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Summary

The International Space Station (ISS) is a high tech research and development facility in low

earth orbit. The key factor is availability. In part, the availability of a robotic system is

warranted by the redundancy philosophy applied in its design. Nevertheless, surfaces will

degrade, wear will occur and the performance will suffer. And some day, an upgrade becomes

inevitable. SW upgrades can be uploaded with limited effort, but still require preparation and

verification. Some spare parts will be available on orbit, but other parts are stored on the

ground, yielding quite long repair times. Predictive maintenance helps to plan ahead, and make

sure the system availability remains high.

The purpose of the paper is to discuss predictive maintenance techniques based on signal

analysis and analytical redundancy, to show what it would mean if they would be incorporated

in the Ground Segment of a space robotic system, and to demonstrate the applicability of the

techniques using a simplified model of a robotic joint.
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1 Introduction

The International Space Station (ISS) is a high tech research and development facility in low

earth orbit. In late 1998, the first two modules of ISS, Zarya and Unity, were launched and

coupled successfully. Robotics is a key technology in both the maintenance and the scientific

operations of the Space Station. The European Space Agency (ESA) contributes to the ISS by

providing, among other things, the European Robotic Arm (ERA, Fig. 1). ERA will be launched

in 2001, mounted on the Science and Power Platform. ERA will help assemble and maintain the

Russian Segment of the International Space Station (RS-ISS) [Kampen et al, 1995]. Other

robotic systems on the ISS include the Canadian Space Station Remote Manipulator System and

the Special Purpose Dextrous Manipulator, which are part of the Mobile Servicing System (Fig.

2) and the Japanese Experiment Module Remote Manipulator System.

As the number of robotic systems and their servicing capabilities grows, the users of the ISS

will become more and more dependent on the adequate performance of these systems. The key

factor is availability.

In part, the availability of a robotic system is warranted by the redundancy philosophy applied

in its design. Most manipulators are designed to be Fail-Operational, i.e. even after a failure, the

system should be able to provide full functionality. Of course, the harsh environment of space,

with its high radiation levels, atomic oxygen and extreme temperatures, has been taken into

account in the design of the system and the selection of materials and components.

Nevertheless, surfaces will degrade, wear will occur and the performance will suffer. And some

day, an upgrade becomes inevitable.

BEE

CLU
(behind  the BEE)

ECC

BEE

CLU

pitch joint

pitch, yaw and roll joint

pitch, yaw and roll joint

Figure 1 (The European Robotic Arm)



-5-
NLR-TP-99341

Figure 2 (Overview of the Mobile Servicing System)

SW upgrades can be uploaded with limited effort, but still require preparation and verification.

Some spare parts will be available on orbit, but other parts are stored on the ground, yielding

quite long repair times. Predictive maintenance helps to plan ahead, and make sure the system

availability remains high.

To the authors’ knowledge, analysis of data from the Canadian Shuttle robot arm is done by

trend analysis and by tuning parameters by hand to match measured data with the simulator

data, which is labour intensive work.

The purpose of the paper is to discuss predictive maintenance techniques based on signal

analysis and analytical redundancy as a tool to be able to detect deviations from the nominal

behaviour quicker and more efficient. In addition, this paper will show what the context is for

such tools (facility) would be incorporated in the Ground Segment of a space robotic system,

and to demonstrate the applicability of the techniques using a simplified model of a robotic

joint.
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2 Predictive maintenance techniques

The purpose of predictive maintenance is to determine what and when maintenance should be

done, before the system performance degrades to a failure which would prevent a successful

completion of the mission or even cause safety problems.

Maintenance scheduling is often based on reliability assessments. However, the average life

cycle does not need to say much on the actual state of a component or unit. Especially when the

uncertainty or variance in the reliability figures are large, a clear possisbility exists for replacing

a component to soon (without need) or too late (a real failure occurs during a mission). The

variance of the reliability figures of components in space are relatively large, because only few

parts may be produced (thus eliminating obtaining reliability figures by test), and space

conditions can vary considerable (like temperatures). In case of a space robot the use of signal

analysis and analytical redundancy methods (observer based and identification based) are

considered, just because detailed models are available.

Signal Analysis  Signal Analysis methods are based on the monitoring of signal trends. Typical

quantities that are used are the magnitude of signals, mean values, maximum and minimum

values, variances, trends, correlation coefficients etc. A failure is detected if one of the signal

trends exceeds a predefined threshold. Signal Analysis methods are relatively straightforward

and common practice.

Observer-based  Observer based methods use the mathematical model to compare real-life

measurements with the predicted outcome of the model. By means of statistics it is determined

whether the deviation is significant. By configuring a number of observers the methods can be

used for diagnosis. The observer method chosen is based on the parity equations [Frank, 1996],

because the measurement noise is expected to be relatively small.

The following system equations are used in the formulation of the parity space method:

x k+1 = A xk + B uk + E dk + K fk (2-1)
yk = C xk

where x denotes the state vector, u the control inputs, d the disturbances, and f the failures. In

the formulation of the method no distinction is made w.r.t. the “size” of the failure. The failure

term f can represent both a small degradation for which a controller is robust, or a severe failure

causing safety problems when using the system.  The term f represents both component and

actuator failures. Component failures can be modelled as perturbations of the matrix A, and
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actuator failures can be modelled as perturbations of the matrix B. For instance, f = )A*xk*f’(k),

where f’(k) is zero before the failure occurs, and 1 during/after the failure.

Note that the method can be generalized to include sensor failures.

To obtain the parity equation the system is rewritten in the following form, where for

illustration purposes the past is limited to 2 samples:

(2-2)

By subtracting the deterministic part and eliminating the autonomous part by pre-multiplying

with the kernel of the observability matrix (V), the following residual is obtained:
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There exists still some design freedom, so  r* = w r is chosen such that the effects of noise are

as small as possible, and the effects due to the faults are as large as possible. The leads to

minimizing the following equation:

   (2-4)

Solving for w, this  can be considered as a generalized eigen value problem:

VH H V w VH H V w Aw BwT T T T
2 2 3 3= ⇔ =λ λ

This problem can be solved with the MATLAB function EIG(A,B). Choose from the solutions

the smallest eigenvalue and its corresponding eigenvector. The latter is w.

Now note that the left hand side of equation (2-2) leads to the measurable residual:
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Identification based  Identification techniques aim at deriving a mathematical model from

actual (input-output) measurements of an (unknown) dynamical system (plant). Since the

identified mathematical model may provide (additional) insight on the (changing internal)

system behavior, a long term interest exist in using identification methods in fault detection and

diagnosis, see e.g. the state-of-the-art paper of P.M. Frank [Frank, 1996]. The major drawback

that has hampered a widespread use of identification in Failure Detection and Isolation (FDI) is

the nonlinearity of the numerical (parameter) optimization methods (even for the estimation of

the parameters of a linear time-invariant systems). Subspace Model Identification (SMI,

[Verhaegen, 1994]) schemes overcomes this drawback. The formulation of the identification

problem allows a numerically very reliable solution, and (compared with other methods) only

relatively short datasets are needed.

In the Systems and Control Engineering Group of the Delft University of Technology a

particular class of reliable SMI tools have been developed and tested in numereous industrial

applications. A free copy of Version 1.0 of a toolbox developed in the course of the research

activities can be obtained via http://lcewww.et.tudelft.nl/~haver/smi/smi.html.

The subspace identification scheme is in fact a two-step method. Firstly the A and C matrices

are estimated. Given the A and C matrices, B is determined.

The basic step in the above mentioned SMI tools is the derivation of the extended observability

matrix













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



=Γ

−1s

s

CA

CA

C

�

from an input-output data batch {uk, yk}. When this data batch is derived from the fault-free
system, we denote the corresponding observability matrix by 0s

Γ . The use of this approach in

failure detection, new sets of input-output data batches (transmitted from the space station on
regular time instances) are processed to determine a new matrix is

Γ  and the detection is done

by investigating the angles between this new matrix and 0s
Γ , which is a completely new

approach.

The angles between subspaces are related to the singular values of “product” of the two

subspaces: the cosine of the angles are equal to the singular values.
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When no abnormalities are detected in this (first) step, a second step is invoked comparing the

elements of the matrix B of the state space model listed above, determined with the fault-free

data and with the new incoming data.

Diagnosis was performed by matching measured datasets to datasets for known failures. This

was done by calculating the cosines of the angles between the datasets.

Now, what would it mean if predictive maintenance tools based on analytical redundancy would

be incorporated in the Ground Segment of a space robotic system? Which subsystems are

modelled, and what is the overall system in which additional tools for predictive maintenance

must be implemented. The answer is provided by taking the European Robotic Arm as an

example.
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ERA EVA-MMI

ISSA/RS
Space - ground
Communication
Infrastructure ERA

Relocatable
Arm

Payload

ISSA/RS
In orbit
Infrastructure

ERA
IVA-MMI

RS
OBC

ERA Basepoints

ISSA/RS
Ground
Infrastructure

ERA
Ground
Segment

3 ERA

Developed by Fokker Space B.V. under contract from ESA, ERA is a symmetric, seven degree

of freedom manipulator of about 11 meters length. It can relocate to various positions

(basepoints) on the Russian Segment. It can transport large objects (such as solar arrays) during

the Russian Segment Assembly Phase, and exchange Orbit Replaceable Units (ORUs) as well

as inspect the Russian Segment during the Operational Phase of the station [Kampen, 1995].

ERA can be controlled directly by Extra Vehicular Activities (EVA) crew members, or

remotely from a laptop-type workstation by the crew members inside one of the modules of the

Russian Segment (Fig. 3). The ERA program is just before the Critical Design Review. The first

test results on the Engineering Qualification Model(s) are available [Hofkamp, 1998].

The control computer is integrated in the arm structure, as well as specially designed

communication, power and video distribution networks. This makes ERA largely independent

of other systems on board. Most of the robot's tasks are pre-programmed on ground and carried

out under supervision of the crew.

Figure 3 Elements of the ERA system

Camera and lighting units positioned on both end-effectors and on both sides of the elbow-hinge

provide a view of the working area and enable automatic gripping and positioning of objects.

Using the Integrated Service Tool (IST), which is an in-built screwdriver in each end-effector,

ERA can mechanically actuate other mechanisms directly. The special electric connectors for

data, video and power in the end-effector, enable communication with various types of
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equipment when these are grappled by the end effector. The same connectors also offer

potential to expand ERA with intelligent tools.

The National Aerospace Laboratory NLR is responsible for the development of the ERA

Mission Preparation and Ttraining Equipment (MPTE) and contributes to the design of the on-

board FDIR system. In cooperation with the Delft University of Technology, NLR is also

investigating the use of analytical redundancy based FDIR methods for detecting and

diagnosing performance degradations. In the future, such tools may be incorporated in the

MPTE, in the framework ERA Evolution [Heemskerk, 1998].
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4 MPTE and ESF

The MPTE is used for mission planning, training, on-line mission support and mission

evaluation.

Within the current MPTE a number of displays are available for performance monitoring, like

control errors. These will be used for signal analysis based predictive maintenance. Analytical

redundancy based predictive maintenance tools could be incorporated in a future upgrade of the

ERA MPTE. These techniques make use of detailed models of a the system under

consideration. Within ERA, these models are incorporated in the ERA Simulation Facility

(ESF).

ESF is a high-fidelity dynamic simulation of ERA arm operations and motion. ESF consists of a

set of powerful real-time models, embedded in the commercial package EuroSim. The ERA

Simulation Facility ESF is developed in parallel with the ERA flight design. In the early stages

of the project, ESF was used to design the ERA motion control algorithms. In this phase, the

motion control software was simulated and its performance evaluated. Today, the emphasis is

on verication of the flight software. The flight software is connected as software or hardware-in-

the-loop to ERA simulation models. Finally, all the models in ESF will be validated against

tests on the real arm, and the validated ESF becomes the core element of the MPTE

[Couwenberg, 1998].

Manipulator dynamics model: The core model within ESF is a model of the manipulator arm

dynamics. The model is based on a recursive method of solving dynamics equations comprising

an open-chain of flexible and rigid bodies as described in [Ellenbroek, 1994]. To simulate the

contact motion, the open-chain dynamics model has been augmented with a contact model and a

constrained manipulator tip motion model to enable closed-chain dynamics.

Actuator model: The ERA shoulder, wrist and elbow contain seven rotational joints driving

unit. The joint dynamic bahaviour is described in the Actuator model. This model features a

flexible gearbox between the motor and joint axis, including hysteresis characteristics.

Furthermore friction and stiction on the out-going joint axis are taken into account.

Sensor models: In each joint, a resolver and an encoder measure the motor speed and joint

angle. The key characteristics of the resolver and encoder models in ESF are quantification of

the output signal and noise. To measure the arm tip behaviour with respect to the environment,

ERA has a proximity sensor and a torque/force sensor. The proximity sensor is part of the end

effector camera subsystem, determing the pose relative to an illuminated dot pattern. The
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torque/force sensor is part of the end-effector subsystem, it measures via strain gauges, the force

and torque vector exerted on the end-effector. The ESF torque/force sensor model transforms

and quantifies the in the manipulator dynamics model determined spring deformations.

Joint control model: Each ERA joint has its own closed-loop controller. The ESF joint control

model features a functional model of the embedded joint control software in copied C source

code.

Communication models: ERA contains two databuses transmitting commands and status

between ERA subsystems and the host computer on the Russian Segment. Within ESF, both

HW and SW communication models for the MIL1553 Remote terminals and Bus Controllers

are available, enabling both HW in the loop tests and SW tests.

Onboard software model: The ESF Onboard software model is a functional model of the ERA

motion control software implemented in C source code. It is used for non-real-time design

simulations without the need for HW models of the central computer or databus

communication.

Hardware-in-the-loop: A HW Model of the ERA Central Computer can be connected to the

ESF via the MIL1553 bus interface. In this HILT configuration the functionality of the flight

software is verified against the requirements. In combination with a HW EMMI or IMMI the

configuration is used for end-to-end tests with a man-in-the-loop (cosmonaut), and will

eventually be the basis for the MPTE.

EUROSIM: EuroSim is a complete real-time simulation environment, supporting the user

through all phases of the simulation life cycle [Brandt, 1994]. EuroSim contains by graphically

interactive tools to support simulator development, test preparation, test execution (simulation),

test analysis and facility management.. The user can operate the complete facility through

‘pointing & clicking.'
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5 Results

In this paper we summarize the results of applying two anlytical redundancy based methods to a

simple linear model of one joint of ERA (Fig. 4): observer based and identification based.

Although the dynamica of a space robot are non-linear, first of all a linear model was

considered, to get in a cost-effective way a good feeling and understanding of the

(dis)advantages of the methods. Moreover, if the methods would not work for the linear model,

little is to be expected for the non-linear case.

The dynamics (Fig. 4) can be described by the following continuous-time linear model:
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where x= [ ]εε �

�ΩΩ  and Σ equals the angle of the motor axis, and � the gearbox deformation

modelled as a spring, where c equals the spring constant. Kt is the motor torque, N the gearbox

ratio, Im the motor inertia, Ison the inertia of the output axis, and ic the motor current.

Angle setpoints are realized by a PID controller (Fig. 5).

Although the identification has to be done in a closed-loop setting, at first open-loop

identification was considered, because sufficient (independent) excitation was expected due to

the angle setpoint trajectory. This proved to be true.

The particular failures considered include both system component failures (e.g. change in inertia

of one of the axis), actuator failures (e.g. drift in the motor torque constant) and sensor failures.

As an example a drift of 1%/sec. in the motor torque constant after 7.5 seconds was introduced.

From Figs. 6 and 7 it can be seen that simple signal analysis techniques were not able to detect

the degradation. The residual, shown in Fig. 8, generated by the observer-based method shows

that detection is possible.

In fact, both the observer based and the identification based method did detect the degradation

successfully. Moreover, all failures were detected when no noise was present.
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Figure 4 (Linear joint model)

Figure 5 (Joint control context)

Figure 6 (Joint velocity tracking error with failure)
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Figure 7 (Joint velocity tracking error without failure)
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Figure 8 (Residual generated by the observer-based method)

The observer based method was more sensitive to noise then the identification based method,

due to the fact that the parity space approach used is a kind of open loop method, i.e. the noise is

not taken into account in the system equations. The identification based method was fairly

robust against noise due to the fact that in the parameter estimation formulation noise is

implicitely taken into account.

Observer based tends to be more quick in detection than identification based.

The identification based method gave fairly good diagnosis results, in contrast to the observer

based method. The poor diagnostic performance of the latter was caused by the fact that no total

decoupling between observers could be achieved.
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The results showed also that attention must be paid to the modelling aspect (continuous time

versus discrete time) in case of the observer-based method. As an illustration, suppose that like

in our case the system is modelled in continuous time. Suppose that we have a component

failure immediately at the start. The system model equals:
AxAxfAxx ∆+=+=�

Translating this to the discrete time domain, in which the observer based method is formulated

yields:

k
tAA

k xex ∆•∆+
+ = )(

1

This equation cannot be written in the required form for the parity space method of

xk+1 = Anominal xk + f, since A and ∆A are “mixed up” in the exponential.

The physical parameters appear in the system equations often as mutual multiplication or

divisions. For instance, one element of the A-matrix is equal to p1 divided by p2, where p1 and p2

are the physical parameters like the motor torque constant. How to translate estimated model

parameters to physical parameters for the diagnosis within the identification-based approach

needs further consideration.

The ERA joints have non-linear dynamics (hysteresis, stiction). Current research work concerns

the application of the signal analysis method and the analytical redundancy methods in

combination with the detailed non-linear models of ERA in the ERA Simulation Facility. It is

expected that a predictive maintenance facility for a space robot will use a combination of the

two different techniques: signal analysis and analytical redundancy.

Note that a related subject is the tuning of the simulation models to the flight-data. The purpose

of this activity is twofold: firstly, the final validation of the simulator and secondly maintaining

the simulator model characteristics such that the prediction of the robot mission will reflect

reality as close as possible during mission preparation.
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6 Conclusions

The purpose of predictive maintenance is to determine what and when maintenance should be

done, before the system performance degrades to a failure. Two techniques based on analytical

redundancy, i.e. the identification and observer based FDIR techniques, gave good results for a

linear joint model. For typically non-linear space robot joints, the techniques are expected to

provide better (more sensitive) detection of degradation and better traceability to the cause of

the degradation than signal analysis based techniques. We expect that analytical redundancy

methods will augment existing and relatively simple signal analysis techniques to become a

suitable basis for a predictive maintenance facility.
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