Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

@

P

NLR-TP-2002-331

A SPINEware based computational design
engine for integrated multi-disciplinary
aircraft design

W.J. Vankan and M. Laban

Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

ped

o

)=

NLR-TP-2002-331

A SPINEware based computational design
engine for integrated multi-disciplinary
aircraft design

W.J. Vankan and M. Laban

Thisreport is based on a presentation held at AIAA/ISSMO 2002, Atlanta, GA, USA,
4-6 September 2002.

This report may be cited on condition that full credit is given to NLR and the authors.

Customer: National Aerospace Laboratory NLR
Working Plan number: 1.1.A.5

Owner: National Aerospace Laboratory NLR
Division: Information and Communication Technology
Distribution: Unlimited

Classification title: Unclassified
August 2002

-3
NLR-TP-2002-331

Summary

This paper deals with the software architecture and the global functionality of the
Computational Design Engine (CDE) that is being developed in the MOB project. This CDE
comprises amultidisciplinary set of toolsfor design, analysis and optimisation of blended wing
body aircraft. Automatic design evaluation processes, involving complex sequences of analysis
computations and data exchange, are available to the user. To guide the user through the
complex structure of software tools and data, a user oriented framework, based on the
SPINEware middleware system, has been built on top of the functional level implementation of
the CDE.

-4-
NLR-TP-2002-331

List of acronyms

ASCII
BWB
CAD
CDE
CFD
CM
CORBA
Cu
DLR
DMZ
FE
GUI
HTTP
LAN
L/D
MOB

MSIE
NLR
ORB
PC
SPIRL
SSH
TUD
URL
WAN
WWW

American Standard Code for Information Interchange
Blended wing body

Computer aided design

Computational Design Engine

Computational fluid dynamics

Controllability margin (flight mechanics)

Common object request broker architecture

Cranfield University

German Aerospace Center

De-militarised zone

Finite element

Graphical user interface

Hypertext transfer protocol

Local area network

Lift over drag (aerodynamics)

Project acronym for EU project: A Computational Design Engine Incorporating
Multi-Disciplinary Design and Optimisation for Blended Wing Body Configuration
Microsoft internet explorer

National Aerospace Laboratory of the Netherlands
Object request broker

Personal computer

SPINEware resource locator

Secure shell

Delft University of Technology

Universal resource locator

Wide area network

World wide web

-5
NLR-TP-2002-331

Contents

1

I ntroduction

SPINEwar e functionality

CDE softwar e ar chitecture

CDE operation

Conclusions

References

(29 pagesin total)

12

21

26

28

&

-6-
NLR-TP-2002-331

This page isintentionally left blank.

-7-
NLR-TP-2002-331

1 Introduction

In the MOB project [1] adistributed engineering environment for multidisciplinary design and
optimisation of blended wing body (BWB) aircraft configurationsis developed. This
engineering environment, which isreferred to as Computational Design Engine (CDE),
comprises anumber of design and analysis tools that are provided by the partners of the MOB
project’ s consortium. For example, the tool ICAD for Computer Aided Design (CAD) and
multi-model generation [2] is provided by the Delft University of Technology (TUD). Several
toolsfor high and low fidelity Computational Fluid Dynamics (CFD) and structural mechanical
analyses[3] are provided by NLR. In addition, toolsfor flutter analysis[4] are provided by
DLR (German Aerospace Center), and tools for low-fidelity aerodynamic analysis [5] are
provided by Cranfield University (CU). A tool of the CDE is executed at the site of the partner
that makes it available. Exchange of data and control among the tools at the different sitesis
achieved via secure connections over the internet. Design loops involving a complex sequence
of design analyses of the BWB configuration are currently operational. A partially automated
process to run these design loops has been integrated on operating system level and can be run
by command line execution of anumber of shell scripts and executable programs. On top of this
“system level CDE” amore user-oriented environment has been built using the SPINEware
middleware system [9]. SPINEware is an object-oriented system that supports the construction
and usage of user-defined working environments in heterogeneous computer networks.

A SPINEware working environment is based on the definition of a set of objects [10]. These
objects and their associated methods represent the functionality of the working environment,
and are interpreted by SPINEware Object Servers. SPINEware makes use of the CORBA
(Common Object Request Broker Architecture) standard for object interactions. This also
ensures compliance to other externa —CORBA compliant- software systems. SPINEware
provides a suitable set of object classes for proper definition of many componentsin regular
engineering environments [8], such as the Atomic Tool and Workflow classes for software tool
and workflow components. With its user-oriented graphical desktop system —the SPINEware
User Shell- SPINEware supports the realisation of flexible and easy-to-use application oriented
working environments. It provides a suitable basis for the realisation of a user-oriented
multidisciplinary environment as required in the aircraft design process. The SPINEware User
Shell isavailable as a Java applet implementation, by which SPINEware object services are

accessible via standard web browsers. Accessibility of and interoperability within SPINEware

-8-
NLR-TP-2002-331

working environmentsis thus well facilitated, not excluding WAN environments where security
regulations such as firewalls are to be dealt with.

In this paper the software architecture and the global functionality of the MOB CDE are
described, in particular of the SPINEware layer. For a detailed description of the application of
the CDE and its underlying analysis tools, reference is made to the companion MOB papers
[21[4][5][6][7], and in particular to [3].

2 SPINEwarefunctionality

SPINEware is a middleware system that supports the construction and usage of working
environments on top of heterogeneous computer networks. A SPINEware working environment
presents alocal- or wide-area computer network as a single “metacomputer” on the user’s
desktop computer. The working environment provides uniform and network-transparent access
to the information, applications, and other resources available from the computer network. To
support flexibility, openness, and easy extendibility of SPINEware aswell asthe SPINEware-
based working environments, standard modern technologies are applied. In particular, the
application of the CORBA standard facilitates the integration of commercial and other third-
party software and the reuse of object-oriented support and communication services provided by
software implementations of the CORBA standard (so-called ORBSs). SPINEwareis available
for different Unix architectures (such as SGI Irix, SUN Solaris, HP-UX, Linux) and for
Microsoft Windows NT and 2000 [11].

The two main components of SPINEware are the SPINEware Object Server and the SPINEware
User Shell. A SPINEware Object Server is aprocess that manages the availability, accessibility
and interpretation of SPINEware objects. SPINEware is fully object-oriented: in a SPINEware
working environment, all resources, such as software tools, data and documents, are modelled
as objects. SPINEware provides a set of basic object classes such as File and Directory (for
representing the native system's files and directories), ObjectFolder and WorkingEnvironment
(folder objects for organising SPINEware objects), AtomicTool (for advanced “wrapping” of
executable programs), Workflow (for easy tools chaining), Job and Queue (for managing and
scheduling tool execution). The user can modify existing classes and create new object classes -
whether or not inheriting from existing classes. An object class has a set of methods associated
toit, by which auser can manipulate the objects. In the SPINEware User Shell, the default

method for an object classis a standard access operation on an object, where typical examples

-9-
NLR-TP-2002-331

are Edit for File, View for Directory and ObjectFolder, and Execute for AtomicTool. Each
object in SPINEware has aworld wide unique object identifier, usually represented as a SPIRL
(SPINE Resource Locator). Beside object identification, SPIRLs can a so specify object method
invocation. SPIRL syntax is based on the well-known URL naming scheme used in WWW. A
complete SPIRL specifies the object’ s class, a method name (if used for method invocation), its
host’ s Internet name, its location on that host (e.g. its file system path), and optionally any
method arguments. SPIRLs are used internally in SPINEware for object operations, but can also
be issued by users directly to the command interpreter. SPIRL interpretation is dealt with by the
SPIRL broker utility, which enables invocations of object methods from within tools, scripts,
and command-line interpreters. When a user starts a SPINEware session, one SPINEware object
server is started initially on the loca host, which will handle all requests from the SPINEware
User Shell. If an object on another host is requested, the initial SPINEware object server starts
("on demand") a SPINEware object server on the other host, and relays all subsequent method
invocations (and the corresponding results) involving objects on that host. The communication
among the SPINEware objects is based on CORBA, and isimplemented using an off-the-shelf
CORBA implementation called ILU. This software product supports CORBA -based inter-object
communication over LAN and WAN.

The SPINEware User Shell provides an intuitive, tailorable Graphical User Interface (GUI). The
user shell acts as the interface between the user and the local SPINEware object server, by
presenting the required information of SPINEware objects in the connected network on the
user’sloca graphical desktop, and by trandating the user’s GUI input to SPIRL commands for
the local object server. The SPINEware object information is presented through dedicated
browsers for each of the SPINEware objects. The user shell can be run in different ways. One
way isthat the user starts alocal user shell process on hisloca system (e.g., desktop computer)
which directly communicates to local or remote SPINEware object servers. The other way isto
run the user shell by making use of Java applets and servlets to communicate to the SPINEware
object servers[10]. Thefirst way requires the user to have the SPINEware software installed on
hisloca system, or aremote system he has graphical accessto. The second way requiresthe
user to have (as a minimum) only a Java-2 enabled web browser on hislocal system. The access
to the SPINEware server system, which runs the actual SPINEware software (either remote or
local), isarranged viaan HT TP server with Java servlet support. For example, if auser logs on
to the system via his web browser, the Login servlet isinvoked by the HTTP daemon. The
Login servlet starts up the user’ s SPINEware session by publishing a new instance of the
SPINEware User Shell abject to the CORBA naming service and launches a SPINEware object

-10-
P NLR-TP-2002-331

server on the user-specified host using a rexec command. Figure 1 explains the two different
operational modes of the SPINEware user shell.

remote
SPINEware
chjed server

CORBA

GUIT
(Java or Tcl/Tk)

Initial
SPINEware
cbijed server

/‘ -
Cther remote X

;-
j
L SPINEware i

User Shell server ' object servers /
~ 7

remote
SPINEware
cbjed server

Servlet CORBA

(Java)

Initial
SPINEware
objed server

| REXEC

Web-interface clieni: Web-interface server: 7 -,
s7 Other remcte “\

Web browser HTTPD with servlet B SPINEware }
(netscape, iexplorer) support Y object servers ¢
with Java2 support S~ -

Figure 1: SPINEware User Shell architectures: upper half: local User Shell server; lower half:
Java applet based user interface.

The practical application of the SPINEware middleware system is that it provides an integration
platform for heterogeneous computer networks in which users can operate in pre-defined
working environments, build up, manage and operate their own working environment, and
exchange or share their working environment or its objects with other users. The user can for
example browse through the working environment’ s contents, create and execute tools, and
submit jobs using point-and-click and drag-and-drop operations. In addition to browsing
through information and launching tools on the user’s local host, the user may open browsers
for accessing resources on other hosts as well. Objects can simply be moved and copied by
dragging and dropping icons from one browser window to another. Working environments can
betailored for particular end users and application areas.

SPINEware is used for the construction of the CDE, in order to effectively dea with
accessibility, interoperability and exchange of data and tools. The CDE is considered as a
SPINEware WorkingEnvironment object, which is distributed over, and accessible from, the
sites of the different MOB partners. The components that are integrated into the CDE, such as
design and analysistoals, are to be combined into complex sequences of calculations, including

data conversion and exchange. Therefore these components should be specified in generic

-11-
NLR-TP-2002-331

terms. For example for tool components, such a specification would comprise the tool’ s
execution directory, host (or architecture) specification, path of the executable, exit status, input
and output files, options, and lots of other properties. The SPINEware AtomicTool object isable
to store all thisinformation, and tool components are integrated into the CDE
WorkingEnvironment as AtomicTool objects by making use of a dedicated graphical editor
(Figure 2) that guides the user through the integration process.

=-i Atomic Tool@biuerack:New Tool e iD
Object Customize Help
4| | %.| U] Location: |spine:#AtomicT vank ¥
KT ET 3

Ty

Archn é‘c{are .T'uol Fath

i

TerminalWindow Envirantment V...

R
Directary Exit Status

AR
User

N [@] ()
B peansferred to @rguments before options
input objects
hefare
P

output objects

other options

stdout stderr

Figure 2: Example of the graphical editor for AtomicTool objects.

Onceintegrated, an AtomicTool object is readily available for execution in the
WorkingEnvironment by easy mouse-click and drag-and-drop operations. In addition,
AtomicTool objects can be directly integrated —also by drag-and-drop operation- into chains of
interconnected tools, the so-called SPINEware WorkF ow objects. These WorkFlow objects can
be assembled into nested structures, leading to multi-level hierarchies of interconnected
WorkFlow and AtomicT ool abjects (Figure 3). WorkFlow objects have several possibilities for
complete or partial automatic and conditional execution.

-12-
NLR-TP-2002-331

2l Workflow i@hatspine.nlr.nl:MainWorkflow -0 X
Object Customize Help
#| #| %] 5] Location: [spine:workflow ine.nir.nizt tvankan! #|

erl Subwarkiiow DataContainer_2

- X
Ohject Customize ﬂelpl

4| | £.|] Location: |spine:/fWorkflow@hatsp ¥ |

et kflow @hatspine nir.nl: SubWorkflow

Figure 3: Example of a basic two-level hierarchical WorkFlow, consisting of a main WorkFlow
object (upper panel) that contains a so-called ChildWorkFlow (SubWorkFlow in lower panel).

It should be noted that SPINEware objects can be moved, linked, or copied throughout the
WorkingEnvironment. In the case of the CDE, the main functionality is stored in alibrary of
integrated tools. Other components that are constructed from these toolsin the library, in
particular WorkFlow components, are most effectively created by creating links (or “shortcuts”)

to these tools, because of software management advantages.

3 CDE software architecture

One of the main objectives for the creation of the CDE isto set up an integrated engineering
environment that comprises the tools and methods for aircraft design and that is available to a
digtributed design team. This engineering environment should incorporate concept, preliminary
aircraft and main phase design, and has to ensure continuity of the information flow through the
design cycles. The aircraft design processes involve analyses of multiple technical disciplines
and of multiple levels of fidelity. The CDE focuses on the multi-disciplinary preliminary
aircraft design process, of which the global functional layout asimplemented in the CDE is
givenin Figure 4. Besides this design process, the CDE also contains the functionality for
calculation of design-dependent objectives and constraints, and for response surface

optimisation [3].

13-
NLR-TP-2002-331

*F exlernal geometry

Geometry Generator Inkcrnal g y .
Structural Optimisation
2.5G manouevre
| * element
payload structural thickness

|_. I L/D cruise

MTOW approach flight

- Aircraft Handling

LD controllability

cruise ' malgh_r

* handling
qualities

™ Objectives & Constraints [**
max trip fuel | approach speed

1

|

|

1

|

1

|

1

‘ mass I
I——Crulse Tlight r Aerodynamic Performance |
Weight & Balance I
I

I

|

|

I

I

I

I

I

1

Figure 4: General functional structure of the multi-disciplinary preliminary design process of the
BWB in the CDE (from Laban et al.[3])

The actual implementation of the CDE consists of two layers. The first layer consists of a
system level implementation of the CDE. Thislayer isin principle fully functional, and contains
basic control and execution functionality directly on the operating system level. The second
layer consists of the SPINEware CDE WorkingEnvironment, and can be considered as an
additional user-oriented system based on SPINEware functionality. The first layer requires no
installation of SPINEware to run the CDE, but does require detailed knowledge of the tools,
processes and data management of the CDE, and agood level of Unix experience of the user.
The second layer does require the SPINEware software to be operational, but provides the
functionality to easily access and navigate through the CDE, and execute (or modify) the tools
and analysis processes that are offered as AtomicTool and WorkFlow objects viathe
SPINEware User Shell.

In the first layer of the CDE all the functional components are stored in a Unix file-system tree-
structure. On the top level, the tree has two branches: one for tools and one for data. The tools
branch contains the software for al the CDE-specific tools, ordered per discipline. These
disciplines more or less correspond to the technical disciplinesin the design process, and the
disciplines indicated by the following key words (which correspond to the directory namesin

the tools branch) are considered:

&

-14-
NLR-TP-2002-331

© o N o g & WD

geometry (CAD and BWB geometry generation for both aerodynamic and structural
mechanic analysis),

aerodynamics_and_trim (high- and low-fidelity aerodynamic - and trim analysis),
weight_and_balance (static weight and balance evaluation of the BWB),

structures (structural mechanical analysis and structural weight optimisation),
flight_mechanics (flight mechanics analysis and handling quality evaluation),
flutter (flutter analysis),

objective (overdl design objectives evaluation),

response_surface (objectives' response surface calculation for overall optimisation),
database (data handling).

In addition to these disciplines there are two main groups of supporting tools, indicated by the

following key words:

1

toplevel (CDE process control and data management. Among others, the analysis processes
for the full BWB design evaluation and its four main sub-processes (1. geometry generation,
2. weight evaluation, 3. aerodynamic performance, and 4. flight mechanics, objective and
constraints evaluation) are defined here. Process control, batch execution and job
distribution over aworkstation cluster is provided for these processes.)

include (include-scripts containing generic functionality that is applied in more than one of
the execution scripts of one or more disciplines).

Each discipline contains a directory structure indicated by the following key words:

1
2.
3.

source (containing the source code of the CDE-specific software),

compile (containing the compilation procedures for the CDE-specific software),

bin (containing the (platform specific) executables of the CDE-specific software, ordered
per supported system architecture; currently only SGI-IRIX-6.5, and (partly) Linux 2.2 are
supported),

run (containing Unix Bourne shell scripts for execution of the analysis processes and for
data management within the discipline),

setup (containing the “ setup information” for each discipling, i.e., the static, common data
needed in each BWB variant ssimulation (e.g., the flow conditions input for the CFD

simulations)).

Besides the CDE-specific software, also generic (such as Unix system utilities) and proprietary

software (such as in-house developed and licensed software programs) are used in the CDE. The

two latter are not included in the CDE software because of license and contractual limitations. A

global overview of the tools branch of the first layer of the CDE isgiven in Figure 5.

-15-
NLR-TP-2002-331

[ER] file:homeinirimobniriCDE _V5.0/tools/geometry/ ___[RERIRERS
y File Edit ¥iew Go Bookmarks Options Help
4 « i & | 2 (3%
Location: Iﬂle:fhomemln’m0bnIn’CDE_VS.Dﬁoolsfgeometry

PG data =l)
~ § tools geometry 9o

4 ﬁ[aerodynamics_and_trim
b database m (5 compiles
b ﬁ[flight_mechanics

b G futter &G runy
[> Q geometry

b ﬁ[include =
4

b

P

4

P

A AR AR

& setupr
ﬁ[ohjective
(3 response_surface

ﬁl structures

ﬁ[toplevel

(5 weight_and_balance

% Deskio -
o il | 5

(3§ sources

Figure 5: Overview of the tools branch of the first layer (system level) of the CDE presented by a
file-system browser, with the disciplines directories on the left, and, as an example, the contents
of the geometry discipline, on the right.

The data branch in the CDE contains the data of the analyses of al the disciplines, and a
specification of the BWB design run that is considered — the so-called experiment set-up. The
datais ordered per discipline, using the same discipline key words asin the tools branch, and
the design run specification is stored under the key word Experiment_setup in thefile
bwb_experiment_setup (Figure 6). Under each discipline directory the data of each individual
BWB design instantiation (or BWB variant), which is defined by afixed set of design parameter
values and identified by a unique 2-character string in the file bwb_experiment_setup, is stored
under the key word bwb_variant_ij , where ij represents the unique 2-character string.

-16-

—N file:home/nirimobnir/CDE_V5.0fdata/geometry f o[
'2 FEile Edit Miew Go Bookmarks Options Help
. - St
2 1 @ it & m 2 o
2 Location: Iﬂle:fhomemln’m0bnIrfCDE_VS.Dfdata.-’geometry
b G Demo-tools = =
bwh variant 007
v @ data geometry @ buovatnt o0
b @ Experiment_setup & bt variant 01
[> ﬁ[aerodynamics_and_trim m awh varant J17
b [§ database)
P G fight_mechanics Q@ bt variant 02/
flutter
b Q & bwh variant 03/
P8 geometry |
b G objective -
o & bwh variant 04/
P & optimizer
D & response_surface (5 bwh variant 05/
PG structures
b G weight_and_balance B bub variant 08/
b G tools
&F Deskiop Iﬂ B bwh_variant N7/ X
4l [l [l | >

Figure 6: Overview of the data branch of the first layer (system level) of the CDE presented by a
file-system browser, with the disciplines’ data directories on the left, and, as an example, the
contents of the geometry data, on the right.

Data exchange between disciplines and between BWB variantsis achieved via symboalic linksin
the file-system. Global design and optimisation datais stored per discipline and exchanged
among disciplines in database filesin straight forward ASCII-format, and the main database
files are gathered in the database discipline.

A global overview of the contents of the first layer of the CDE isgivenin Figure 7.

CDE first layer
(system level CDE) Controlr CDE process management

and job distribution

Controls CDE analysis and

optimisation processes

CO””_|°|S CDE disciplines run-soripts)|

Based A 4

¥
on 1—1 CDE todls (executables) |«—] CDE data (files) |

Based | Operating system
on (SGI-Irix 6.5, Linux 2.2)

| CDE computation servers |

Figure 7: Overview of the structure of the first layer (system level) of the CDE.

The second layer of the CDE is built using the SPINEware system. This SPINEware based CDE

consists on the top level of a SPINEware WorkingEnvironment object. The main components

-17-
NLR-TP-2002-331

within this CDE WorkingEnvironment are ordered by means of SPINEware ObjectFolder
objects, as shown in Figure 8.

el Working Environment @hatspine.nlr.nl:CDE- V5.0

Object Customize

ﬁlil&lgl Location: [spine:/fWorkingEnvir

D

“Readme

Figure 8: The second layer of the CDE: SPINEware object browser of the top level CDE
WorkingEnvironment object, containing the main CDE ObjectFolders.

The SPINEware based CDE makes use of the functionality of the first layer of the CDE, i.e., the
system-level CDE. The main ObjectFolder in the CDE WorkingEnvironment is the ToolLibrary
ObjectFolder (Figure 9), containing alibrary of SPINEware based CDE tools.

OhjectFolder@hatspine.nir.nl:Tool Library - E X
Object Customize Help
#| #| | &5 Location: [spine:ffObjectFulder ine.nir tvankanfMy Computer/Exam) |

N ?Q i
- Backups -&.h«— et
- AeroParallel WiewaeroResults AeroEuler
[Data Experiment3etup
e FlightMec
& Documents dan e Aol
W V\E\;V‘N;J;‘IS“T‘FUCI We‘\”g}‘wié:a\la:r:lce
B MOBParners AeroGrid
: Flighttdach
B-irg Optimization JFlurrer DLR AMeaCU
L e N views
E-irgy| PostProcessors =,
[ToolLibrary GenGeom Flutter ViewGeom FlighttechCU
= FAMeNLR
- Utilities
[e:

e Workflows
FlighttdechiIr

[
Figure 9: SPINEware object browser of the CDE ToolLibrary ObjectFolder.

In the tool library the SPINEware objects (mainly AtomicTool objects) with the key
functionality of this CDE layer are stored. These objects can be considered as the main
“building blocks™ of the SPINEware CDE. The objectsin other ObjectFolders, in particular in
the Workflows ObjectFolder, are composed -as far as possible- from these building blocks.
Because of obvious software management advantages, this composition is preferably based on
links to, rather than copies of, the ariginal objectsin the tool library. The toolsin the
ToolLibrary are more or less directly related to the system level CDE functionality. For

-18-

NLR-TP-2002-331

example, some of the toolsin thetool library directly control the system level CDE main design

sub-processes: geometry generation, weight evaluation, aerodynamic performance, and flight

mechanics, objective and constraints evaluation. As another example from the tool library, the

ExperimentSetup tool can be mentioned, which directs the user to the Experiment_setup data

directory and presents the selected bwb_experiment_setup file in an appropriate editor. Asan

example from the Workflows ObjectFolder, Figure 10, shows atwo-level hierarchical workflow

of the CDE analysis process. In this example, the BWB weight evaluation, which is performed

by low-fiddlity aerodynamic and structural mechanics evaluations, is stored in a separate sub-

workflow that isincluded twice in the main workflow of the whole analysis process for iterative

weight calculation.

=|j Workflow@rediail nir.nf:21 evelWF\/4

-0

Object Customize

Help

2|2 ofu

Jilorkdlow Gr il.nir.

ob &|

Dat

Z-GeomGen

E I view

3-ViewGeometry

b

G
Wioht+BalCWF2z o
HiFiAerTNTrim

DataConfainer_4

Flurter DLE

FluttetOLR DataContajner_3

Rlightiec
t
L

Optitizer

FiMeCons+Obj

=.] Workflow@recditail nir.nil:Waht+BalC WF?

=10

Object Customize

Help

4| 4| % 15| Location: [spine:Workflow @

il.nlr.nl:

Structures
LoFistructures
Gl AL

A
\7@/
Cutput

imobnir/y % ¥ |

Figure 10: Multi-level workflow of CDE analysis process; the top level workflow with the CDE
analysis process is given in the left panel, and the sub-workflow (so-called ChildWorkFlow)
with the weight calculation process is shown in the right panel.

The Data ObjectFolder contains links that directly point to the proper CDE data directories

(recognised as Directory objects), which are the actual data directoriesin the system level CDE

(Figure 11).

-19-

NLR)
Bl ObjectFolderizhatspine.nir.nl:Data B X
Object Customize Help
4| «| ¢,| (3| Location: |spine:{/ObjectFolder ine.nir. ankan/My ¥
Sl Directory @hatspine nir.nl:geometry <2> o ox
Object Customize Help
Backups . . _
Link to aerodyn... Link to database Link to fight_m... 4| | .| &3] Location: [spi i v DE_V5 v x|
B- Data [
5 Documents B+ Experiment_set lj m _:D._J .Q.J
=l i g 3. Epermensebp Dwh_vatiant_00 bwh_vananl 01 bws_valianl_07 bwb_vanani_os
MOBFartnars . Link to fiutter Link to geametry Link to respans.. B aerodynamics_and_trim
- B[database D D m E
= Optimisation
| ©P & Night_meshanics bwh_variant_04 bwh_varian_05 bwh_variani_08 bwh_vanani_07
73 PostProcessors - . .
i Link to optimizer Link to structures Link o weight_.. B Mutter Ij m m D
2] ToolLibrar & d - i = 3
4 E aeomety bwh_variant_08 bwh_varian_09 bwb_variant_10 bwh_varian_11
Utilities BHjED) objective
& Workilows Link to Experit... Link to abjective BHjEg] optmizer D D
B response_surtace bwb vatiant_21 bowh_vanant_99)

Figure 11: SPINEware object browser of the CDE Data ObjectFolder (left panel), which
contains links to all the disciplines’ data directories, and, as an example, the contents of the
CDE data directory of the geometry discipline (right panel).

Other CDE ObjectFolders, like PostProcessors, Optimisation and Utilities, contain selected
tools for their respective purposes. The Documents ObjectFolder contains (links to) the relevant
documentation, like MOB documents, papers and manuals. The MOBPartners ObjectFolder
contains the information about (and links to) the partnersin the MOB project. The Backups
ObjectFolder contains backups of CDE components.

A global overview of the contents of the second layer of the CDE and of its relation to the first

layer, isgiven in Figure 12.

CDE second layer
(SPINEware based CDE)

Based
on —| CDE analysis processes | Utility tools, documents,
backups, etc.
Based
on —| CDE results visualisation I

Based

on CDE optimisation processes |

A A A 4
CDE library of tool objects | [CDE data objects |
1 1

T T
| Based on |
y y

| System level CDE (first layer) |

Figure 12: Overview of the structure of the second layer of the CDE (the SPINEware based
CDE).

-20-
NLR-TP-2002-331

The majority of what has been presented so far about the CDE functionality, has been
developed, and is operational, at NLR. Asindicated earlier, for certain specific analysis the
CDE automatically makes a connection to the MOB partner that provides this particular
functionality. In thisway, the following connections are currently operational:

1. NLR-TUD for BWB geometry generation,

2. NLR-—DLR for flutter analysis,

3. NLR-CU for low fidelity aerodynamic analysis.

These connections are secured (by authentication and encryption) and based on a secure shell
(ssh2[12]) protocal, set up exclusively from the NLR CDE communication server to the MOB

partners' respective servers (Figure 13).

CDE network architecture

NLR domain

Main CDE

Figure 13: Overview of the current multi-site network architecture of the CDE.

The architecture shown in Figure 13 presents the multi-site situation for the CDE that is
presently operational. Other MOB partners that would provide additional CDE functionality
could be connected to the CDE similarly to the partners (i.e., tool providers) currently
connected.

With respect to the accessibility of the CDE, there isthe possibility for the MOB partnersto
access the CDE viathe SPINEware HTTP server using a standard web client (e.g., MS Internet
Explorer). The CDE tools and data, which are on the NLR file-system server, can be directly
accessed. However, for execution of the CDE, accessto the NLR CDE server is necessary
(Figure 14). This accessis normally not available, because CDE server iswithinthe NLR

secured domain, but can be made available technically relatively easy.

21-
NLR-TP-2002-331

CDE access via SPINEware HTTP server

ot

MOB partner

Access to CDE server Access to CDE
(switched on or off) tools and data

Web-client
M) (e.g. MS-Internet

(no execution Explorer)

on CDE server)

Figure 14: Overview of the accessibility of the CDE using web-based access via the SPINEware
HTTP server, which is in the NLR network zone with limited security, the so-called de-militarised
zone (DMZ).

4 CDE operation

In order to use the SPINEware CDE, first of all a SPINEware session should be started, either
by running locally the SPINEware User Shell and Object Server, or by connecting to aremote
Object Server viaaweb client (see also Figure 1). Note: in both cases the necessary access
permissions must be available. It is beyond the scope of this paper to go into further detail of
this aspect. An example of accessto the CDE from a PC viaa Microsoft Internet Explorer web
clientisillustrated in Figure 15. In this case the SPINEware User Shell isinitiated viathe HTTP
server, and presented to the user via Java applets. In the User Shell, the user may open the CDE
WorkingEnvironment by a double mouse click on the CDE icon. Then the CDE
WorkingEnvironment will be opened in a browser and its top-level contents will be presented to
the user (see also Figure 8). In the CDE WorkingEnvironment a README file can be found
(Figure 8), which contains some basic information on installation and usage of the SPINEware
CDE and can be opened in an editor by a double mouse click. The ObjectFoldersin the top-
level of the CDE are all accessible by double mouse clicks.

22
NLR-TP-2002-331

|
hell - Microsoft Internet Explorer [_[O]x]

| Fle Edt View Go Favoies Help |-

J‘ s, 20 @)
Back Forand Stop Refresh Hame Search Favarites History
| cidress [http:vemn superbroker.nl 8080 us. himl 1| ks
SPINEware Java User Shell (JUS)
SPINEware Java User Shell ¢+

N ieh Stari)

A Java WebStart enabled application
which gives you access to a distributed
object network.

Recammended aption

SPINEware Java User Shell ¢
S vieh Siari)

o & Tava WebStart enabled signed
application which gives you access to a
distributed object network _and 1
access (o local file system and
applications.

Launch |
[(@ e

IR

=5 SPINE . [Mi[=] B3

Login SPINEware
. Gemme| [+
Waiting for server
Password ’7
Retrieve preferences
il E—
Server:

Load browsers

Shutdown AOM

() Attach to running SPINE Server

‘ Forced Exit

[Coc | [cmsa

05 wersiam 1.3

u MyComputer

Object Edit “Wiew Help

éLocation|spine:.l'."Dbjec‘tFoIdel.l'.l’shared.l’horne.l’nlr.l’mobnlr.l’MyComp{ - || Go...
NS
ST] @ @j /) /?\
mobnlr Standard OB Tests Documentation

LWeb I.Graph I.Table |~Tree

Ready... |

Figure 15: lllustration of a SPINEware start-up session in order to access the CDE via a
Microsoft Internet Explorer web client. From the web-interface server (upper window), the
SPINEware session is launched. Subsequently Java-applet windows appear, presenting the
session status (middle-left), login dialogue (middle-right) and the toplevel ObjectFolder of user
mobnlr (lower window).

Thetoolsin the ToolLibrary ObjectFolder (see aso Figure 9) are directly accessible to the user

and can be executed by double mouse clicks. For example, the tool ExperimentSetup, which

-23-
NLR-TP-2002-331

leads the user to the Experiment_setup data directory and presents the selected
bwb_experiment_setup file in an appropriate editor (Figure 16), can be easily found and

executed.

B Fpermentsonp

‘ Experiment setup ‘ K
Select the desired Experiment Setup File bwh.experiment.setup —

‘ oK Resel G’-ll’l[:Ell Help ‘

= 1=]
-=i Rl bwh.experiment.setup (read only) - B X
File Edit Search Preferences Shell Macro Windows ﬂelpl
T A
#

BWE Experiment Setup

#

#

Design Parameter Definition

#

— Design Paramster MName Conwventicn

Twist

— Mapping of Design Parameter to ICAD Driving Variables
twist-angle-iw-ins-def (degree -0.50000)
twist-angle-iw-out-def (degree 0.00000%
twist-angle—ow-def (degree -1.80000)

- Map of Unit Design Parameter Value to ICAD Driving Variable
0.1318 0.5656 0.4343

#
Design Parameter Definition

— Design Parameter MName Conwventicn 4
=0 T =

Figure 16: User dialogue window for selection of the bwb_experiment_setup file (upper), and
the selected file in an editor window (lower).

In the bwb_experiment_setup file the user specifies (in terms of geometric design parameter
values) and identifies (by the unique 2-character string) the BWB variants for which design
evaluations are desired (Figure 16). In thisway, users are able to rather intuitively find their way
to the starting point of a CDE analysis, i.e., viathe execution of the ExperimentSetup tool
directly from the tool library.

When the desired BWB variants have been defined and identified, the design evaluation process
can be performed. In this process, first of all the geometry of the BWB variant is needed. This
geometry can be generated by the GenGeom tool, which is also available in the tool library.
Thistool will request the user to specify a BWB variant identification, and a choice of which
geometry data should be generated (surface geometry for aerodynamic analysis, structural
geometry for the structural analysis, or both) and will run further automatically (Figure 17).
Thistool will initiate sub-processes that prepare the input for the CAD program ICAD, transfer

-24-
NLR-TP-2002-331

the datato University of Delft where the ICAD processisrun, and transfer the results back to
the local machine.

‘ GenGeom

Specify a valid BWB variant number for which the geometry must be generated 01

Specify the desired BWE geometry to be generated BWB exteral surface geometry |

‘ _OK | Reset | cancal
=

] =i

Figure 17: User dialogue window of the GenGeom tool for specification of the BWB variant
number (bwb_variant_ij) and selection of the desired type of geometry (external surface,
internal structures, or both).

When the geometry generation has been run successfully, the results can be inspected with the
tool ViewGeom. Thistool requests the user only to select a BWB variant out of alist of
available BWB variant geometries and then automatically applies an appropriate visualisation
program to the selected data (Figure 18).

i vevceom e

| View Geom

Select an existing BWB geometry variant for viewing bwh_variant_00 —
oK Reset Cancel |

File Edit View Ads Field XY Style
[20l = s |
o VT B e e ———————
2 ~ [
B 1 contour

2, i Vector
8% I Scatter
§€) W Shade
[4 ™ Boundary.

Redrav/|
| Redraw
I Auto Redraw
Quick Edit...

B~]
2% 7|5
Zlglola|
6] 0] |
il i mlf 5|
=] [T
B8 [A]

i 3 8 T
. | | Click to Select, Drag to Select Group.

T

Figure 18: User dialogue window of the ViewGeom tool for selection of the BWB variant
number (bwb_variant_ij) (upper), and the resulting BWB geometry visualisation (lower).

Once the geometry data of a BWB variant is available, various other parts of the BWB design
evaluation can be executed. Typically the next step would be to perform the weight and balance
evaluation. This evaluation is based on estimates of the contributing mass items (structural, non-
structural, payload and fuel masses). Initially the correct structural mass of aBWB variant is
unknown because this will be computed in alocal structural optimisation evaluation. Therefore

an initial estimate, based on for instance the reference BWB variant, is used, which will then be

&

-25-
NLR-TP-2002-331

corrected iteratively by subsequent low-fidelity aerodynamic and structural mechanic
evaluations. This processis also illustrated in the WorkFlow in Figure 10. The structural
mechanic weight optimisation that is performed within this iteration can be performed using a
low-fidelity approximation model, or a high-fidelity Finite Element (FE) model including a
flutter constraint evaluation with the CDE’ s flutter discipline [3]. After weight and balance
evaluation, high-fidelity aerodynamic analysis of the BWB under transonic cruise flight
conditions are performed in order to accurately predict the aerodynamic performance (the so-
called lift over drag L/D). This L/D is akey quantity for the determination of the overall design
objective, the so-called Bréguet Range [3], which is computed in the objective discipline where
use is made of the data gathered in the database discipline. The optimisation of this objectiveis
constrained by the so-called Controllability Margin (CM) of the BWB, which is evaluated by
the flight mechanics discipline in the CDE. This very brief description of the BWB design
process gives an indication of the order in which the disciplinesin the CDE are applied. For a
more detailed description of this process we refer to [3].

The discipline that was not yet mentioned in the above process description is the response
surface discipline. In this discipline the results of a set of evaluations of BWB variantsis
collected and further processed to an appropriate polynomial functional representation. For
example, a design study has been performed with the CDE by variation of five of the BWB
design variables: wing-twist, wing-thickness, wing-sweep, fusel age-length and fuselage-camber.
A total set of 51 BWB variants, each with different values for the design parameters, was
subjected to the design evaluation process. The resulting values for the design objective and
constraint were collected and fitted by polynomial functions with the design parameters as
independent variables. The resulting fitted functions give a representation of the dependency of
the design objective and constraint on the design parameters. An illustration of the dependence

of the design objective (Bréquet Range) on three of the design parametersis given in Figure 19).

-26-
NLR-TP-2002-331

Relative
Range
Impravement

Optimisation Objective: Brequet Range

0.15 -

e
T e
— \\\.
| .

4%

[~
e - 2%
01 ~ 17 +
. § 28 o
0.05- ~ 4 £ . 3
. \53\\. . _/—//43‘;//
4 T 16 4 -2%
15 + 3
-0.05 1 +
% i 12 -4%
-0.1- 19 2 -
L— h + o0 6%
-0.15.L— 5
-4)\\'\ ;1
ol % o
T
0 \‘\;\ _)_:___4——”" ‘2
2 - -10%
R B -2
4 -4
Twist Sweep

Figure 19: Relative Bréquet Range improvement as a function of the three BWB design
variables : wing-twist, wing-sweep and wing-thickness (vertical axis).

This brief description of the application of the CDE and the function of its disciplinesillustrates
only asmall part of the total CDE functionality. It should be noted that besides the execution of
the complete BWB design evaluation as one large, more or less automatic process, it is also
possible, under certain conditions of availability of required data, to run different sub processes
for specific analyses of the BWB variant. Thisflexible functionality is under further

devel opment, together with further application of the CDE to other BWB design studies.

5 Conclusions

The Computational Design Engine that is being developed in the MOB project is built up from
the components that are provided by the MOB partners. These components, mainly software
toolsfor design analysis, data conversion and exchange, are first developed and implemented on
system level. While maintaining as much as possible functionality on this level, ancther layer
with user oriented functionality is built on top of it. This second layer is based on the
SPINEware middleware system, which directly provides the functionality for a user oriented,
object based and network transparent approach. Viathe SPINEware User Shell, the CDE is
presented graphically to the user, either directly on the user’sloca system, or viaaweb client-
server approach.

The CDE contains and manages the tools, data, documents, and other related information and

utilities for the design and analysis of BWB aircraft. Several automatic design processes, based

-27-
NLR-TP-2002-331

on different sequences of analysis runs using the CDE components, are directly available to the
user. Further enhancements to the functionality of the CDE, such as more flexibility in
concatenating tools into workflows, are envisaged as extensions of the current functionality.
The CDE has been applied successfully to a design and optimisation study of the BWB aircraft.
It has shown a typical applicability to evaluation of feasible design in the early design stage.

Future work will involve application of the CDE in further enhanced BWB design evaluation
studies.

Acknowledgements

European Community financial support for the present study through the European Commission
GROWTH Programme, Research Project MOB - A Computational Design Engine
Incorporating Multidisciplinary Design and Optimisation for Blended Wing Body
Configuration, is gratefully acknowledged. In addition, the collaborative contributions and
valuable recommendations of Mr. P. Arendsen of the NLR Structures and Materials Division
and Mr. W. Rouwhorst of the NLR Flight Division are acknowledged.

-28-
NLR-TP-2002-331

6 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

MOB: A Computational Design Engine Incorporating Multidisciplinary Design and
Optimisation for Blended Wing Body Configuration, EC 5" Framework Programme,
Contract Number: GRD1-1999-11162, 2000.

G .LaRocca,.L. Krakers, M. van Tooren: Development of an ICAD generative model for
blended wing body aircraft, 9" AIAA/ISSMO Conference, Atlanta, GA, USA, September
2002. AIAA-2002-5447.

M. Laban, P. Arendsen, W.F.JA. Rouwhorst, W.J. Vankan: A computational design
engine for multi-disciplinary optimisation with application to blended wing body
configuration, 9" AIAA/ISSMO Conference, Atlanta, GA, USA, September 2002. AIAA-
2002-5446.

M. Stettner, R. Voss: Aeroelastic, flight-mechanic, and handling qualities of the MOB
BWB configuration, 9" AIAA/ISSMO Conference, Atlanta, GA, USA, September 2002.
AlAA-2002-5449.

N. Qin: Aerodynamic studies of blended wing body aircraft, 9" AIAA/ISSMO
Conference, Atlanta, GA, USA, September 2002. AIAA-2002-5448.

P. Bartholomew: The development of the MOB data and product management system, 9"
AIAA/ISSMO Conference, Atlanta, GA, USA, September 2002. AIAA-2002-5497.
A.M.J. Morris: MOB — A European distributed multi-disciplinary design and optimisation
project, 9" AIAA/ISSMO Conference, Atlanta, GA, USA, September 2002. AIAA-2002-
5444,

W.J. Vankan, R. Maas, M. ten Dam: ICT Environment for multi-disciplinary design and
multi-objective optimisation: a case study, Proc. ICCS 2002 conference, pp. 663-672,
2002.

E.H. Baalbergen, H. van der Ven: SPINEware — a framework for user-oriented and
tailorable metacomputers, Future Generation Computer Systems, 15, pp. 549-558, 1999.
B.C. Schultheiss, E.H. Baabergen: Utilizing supercomputer power from your desktop,
HPCN 2001 conference, Amsterdam, 2001.

http://www.spinewar e.com

http://www.ssh.org

