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Summary

Simulation components are the building blocks for simulators and can be used in more than one
type of simulator. To enable cost-effective simulator development through reuse and exchange
of simulator components, component and distributed simulation technologies can play an
important role. Based on the principles of the High Level Architecture (HLA), a component-
based simulation architecture for a training system has been proposed by Dutch Space, TNO-
FEL and the National Aerospace Laboratory NLR. The federate is composed of various
simulation components that interact using the same architecture and infrastructure as well as the
overall HLA federation. Verification of the improved architecture performance has been
performed by the NLR. The NLR Pilot Station has been restructured in accordance with the
component-based concept and an experiment has been set up and carried out to measure the
performance with an emphasis on latency issues. Comparison of the component-based
simulation architecture with the performance of the validated NLR flight simulation facilities
shows the capabilities.
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Abbreviations

AIAA American Institute of Aeronautics and Astronautics
CGF Computer Generated Forces
CPU Central Processing Unit
DIS Distributed Interactive Simulation
DMSO Defense Modeling and Simulation Office
DR Dead-Reckon
FOM Federation Object Model
FPS Fighter Pilot Station
HLA High Level Architecture
HMI Human Machine Interface
Hz Hertz
IG Image Generator
I/O Input/Output
JSA JSF Simulation Architecture
JSF Joint Strike Fighter
M&S Modelling & Simulation
OTWV Out of The Window View
PFD Primary Flight Display
RAM Random Access Memory
RCI Run-time Communication Infrastructure
RPRFOM Real-time Platform Reference FOM
RTI Real-Time Infrastructure
SOM Simulation Object Model
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1 Introduction

Simulation components are the building blocks for simulators and can be used in more than one
type of simulator. Examples of these components are: a dynamic model component, an Out-of-
the-Window visual component or a flight controls component. These components can be
developed by different companies or institutes, which all have defined their own application-
specific interfaces. To enable cost-effective simulator development through reuse and exchange
of simulator components, component and distributed simulation technologies can play an
important role.

Based on the principles of the High Level Architecture, a component-based simulation
architecture for a training system has been proposed by Dutch Space, TNO-FEL and the
National Aerospace Laboratory NLR. The HLA concept has been extended to the level of
simulation components. The federate is composed of various simulation components that
interact using the same architecture and infrastructure as the overall HLA federation. The
architecture is outlined in Figure 1. The potential capabilities of this component-based
simulation architecture were demonstrated in a project in August 2000. Feedback on the
demonstration revealed that latency is considered as a possible threat to the application range of
a HLA-based component architecture. Therefore the next phase of the project focuses on
performance improvement especially concerning the delay and latency issues. Verification of
the improved architecture performance is performed by the NLR.

Figure 1: Component-based Architecture
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Traditionally the NLR Flight Simulation Department is strong in high fidelity human-in-the-
loop flight simulation. In recent years a high-performance network has been created between
NLR’s military flight simulations in combination with computer generated forces using ITEMS
and a connection between this high performance network and “external” simulations has been
established based on DIS and HLA. Comparison of the component-based simulation
architecture with the performance of the validated NLR flight simulation facilities shows the
capabilities. The NLR Pilot Station has been restructured in accordance with the component-
based concept and an experiment has been set up and carried out to measure the performance
with an emphasis on latency issues.

In this paper first the principles of the component-based architecture will be explained. It will be
described how the Pilot Station has been divided into components. The capabilities of the Pilot
Station components and their operational requirements will be discussed. Next the design and
set-up of the validation tests will be outlined. The validation test will concentrate on three
application domains: Human Machine Interface, Modelling & Simulation techniques and
implementation-technical. Finally the results of these tests will be discussed and conclusions
will be drawn to what extent the component-based concept is validated and in what areas it will
have its advantages

2 Consistency in a disturbed environment

A major requirement for distributed simulations with real-time man-in-the-loop applications is
to create a common and consistent presentation of the virtual environment among each federate
and component. Due to message transmission delays, clock asynchronies among different
simulation nodes and simulation time step of each node, together with the timeliness
requirements of this kind of simulations, various inconsistencies may occur. This means that for
example different participants may see the same entity located at different positions at the same
(wall-clock) time. This phenomenon is called Time-Space Inconsistency and may cause
inconsistent judgements among participants about the situation at wall-clock time t, what can
lead to inconsistent actions. According to [Zhou01] and [Zhou02] these inconsistencies can
cause the following problems in a distributive interactive application: Expectation Violation,
Causal Order Violation and Divergence.
•  Expectation Violation: After a participant takes an action, the participant expects the

relevant outcome to be congruous with its real-life experience. This expectation can be so
strong that violation of it will greatly degrade the application.

•  Causality Violation: In real world, events happen according to their causal orders. Without
the cause, the effect can never happen. Thus, the cause must happen before the event. If this
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causal order is violated in the virtual world, participants will feel the virtual world incorrect
and in contradiction with its real-life experience.

•  Divergence: The same action may result in different interpretations at different sites.
Besides the transmission delay and clock asynchrony, time-space inconsistency is also
dependent on some fundamental parameters of the simulation application, such as the threshold
and average update rate of DR algorithm, the dynamic properties of the moving entities, and
human factors like minimum discernible distance and human reaction time.

3 Evaluation aspects of application domains

Based on the time-space inconsistency problems discussed in the previous paragraph and the
hardware aspects of the distributed implementation we can distinguish three different
application domains which each have their own demands:
•  Human Machine Interface (HMI) domain
•  Modelling & Simulation (M&S) domain
•  Technical Implementation domain

HMI domain
An essential part of flight simulation is the generation and display to the pilot in the simulator of
a simulated perspective view of the outside world. The visual system receives position and
attitude inputs from the dynamic model and must provide the out of the window view
appropriate to each position and attitude. The same principle is valid for the avionics display
except the fact that this display provides the pilot with a radar view and a Primary Flight
Display (PFD). These displays stimulate the pilot to control inputs, and these control inputs lead
to simulator responses, which will finally be represented in the displays. Delays in this closed
loop must be as low as possible and are critical to the controllability of the simulated aircraft as
given in [Rolfe86].
The following elements are identified for this domain.
•  controls to visual latency
•  controls to avionics display latency
•  difference in latency between avionics display and visual

M&S domain
Within a distributed simulation environment the effects of data transmission delays and data
losses can have a major impact on the differences between the true and perceived positions of
the distributed simulation entities [Smith98]. This can be especially a problem for high
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performance entities interacting with each other (e.g. aircraft/munition). From this modelling
and simulation point of view for interactions the following elements are of importance:
•  the latency of remote entities (from a CGF) to visual (for targeting)
•  the latency of remote entities to avionics (for detection by avionics systems)
•  the latency of  actions (target lock, hit etceteras) to remote entities

Technical Implementation domain
Loads imposed on the network and on the CPU in general depend on scenario, (dead-reckon)
algorithms and (communication) protocols. Network loading is based on increasing numbers of
digital entities and their performance characteristics to investigate scalability. Recent years
many research projects were performed to investigate the network load and to predict the
bandwidth and CPU-load requirements for both configurations based on the DIS protocol and
HLA/RTI based configurations ([Purdy98], [Menzler99], [Bertin01], [Givens01]). With the
results of these projects and a baseline of latency and performance characteristics of the
simulation architecture it will be possible to identify requirements for network and CPU
capacity and predict the simulation performance. From this implementation/technical point of
view the following elements can be a constraint depending on the resources available:
•  the I/O throughput (network load)
•  the calculation need (CPU load)
•  the memory size (memory use)

For all of these elements not only the (average) value is important but the minimum, maximum
and variance also have a major influence on the usability.

4 Fighter Pilot Station set-up

The Fighter Pilot Station (FPS) used for the project consists of five relevant major software
components:
•  Controls input component which acquires pilot inputs (actions)
•  Aircraft dynamics component which calculates the aircraft movements
•  CGF component (Computer Generated Forces) which simulates “other” aircraft
•  Avionics component which incorporates the instruments and display logic
•  Visual component which drives the visual system

Both the FPS (undivided) as the FPS based on components have the same basic data flow. There
is no difference in connection with the hardware systems (controls, visual and avionics display).
With the undivided FPS the data is distributed among the software modules on one host
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computer through Global Simulation Data which resembles shared memory. Also the software
modules are triggered sequentially within the real-time simulation program PROSIM. Because
of the fast shared memory communication the whole process is scheduled real-time at a high
frequency of 50 Hz.

For the component-based set-up the software components are not triggered sequentially but run
independently of each other and they have their own frequency (free running). Each component
is scheduled real-time within its own simulation program PROSIM. To communicate between
the software components on the separate host computers the component based FPS uses a
middle-ware layer based on HLA, called the Run-time Communication Infrastructure (RCI).
The RCI currently uses DMSO’s RTI through Ethernet.

There is no difference in connection with the hardware systems (controls, visual and avionics
display).

Each software component produces data and/or uses data from other components as indicated
by the numbered arrows in Figure 2 and Figure 3.  The data elements that are distributed among
the components are:
1) Controls inputs divided into:

a) Stick and throttle position (used by the aircraft dynamics)
b) Switch positions (used by the avionics system)

2) The ownship Aircraft State (position, orientation, appearance) used by the visual module for
eye-point movement, by the CGF module for interaction with other aircraft and by the
avionics module for display indications.

3) The states of  “other” aircraft (position, orientation, appearance) used by the visual module
for the movement of visual models in the outside world scene and by the avionics module
for display indications (radar display).
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Figure 2: Models in Fighter Pilot Station, undivided set-up
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Figure 3: Models in Fighter Pilot Station, Component-based set-up

5 Method

The latencies can be divided into the following categories:
•  Component hardware to software latency or vice versa
•  Processing time (CPU time to process the data)
•  Software module to software module latency
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The first category is the same for both the undivided FPS as for the component based FPS
because they both use the same hardware connections and are not influenced by the dividing of
FPS into components. These hardware latencies have been analysed and measured in the past
[Kuiper00] and therefore these have not been measured again.

The average processing time is determined by multiplying the average processor load (%) by the
cycle time (milliseconds). The average memory load is measured and no-growth is monitored
using the system tool top.

The last category (s/w to s/w latency) is the essential point in a component-based set-up. This is
measured by sending a timestamp together with the data flow and calculating the difference in
time between this time stamp and the time this data is received. Also the time stamp increase
with each sample is measured as an indication of the smoothness of the data.

A counter is used for the controls data flow to detect lost updates or out of order updates. The
latency of this data is influenced by the network throughput and load. It is not possible to
determine the momentary network load, only the average network load is measured (in
packets/s) with system tools such as top and netstat.

6 Configuration

All components have been run on IRIX 6.5 using DMSO’s RTIv1.3NG3.2 and TNO’s
RCIv1.0beta2. The computer and network hardware used is summarised in the following table:

Table 1: Computer system specification

Federate Controls

& Visual

Aircraft

Dynamics

Avionics

Computer

type

SGI Origin SGI

Challenge

SGI O2

Processor 4 x R12K 4 x R4400 R10K

Processor

speed (MHz)

270 100 225

Memory

(MB)

512 64 64

OS IRIX 6.5.6 IRIX 6.5.5 IRIX 6.5.5
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The data that has been exchanged between the components is defined in a Federation Object
Model (FOM). This FOM is based on the RPR FOM v1.0 Draft 2. The Control Component
SOM was added for specific Stick and Throttle objects and interactions.

For the simplicity of the simulation model code the object attributes were updated every
simulation cycle, they were not dead-reckoned nor were changes detected to send changes only.
This was also preferred to have a as much of a known steady load during measurements and not
a varying load. A Stick and Throttle update from the Controls Component resulted in 15
attribute updates each simulation cycle. For the Aircraft state update by the Aircraft Dynamics
Component 37 attribute updates are done each simulation cycle. It is important to realise that
this can lead to a higher load than strictly needed.

7 Experiment execution

The experiment has been executed with a NLR employee with simulator experience as pilot.
The pilot has flown a square pattern in the runs. On each leg of the square he has performed one
of the following manoeuvres: S-turn, pop-up, 4 points roll or 360 with 30 degrees roll angle.

The runs have been carried out with all components running at the same frequency of 10, 25, 40
and 50 Hz respectively. The number of players has been varied during the experiment. Several
runs have been executed with the ownship only, while in other runs upto 5 CGF players have
been added.

8 Experiment results

During the experiment the amount of memory used by the RTI/RCI communication was high
and also the CPU load for the RTI/RCI was heavy for the computer available as indicated in
figure 4. This system was stable only if a strict start-up sequence (one by one) for the federates
was followed.  The communication process was approximately 160 MB large in memory. With
some computers having only 64 MB of main memory this had a large impact on the start-up
time. This was 2.5 minutes for the Avionics Component (64 MB RAM), 1.5 minutes for the
Aircraft Dynamics Component (64 MB RAM) and 10 seconds for the Controls and Visual
Component (512 MB RAM). This resulted in a total start-up time of more than 5 minutes.
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Overall the amount of memory was sufficient to run fast enough most of the time. But as soon
as some extra “work” had to be done the memory shortage led to memory swapping which
worsened the situation and from which recovery usually became very difficult if not impossible.
The network bandwidth (10 Mbit/s) on the other hand was not a bottleneck. The total network
load was below 200 packets per second. Assuming “full” packets of 1500 bytes this is
approximately 2.3 Mbits/s which is 23 % of the bandwidth.
The CPU load of the HLA communication process is given in figure 4.

Figure 4: CPU load on different processors

During the experiment it was found that each attribute value update has a (CPU) overhead
[Murray00]. Performance wise it would be better to group the attributes that are always sent
together in one complex data type. The 15 attribute updates each simulation cycle for a Stick
and Throttle update from the Controls Component, could be reduced to two attribute updates
(one for each object).
The 37 attribute updates each simulation cycle, for the Aircraft state update by the Aircraft
Dynamics Component, could be reduced to one for positional and orientation data together with
an occasional attribute update for the others.
In the next version of RPR-FOM (v2) the positional and orientation attributes have already been
grouped together (spatial attribute). The other attributes are intended to be sent on change basis
only.

The amount of time the HLA communication process needed each simulation cycle varied as
can be seen in figure 5, even though the process was given real-time priority.
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Figure 5: HLA communication time per simulation cycle

The average HLA communication time per simulation cycle was 5-10 milliseconds for the
Controls component, 15-30 milliseconds for the Avionics component and 27-50 milliseconds
for the Aircraft dynamics component. The computer on which the Aircraft dynamics component
ran was indeed the slowest of the three and the average time per simulation cycle for the HLA
communication process limits the simulation frequency to 20-40 Hertz. Besides the average
time the maximum time and the variation are important for real-time applications. In the
experiment set-up the federates did not wait for the HLA communications process to complete
when this took longer than the simulation cycle, but kept its own real-time pace. This should be
considered as an undesired situation. The number of times this took place is logged as the
“communication not ready” counter in figure 6.
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Figure 6: HLA communication not ready counter

Due to the occurrence of  “communication not ready” and due to the fact that the federates run
independently, the updates for Stick&Throttle and Aircraft state data do not arrive at fixed
intervals, but vary. This can be seen in the time difference or interval between between aircraft
state updates for the Visual component shown in the figure 7. The order in which the state
updates arrived was the same order as they were sent out.

Figure 7: Time difference between state updates Visual component
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The variation in time interval of Stick&Throttle and Aircraft State data update has an effect on
the form of the data signals as seen in figure 8, pointed out by the arrows. Although this effect
seems small, it has a non-deterministic effect on responses of for example accurate control
systems. Also the “glitches” in pitch and roll can be seen on the visual as “hiccups”.

Figure 8: Roll angle in Dynamics and Visual component

9 Comparison of results with undivided FPS

All the measured latencies and variances in latency in this experiment are due to the
components being distributed on separate computers. In the case of an undivided FPS, with all
software modules running on one central computer, the latency or variance in latency is always
less than one simulation cycle.

The measured latencies come on top of the component – hardware latencies (data acquisition
hardware, out of the window display hardware etcetera). These component-hardware latencies
are the same in both the undivided FPS and the divided FPS (this experiment set-up) and
depending on the hardware system vary between one simulation cycle and 70 milliseconds
[Kuiper00]. The total latencies are expressed in table 2. Combining the given latencies of the
undivided FPS with the measured latencies during the experiment gives the total latency for the
JSA set-up and is given in table 3.

The flexibility of independently developed components is paid for in added latency and variance
in latency. Also expertise and time is needed to monitor the latency and often to tune the set-up
to keep the latency as small as possible. Also the consistency must be looked at closely with
each set-up. Especially with more complicated set-ups the prevention of  expectation and
causality violation or  divergence needs extra attention.
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For rapid prototyping and functional tests the advantages of a component-based set-up outweigh
the trade-off in latency. But if deterministic low-latency is needed every added latency is to be
avoided. The needed total Stick to Visual latency of 100 milliseconds (maximum) for high
fidelity flight simulators is already hard to achieve.

The RCI also has the possibility to schedule components. This could eliminate a large part of
the variance in latency that is inherent to free-running components as used in this experiment.
The gain is dependent on the accuracy of this distributed scheduling mechanism.  This can be an
interesting and promising area for further research.

Table 2: Total Stick to Visual latency for Fighter Pilot station, undivided set-up

Latency @ 10 Hz

(milliseconds)

Latency @ 25 Hz

(milliseconds)

Latency @ 50 Hz

(milliseconds)

min mean max min Mean max min mea

n

Max

1. Data input time     2  52 102  2  22 42  2 12 22

2. Controls input

module processing

time

3. Controls to

Dynamics

transmit time

4. Dynamics

module processing

time

5. Dynamics to

Visual transmit

time

6. Visual module

processing time

100

(toge-

ther less

than one

simu-

lation

cycle)

100 100 40  40 40 20 20 20

7. Visual system

display time

 49.99 58.3  66.7 49.99  58.3  66.7 49.99 58.3  66.7

Total Stick to

Visual latency

152 210.3 268.7 92 120.3 148.7 72 90.3 108.7
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Table 3: Total Stick to Visual latency Fighter Pilot station, JSA set-up

Latency @ 10 Hz

(milliseconds)

Latency @ 25 Hz

(milliseconds)

Latency @ 50 Hz

(milliseconds)

min Mean max min Mean max min Mean max

1. Data input time    2   52 102     2  22  42 2 12 2 2

2. Controls input

module processing

time

   1     1     1     1    1     1 - - -

3. Controls to

Dynamics transmit

time

 10 200 >400    10 100 >200 - - -

4. Dynamics module

processing time

100 100 >100   40  40 >40 - - -

5. Dynamics to

Visual transmit time

  30 100 >200   30  20 >40 - - -

6. Visual module

processing time

   1     1     1     1    1     1 - - -

7. Visual system

display time

 49.99 58.3 66.7  49.99  58.3  66.7 49.99 58.3 66.7

Total 194 512 >870 134 242 >390 - - -
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10 Conclusions and lessons learned

Due to the large size in memory of the HLA communication process (RTI/RCI, 160 MB on
IRIX) it is strongly recommended to use computers with at least 256-512 MB of memory. The
HLA communication process is also CPU hungry, lots of CPU power on all the participation
systems is necessary to prevent it from creating a bottle neck. The use of older computer
systems is therefore strongly discouraged.

Most of the latency build up and peaks as seen in the graphs could presumably be avoided by
using more powerful computers (CPU and memory) and lowering the load by cutting down the
number of attribute updates each simulation cycle. This could also give more room to increase
the simulation frequency, which in turn has a positive effect on the latency (lower average), but
on the other hand would lead to again a higher load.

The CPU load of the HLA communication process limited the simulation frequency to 25 Hz
and the number of players to 4. Higher simulation frequencies are possible by using more
powerful computers and by combining attributes to complex data types in the SOM/FOM. The
mean latency can be lowered by rearranging the read and write order in the HLA
communication process.

A large part of the added latency and variance in latency can be traced back to the fact that the
components ran independently with a fixed simulation frequency. If the components could be
triggered sequentially, this could be a large improvement. This trigger mechanism would need
to be accurate and deterministic to get good results.
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