorly in terms of reaching the periodic steady state. Since an

extensive study of the convergence of time-periodic problems is beyond the scope of the present

paper, we will not go into further details. By engineering standards one would require a decrease in

the residual of three to four orders in magnitude, depending on the spatial and temporal resolution.

To satisfy this standard, the MTMG method requires 250 cycles, while the STMG method would

require at least 50 periods to reach the same level of periodicity, again resulting in a speedup of

thirty.

The qualitatively greater efficiency of the MTMG method can partly be explained by the fact

that it presupposes the existence of a periodic solution, and partly by the fact that the multigrid

algorithm is applied to the space-time system, and not only to the space system. Moreover, the

full multigrid algorithm provides better initial solutions for the implicit system, whereas the time

serial algorithm uses the solution of the previous time step as the initial solution.

- 14 -
NLR-TP-2001-363

5 Conclusions

5.1 Time-periodic simulations

The standard way of obtaining a periodic solution by time integration is a slow process. For

an oscillating transonic airfoil, there is hardly any convergence in 8 9 -norm over five periods,

indicating an asymptotic convergence rate of
� � � � �
 � � �

.

Considering the poor convergence of the STMG acceleration, it is difficult to make a definitive

comparison between the convergence rate of the MTMG acceleration with the performance of the

STMG acceleration.

Considering the computational complexity, MTMG has the following properties:
� the number of periods required to resolve the transient is reduced to one, reducing the work

to be done per simulation with a factor in the order of the number of time steps per period,
� the algorithm has increased scalability since the grid size is increased by a factor equal to

the number of time steps,
� the memory use increases with a factor proportional to the number of time steps.

The increased scalability and the increase in memory use make the method ideally suited for MPP

machines. Especially for time periodic applications with large bandwidth, and for which a large

number of time steps is required. The simulation of the rotor in forward flight is such an example,

requiring 288 time steps per period.

5.2 Helicopter rotor in forward flight

If we would apply the MTMG algorithm to the simulation of the flow field of a rotor in forward

flight, we estimate the following performance increase:
� MTMG versus STMG for

�
periods yields a speedup of at least

�
,

� since the time-periodic flow is now treated as a steady state problem in space-time, we can

apply local grid refinement to the space-time grid, where the grid is only refined where and

when a vortex is present. A similar reduction in grid size as for the rotor in hover can be

expected, yielding a speedup of 6,
� an MPP machine with 1000 processors of 1 Gflop/s each (at a sustained performance of 10%

peak speed), would be four times faster than the NEC SX-5/8B (at a sustained performance

of 40% peak speed). Since the MTMG algorithm is a static algorithm, it is easily scalable

even beyond a 1000 processors, so a speedup of at least four is feasible.

Combining these three improvements, the turnaround time of the simulation of a rotor in forward

flight is decreased by a factor 24
�

: 20
�

hours for
�

periods are reduced to less than an hour to

- 15 -
NLR-TP-2001-363

obtain a periodic solution using MTMG. Considering the slow convergence to a periodic solution

of the STMG method, one should even doubt that seven periods are sufficient to obtain a periodic

solution for the rotor in steady state forward flight, further increasing the speedup of the MTMG

method.

Based on the memory requirements of the discontinous Galerkin method (Ref. 11), the unstruc-

tured Space-Time DG method requires 241 words per space-time element (the DG method has

25 degrees of freedom per element). Based on the experience with the simulation of the rotor in

hover, it is expected that a spatial grid of about 200,000 cells in each time slab is sufficient to

accurately capture the tip vortices in that time slab. To obtain such a mesh, the mesh needs to be

locally refined in each time slab, to accomodate the movement of the vortices. Hence, the grid

adaptation is time-dependent, in the sense that the grid structure is different in each time slab.

In the simulation of the rotor in forward flight 288 time steps per period were performed. Com-

bined with the spatial resolution of 200,000 cells, the space-time grid contains 57.6 million cells,

requiring 111 GB memory. This large amount of memory can be reduced if we also locally refine

the space-time grid in the time direction. Based on the experience with the simulation of the rotor

in hover, local grid refinement results in a reduction in mesh size of approximately a factor two in

each dimension. Hence, a simulation of a rotor in forward flight using a locally refined mesh in

both space and time would require 55 GB of memory.

5.3 Parallel algorithm development

The MTMG algorithm has shown an algorithmic speedup by a factor of the order of the number

of time steps per period with respect to STMG for a two dimensional, time periodic simulation.

In the context of parallel computing, however, it is more important that a dynamic algorithm is

turned into a static algorithm. All grid manipulations are performed in a preprocessing phase, and

not at each time step during the simulation. Grid deformation to accomodate the body motion is

performed during the grid generation. Local grid refinement has to be performed only two or three

times during the simulation, which is the standard procedure for grid refinement for steady state

problems.

As an explicit, static method, the MTMG method is easily scalable beyond 1000 processor MPP

machines, as has been demonstrated in the American ASCI project (Ref. 7, 8).

Hence, a combination of an increase in algorithm efficiency and algorithm speed is projected to

lead to forward flight simulations with a turnaround time of less than an hour on an MPP machine

- 16 -
NLR-TP-2001-363

with 1000 processors of 1 Gflop/s each. Since these kind of machines typically have 1 GB memory

per processor, the increased memory requirements of the MTMG acceleration algorithm are not

critical to the application.

- 17 -
NLR-TP-2001-363

References

1. O.J. Boelens, H. van der Ven, B. Oskam and A.A. Hassan, Accurate and efficient vortex-

capturing for a helicopter rotor in hover, in the proceedings of the 26th European Rotorcraft

Forum, The Hague, 2000.

2. O.J. Boelens, H. van der Ven, B. Oskam and A.A. Hassan, The boundary conforming discon-

tinuous Galerkin finite element approach for rotorcraft simulations, submitted to Journal of

Aircraft, 2001.

3. A. Brandt, Multi-Level adaptive solutions to boundary value problems, Math. of Comp. 31,

333-390, 1977.

4. F.X. Caradonna and C. Tung, Experimental and analytical studies of a model helicopter rotor

in hover, NASA Technical Memorandum 81232, 1981.

5. G. Horton, S. Vandewalle and P. Worley, An algorithm with polylog parallel complexity for

solving parabolic partial differential equations, SIAM J. Sci. Comput., 16(3), 531-541, 1995.

6. G. Horton and S. Vandewalle, A space-time multigrid method for parabolic PDEs, SIAM J.

Sci. Comput., 16 (4), 848-864, 1995.

7. D.E. Keyes, D.K. Kaushik, and B.F. Smith, Prospects for CFD on Petaflops Systems,

NASA/CR-97-206279, 1997.

8. D.J. Mavripilis, Large-scale parallel viscous flow computations using an unstructured multi-

grid algorithm, NASA/CR-1999-209724, 1999.

9. J.J.W. van der Vegt and H. van der Ven, Discontinuous Galerkin finite element method with

anisotropic local grid refinement for inviscid compressible flows, J. Comp. Physics, 141, 46-

77, 1998.

10. J.J.W. van der Vegt and H. van der Ven, Space-Time discontinuous Galerkin finite element

method with dynamic grid motion for inviscid compressible flows. Part I: General formulation.

Submitted to J. Comp. Physics, 2001.

11. H. van der Ven and J.J.W. van der Vegt, Accuracy, resolution, and computational complexity

of a discontinuous Galerkin finite element method, in: B.Cockburn and G. Karniadakis and

C.-W. Shu (eds.), Discontinuous Galerkin Methods: Theory, Computation and Applications,

Lecture Notes in Computational Science and Engineering, 11, Springer Verlag, Berlin, 2000.

12. P.H. Worley, Parallelizing across time when solving time-dependent partial differential equa-

tions, in Proc. 5th SIAM Conference on Parallel Processing for Scientific Computing, Eds. J.

Dongarra, K. Kennedy, P.Messina, D. Sorensen, and R. Voigt, SIAM, 1992.

