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Problem area 
In order to combine the 
compositional specification 
power of Petri nets with the 
analysis power of Markov 
processes, Malhotra & Trivedi 
(1994) Muppala & Fricks & 
Trivedi (2000) developed a 
power hierarchy of dependability 
models. In Everdij & Blom (2003, 
2005), the power hierarchy was 
extended with dynamically 
coloured Petri nets (DCPN) and 
piecewise deterministic Markov 
processes (PDP). In Everdij Blom 
(2006), this power hierarchy was 
further extended by 
stochastically and dynamically 
coloured Petri nets (SDCPN) and 
general stochastic hybrid 
process (GSHP). 
 

Description of work 
In this paper the power-
hierarchy has been further 
deepened by studying various 
ways to develop GSHP. We first 
define SDCPN and the resulting 
SDCPN process. Next, we study 
GSHP as an execution of a 
general stochastic hybrid system 
(GSHS). Subsequently, we define 
GSHP as a solution of a hybrid 
stochastic differential equation 
(HSDE) and explain the 
differences between GSHS and 
HSDE. Next, we show that GSHS, 
HSDE and SDCPN are bisimilar. 
Finally, the results are illustrated 
with an aircraft evolution 
example. 
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Results and conclusions 
The bisimilarities between 
SDCPN, GSHS and HSDE mean 
that each of them inherits the 
strengths of the other two 
formalisms. Hence, analysis 
tools designed for GSHS, HSDE 
and GSHP and their properties 
become available for SDCPN. 
Examples of GSHP properties are 
convergence in discretisation, 
existence of limits, existence of 
event probabilities, strong 
Markov properties, and 
reachability analysis. Examples 
of GSHS features are their 
connection to formal methods in 
automata theory and optimal 
control theory. Examples of 

HSDE features are stochastic 
analysis tools for semi-
martingales. At the same time, 
numerous SDCPN features such 
as natural expression of causal 
dependencies, concurrency and 
synchronisation mechanism, 
hierarchical and modular 
construction, and graphical 
representation become available 
when modelling GSHS, HSDE and 
GSHP through SDCPN.  
These complementary 
advantages of SDCPN, GSHS, 
HSDE and GSHP perspectives 
tend to increase with the 
complexity of the system 
considered.
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For a large range of complex applications, governments and industries invest in the develop-
ment of innovative new systems existing of many distributed components that interact in a
dynamic way with many uncertainties. Before any such system can be introduced into prac-
tice, an evaluation needs to have shown that both the system and the way it is used in its new
context realizes the applicable objectives. If the new complex system is in its interactions simi-
lar to a previous system, such investigation can be done by analysis judgement of capable and
experienced experts who judge local behaviour and implicitly assume that the interactions
are working as before. If the complex system is very different from the old system, then this
expert judgement approach falls short. A valuable alternative is to develop a mathematical
model that incorporates the interactions, analyse this model, mobilise domain experts to eval-
uate where the model is representative for reality and where it needs improvement, and learn
to understand how the real system works by learning how the model works. This requires a
growing need for modelling and analysis of stochastic hybrid systems.
Petri nets, e.g. (David & Alla, 1994), have shown to be useful for developing models of various
complex applications. Typical Petri net features are concurrency and synchronisation mecha-
nism, hierarchical and modular construction, and natural expression of causal dependencies,
in combination with graphical and equational representation. Numerous extensions to the ba-
sic formalism have been developed that combine different modelling features in an integrated
way, including various hybrid state Petri net versions, e.g. (Giua, 1999), which combine dis-
crete and continuous system aspects.
As a powerful class of models that support stochastic analysis, (Davis, 1984; 1993) introduced
piecewise deterministic Markov processes (PDPs) as the most general class of continuous-time
hybrid state Markov processes which include both discrete and continuous processes, except
diffusion. In (Bujorianu & Lygeros, 2003; Hu et al., 2000) the PDPs have been defined as
stochastic hybrid automata. Subsequently, diffusion by means of Brownian motion has been
incorporated (Bujorianu & Lygeros, 2006). This way, a formal connection is established be-
tween stochastic hybrid processes that are supported by powerful stochastic analysis tools
(Davis, 1993; Elliott, 1982; Elliott et al., 1995) and the automata formalism to develop formal
verification tools (Frehse, 2008; Kwiatkowska et al., 2004; Labinaz et al., 1997).
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In order to combine the advantages of the Petri net modelling formalisms and those of the
Markovian analysis formalism, (Malhotra & Trivedi, 1994) and (Muppala et al., 2000) started
the development of establishing formal connections between Petri nets and stochastic pro-
cesses. Their result is a hierarchy of various dependability models based on their modelling
power. At the left-hand-side of this power hierarchy are Petri net models, with generalised
stochastic Petri nets (GSPN) at the bottom, and deterministic and stochastic Petri nets (DSPN) at
the top. At the right-hand-side of this power hierarchy are Markov chains at the bottom and
semi-Markov processes at the top. Arrows between different formalisms indicate that mappings
exist, i.e. that the elements of one formalism can be represented in terms of the elements of
the other formalism, such that the executions, i.e. their solutions as a stochastic process, are
equivalent. In a series of studies (Everdij & Blom, 2003; 2005; 2006) developed an extension of
this power hierarchy in probabilistic modelling, see Fig. 1.

Stochastically and Dynamically
Coloured Petri Net (SDCPN)

Continuous Time Markov Chain
(CTMC)

Generalised Stochastic Petri Net
(GSPN)

Deterministic and Stochastic Petri
Net (DSPN)

Semi Markov Process

Dynamically Coloured Petri Net
(DCPN)

General Stochastic Hybrid Process
(GSHP)

Piecewise Deterministic Markov
Process (PDP)

�� [M]

�[M] �[M]

�[E] �[D]

�� [E]

�[C] �[B]

�� [C]

Fig. 1. Power hierarchy among various model types. An arrow from a model to another
model indicates that the second model has more modelling power than the first model. The
[M] arrows have been established in (Malhotra & Trivedi, 1994; Muppala et al., 2000). The [D]
arrow is established in (Davis, 1984). The [B] arrow is established in (Bujorianu & Lygeros,
2006) and in (Blom, 2003). The [E] arrows are established in (Everdij & Blom, 2003; 2005). The
[C] arrows are established in (Everdij & Blom, 2006) and the current chapter.

At the left hand side of this power hierarchy, we extended DSPN to dynamically coloured Petri
nets (DCPN) and further to stochastically and dynamically coloured Petri nets (SDCPN). At the
right hand side of the power hierarchy we extended semi Markov processes to piecewise de-
terministic Markov processes (PDP) and further to general stochastic hybrid processes (GSHP). In
addition we showed effective ways how a DCPN can be mapped into PDP and the other
way around, and how SDCPN can be mapped into GSHP and the other way around. DCPN
and SDCPN are hybrid Petri net classes in which the tokens have Euclidean-valued colours
that change through time (dynamically) while the tokens reside in their place. For DCPN, these
colours follow ordinary differential equations, for SDCPN, the colours follow stochastic differ-
ential equations. The specific strength of (S)DCPN is their compositional specification power,
which makes available a hierarchical modelling approach that separates local modelling is-
sues from global modelling issues. This is illustrated for a large distributed example in air
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traffic management (Everdij et al., 2006), which covers many distributed agents each of which
interacts in a dynamic way with the others. Through a series of studies (Strubbe & Van der
Schaft, 2005) developed a powerful compositional specification approach for automaton of
PDP type (i.e. without Brownian motion), but for the complex air traffic management exam-
ple (S)DCPN was shown to be better at compositional specification (Strubbe & Van der Schaft,
2004, Section 5.2).
For the mappings developed in (Everdij & Blom, 2006) between SDCPN and GSHP we made
use of the general stochastic hybrid system (GSHS) theoretical setting developed by (Bujorianu
& Lygeros, 2006), where GSHP is defined as an execution of a GSHS. More specifically, this
means that SDCPN and GSHS are bisimilar in the sense that executions of SDCPN and GSHS
yield GSHPs which are probabilistically equivalent, see e.g. (Bujorianu et al., 2005; Van der
Schaft, 2004). Because of this bisimilarity, each formalism can take advantage of the strengths
of both of them (Everdij & Blom, 2008).
Although the progress in the development of GSHP as an execution of a GSHS has led to
significant increase of available stochastic analysis tools, there are some remaining issues to
be addressed:

• Jump linear systems are not well covered, which unfortunately excludes most existing
work on stochastic hybrid systems.

• Semi-martingale property of GSHS execution is unknown, which prohibits the use of Itô’s
differentiation rule for semi-martingales.

In the current chapter, these issues are further developed by considering GSHP not only as
GSHS executions, but also as solutions of hybrid stochastic differential equations (HSDE). The
HSDE approach towards studying GSHP has been developed in a series of complementary
studies (Blom, 2003; Blom et al., 2003; Krystul, 2006; Krystul et al., 2007). The aim of this chap-
ter is to characterise the relations between SDCPN, GSHP, HSDE and GSHS and to show that
SDCPN, GSHS and HSDE are bisimilar. Fig. 2 shows the relations between the formalisms,
and the key tools available for each of them.
With these relations, the properties and advantages of the various approaches come within
reach of each other. The compositional specification power of SDCPN makes it relatively
easy to develop a model for a complex system with multiple interactions. Subsequently, in
the analysis stage three alternative approaches can be taken. The first is direct execution of
SDCPN and evaluation through e.g. Monte Carlo simulation. The second is mapping the
SDCPN into a GSHS and evaluating its execution, with the advantages of connection to formal
methods in automata theory and to optimal control theory (Bujorianu & Lygeros, 2004). The
third is mapping the SDCPN into HSDE and evaluating its solution, with the advantages
of stochastic analysis for semi-martingales (Elliott, 1982; Elliott et al., 1995). With the GSHP
resulting from any of these three means, properties become available such as convergence of
discretisation, existence of limits, existence of event probabilities, strong Markov properties,
and reachability analysis (Bujorianu & Lygeros, 2006; Davis, 1993; Ethier & Kurtz, 1986).
The organisation of this chapter is as follows. Section 2 defines SDCPN and the related SD-
CPN process. Section 3 defines GSHS and its GSHS execution. Section 4 defines HSDE and
its stochastic process solution. Section 5 shows that SDCPN, GSHS and HSDE are bisimilar.
Section 6 gives an example SDCPN. Section 7 presents this SDCPN example by an HSDE and
by a GSHS. Section 8 gives conclusions. The appendices provide proof for the theorems in
Section 5.
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Compositional
specification

Automata
theory

Probabilistic
analysis

Stochastic
analysis

SDCPN

HSDE

GSHS

GSHP

[C]

[E]

[B1][C]

[B2]

[E]

Fig. 2. Relationship between SDCPN, GSHS, GSHP and HSDE, and their key properties and
advantages. The [B1] arrow is established in (Blom, 2003). The [B2] arrow is established
in (Bujorianu & Lygeros, 2006). The [E] arrows are established in (Everdij & Blom, 2006).
The [C] arrows are established in the current chapter, with bisimilarity relations having two-
directional arrows.
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This section presents a definition of stochastically and dynamically coloured Petri net (SDCPN).

Definition 2.1 (Stochastically and dynamically coloured Petri net). An SDCPN is a collection
of elements (P , T , A, N , S , C, I , V , W , G , D, F ), together with an SDCPN execution prescription
which makes use of a sequence {Ui; i = 0, 1, . . .} of independent uniform U[0, 1] random variables,
of independent sequences of mutually independent standard Brownian motions {Bi,P

t ; i = 1, 2, . . .}
of appropriate dimensions, one sequence for each place P, and of five rules R0–R4 that solve enabling
conflicts.

The formal SDCPN definition provided below is organised as follows: Section 2.1 defines
the SDCPN elements (P , T , A, N , S , C, I , V , W , G , D, F ). Section 2.2 explains the SDCPN
execution, which makes use of the rules R0–R4. Section 2.3 explains how the SDCPN execution
defines a unique stochastic process.

��� �� 
! ������
	
The SDCPN elements (P , T , A, N , S , C, I , V , W , G , D, F ) are defined as follows:

• P is a finite set of places.

• T is a finite set of transitions which consists of 1) a set TG of guard transitions, 2) a set
TD of delay transitions and 3) a set TI of immediate transitions.

• A is a finite set of arcs which consists of 1) a set AO of ordinary arcs, 2) a set AE of
enabling arcs and 3) a set AI of inhibitor arcs.



  

 

 

 

  
NLR-TP-2010-324 

February 2010  11 

 

�������	
�
��
�
�����
	������������
��������	�	��������
���	
����	
����������	�	
��	�����
�����������������
���������������
���
� �(*

• N : A → P × T ∪ T × P is a node function which maps each arc A ∈ A to a pair
of ordered nodes N (A), where a node is a place or a transition1. The place of N (A)
is denoted by P(A), the transition of N (A) is denoted by T(A), such that for all A ∈
AE ∪ AI : N (A) = (P(A), T(A)) and for all A ∈ AO: either N (A) = (P(A), T(A)) or
N (A) = (T(A), P(A)). Further notation:

– A(T) = {A ∈ A | T(A) = T} denotes the set of arcs connected to transition T,
Ain(T) = {A ∈ A(T) | N (A) = (P(A), T)} is the set of input arcs of T,
Aout(T) = {A ∈ A(T) | N (A) = (T, P(A))} is the set of output arcs of T,
Ain,O(T) = Ain(T) ∩AO is the set of ordinary input arcs of T,
Ain,OE(T) = Ain(T) ∩ {AE ∪AO} is the set of input arcs of T that are either ordi-
nary or enabling, and

– P(A⊂) = {P(A); A ∈ A⊂} is the multi-set of places connected to the subset of
arcs A⊂ ⊂ A.

Finally, {Ai ∈ AI | ∃A ∈ A, A �= Ai : N (A) = N (Ai)} = ∅, i.e., if an inhibitor arc
points from a place P to a transition T, there is no other arc from P to T.

• S ⊂ {R
0, R

1, R
2, . . .} is a finite set of colour types, with R

0 � ∅.

• C : P → S is a colour type function which maps each place P ∈ P to a specific colour
type in S . Each token in P is to have a colour in C(P). Since C(P) ∈ {R

0, R
1, . . .},

there exists a function n : P → N such that C(P) = R
n(P). If C(P) = R

0 � ∅ then a
token in P has no colour. Further notation: if P(A⊂) contains more than one place, e.g.,
P(A⊂) = {Pi1 , . . . , Pik

}, then C(P(A⊂)) is defined by C(Pi1)× · · · × C(Pik
).

• I : N
|P| × C(P)N → [0, 1] is a probability measure, which defines the initial marking

of the net: for each place it defines a number ≥ 0 of tokens initially in it and it defines
their initial colours. Here, N

|P| � {(m1, . . . , m|P|); mi ∈ N, mi < ∞, i = 1, . . . , |P|}

and C(P)N � {C(P1)
m1 × · · · × C(P|P|)

m|P | ; mi ∈ N, mi < ∞, i = 1, . . . , |P|}, where

C(Pi)
mi � R

min(Pi) for all i = 1, . . . , |P|, where P is denoted P = {P1, . . . P|P|}. It is
assumed that all tokens in a place are distinguishable by a unique identification tag
which translates to a unique ordering/listing of tokens per place.

• V = {VP; P ∈ P , C(P) �= R
0} is a set of token colour functions. For each place P ∈ P

for which C(P) �= R
0, it contains a function VP : C(P) → C(P) that defines the drift

coefficient of a differential equation for the colour of a token in place P.

• W = {WP; P ∈ P , C(P) �= R
0} is a set of token colour matrix functions. For each

place P ∈ P for which C(P) �= R
0, it contains a measurable mapping WP : C(P) →

R
n(P)×h(P) that defines the diffusion coefficient of a stochastic differential equation for

the colour of a token in place P, where h : P → N. It is assumed that WP and VP satisfy
conditions that ensure a probabilistically unique solution of each stochastic differential
equation.2

1 The SDCPN arcs have no arc weights, but this node function definition leaves the freedom to define
multiple arcs between the same pair of transition and place or place and transition (except if an inhibitor
arc is involved).

2 In the earlier definition by (Everdij & Blom, 2006) it was assumed that VP and WP satisfy local Lipschitz
condition. This condition has now been relaxed to probabilistic uniqueness of solution of the related
stochastic differential equation(s).
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• G = {GT; T ∈ TG} is a set of transition guards. For each T ∈ TG, it contains a tran-
sition guard GT, which is an open subset in C(P(Ain,OE(T))) with boundary ∂GT . If
C(P(Ain,OE(T))) = R

0 then ∂GT = ∅.3 There is no requirement that GT be connected.

• D = {DT; T ∈ TD} is a set of transition delay rates. For each T ∈ TD , it contains a locally
integrable transition delay rate DT : C(P(Ain,OE(T))) → R

+. If C(P(Ain,OE(T))) = R
0

then DT is a constant function. 4

• F = {FT; T ∈ T } is a set of firing measures. For each T ∈ T , it contains a firing
measure FT : ({0, 1}|Aout(T)| × C(P(Aout(T))))× C(P(Ain,OE(T))) → [0, 1], which gen-
erates the number and colours of the tokens produced when transition T fires, given the
value of the vector ∈ C(P(Ain,OE(T))) that collects all input tokens: For each output arc
(∈ Aout(T)), zero or one token is produced, and if the colours of the tokens produced are
collected in a vector, this vector is ∈ C(P(Aout(T))). For each fixed H ⊂ C(P(Aout(T))),
FT(H; ·) is measurable. For any c ∈ C(P(Ain,OE(T))), FT(·; c) is a probability measure.
Here, {0, 1}|Aout(T)| � {(e1, . . . , e|Aout(T)|); ei ∈ {0, 1}, i = 1, . . . , |Aout(T)|}.

For the places, transitions and arcs, the graphical notation is as in Figure 3.

Place Guard transitionG

Delay transitionD

Immediate transitionI

Ordinary arc

Enabling arc

Inhibitor arc

Fig. 3. Graphical notation for places, transitions and arcs in an SDCPN

��� �� 
! �"���
���
The execution of an SDCPN provides a series of increasing stopping times, 0 = τ0 < τ1 <

τ2 < · · · , with for t ∈ (τk, τk+1) a fixed number of tokens per place and per token a colour
which is the solution of a stochastic differential equation. It uses a sequence {Ui; i = 0, 1, . . .}
of independent uniform U[0, 1] random variables, and independent sequences of mutually
independent standard Brownian motions {Bi,P

t ; i = 1, 2, . . .} of appropriate dimensions, one
sequence for each place P.

���
��
���
The probability measure I characterises an initial marking at τ0, i.e. it gives each place P ∈ P
zero or more tokens and gives each token in P a colour in C(P), i.e. a Euclidean-valued vector.
Define the inverse of I by a measurable function I inv : [0, 1] → N

|P| × C(P)N such that
μL{u | I inv(u) ∈ H} = I(H), for H Borel measurable and μL the Lebesgue measure. Then
the initial marking is a hybrid random vector characterised by (M0, C0) = I inv(U0). Here, M0
is a |P|-dimensional vector of non-negative integers, the ith component Mi,0 of which denotes

3 In earlier SDCPN definitions, the transition guard was defined as a Boolean function that evaluated to
True if the boundary of an open subset was hit by the input token colours. Without losing generality,
the transition guard is now defined to be the open subset itself.

4 In earlier SDCPN definitions, the transition delay was defined as a probability distribution function
that made use of an integrable transition delay rate. Without losing generality, the transition delay is
now defined to be the delay rate itself.
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the number of tokens initially in place Pi, i = 1, . . . |P|, and C0 is a ∑
|P|
i=1 Mi,0n(Pi)-dimensional

Euclidean-valued random vector which provides the colours of the initial tokens. If M1,0 ≥ 1
then the first n(P1) components of C0 are assigned to the first token in P1. If M1,0 ≥ 2 then the
next n(P1) components of C0 are assigned to the second token in P1, etc., until all tokens in P1
have their assigned colour. The following components of C0 are assigned to tokens in places
P2, . . . , P|P| in the same way. If C(P) = R

0 then the tokens in P get no colour.

#�$�� ������ �����
���
For each token in each place P for which C(P) �= R

0: if the colour of this token is equal to
CP

0 at time t = τ0, and if this token is still in this place at time t > τ0, then the colour CP
t of

this token equals the probabilistically unique solution of the stochastic differential equation
dCP

t = VP(CP
t )dt +WP(CP

t )dBi,P
t with initial condition CP

τ0
= CP

0 , and with {Bi,P
t } an h(P)-

dimensional standard Brownian motion. The first token, if any, in place P uses Brownian
motion {B1,P

t }; the second token, if any, uses {B2,P
t }, etc. Each token in a place for which

C(P) = R
0 remains without colour.

#���	�
��� �������%
A transition T is pre-enabled if it has at least one token per incoming ordinary and enabling arc
in each of its input places and has no token in places to which it is connected by an inhibitor
arc. For each transition T that is pre-enabled at τ0, consider one token per ordinary and en-
abling arc in its input places and write CT

t ∈ C(P(Ain,OE(T))), t ≥ τ0, as the column vector
containing the colours of these tokens; CT

t evolves through time according to its correspond-
ing token colour functions of the places in P(Ain,OE(T)). If this vector is not unique (i.e., if one
input place contains several tokens per arc), all possible such vectors are executed in parallel.
Hence, a transition can be pre-enabled by multiple combinations of input tokens in parallel.
A transition T is enabled if it is pre-enabled and a second requirement holds true. For T ∈ TI ,
the second requirement automatically holds true at the time of pre-enabling. For T ∈ TG, the
second requirement holds true when CT

t ∈ ∂GT . For T ∈ TD, the second requirement holds
true at t = τ0 + σT

1 , where σT
1 is generated from a probability distribution function DT(t −

τ0) = 1 − exp(−
∫ t

τ0
DT(CT

s )ds), i.e. σT
1 = Dinv

T (U), where Dinv
T is the inverse of DT(t − τ0)

defined by Dinv
T (u) = inf{t − τ0 | exp(−

∫ t
τ0
DT(CT

s )ds) ≤ u}, with inf{ } = +∞. Each delay
transition uses one new uniform random variable U ∼ U[0, 1] (per vector of input tokens)
each time it becomes pre-enabled to determine its time of enabling.
In the case of competing enablings, the following rules apply:

R0 The firing of an immediate transition has priority over the firing of a guard or a delay
transition.

R1 If one transition becomes enabled by two or more sets of input tokens at exactly the
same time, and the firing of any one set will not disable one or more other sets, then it
will fire these sets of tokens independently, at the same time.

R2 If one transition becomes enabled by two or more sets of input tokens at exactly the
same time, and the firing of any one set disables one or more other sets, then the set that
is fired is selected randomly, with the same probability for each set.

R3 If two or more transitions become enabled at exactly the same time and the firing of any
one transition will not disable the other transitions, then they will fire at the same time.
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R4 If two or more transitions become enabled at exactly the same time and the firing of any
one transition disables some other transitions, then each combination of transitions that
can fire independently without leaving enabled transitions gets the same probability of
firing.

By these rules and their combinations, if a transition is enabled in a particular set of tokens,
then it is either fired or it is disabled (in this set of tokens) by the firing of another transition.

#���	�
��� ����%
If T is enabled, suppose this occurs at time τ1 and in a particular vector of token colours CT

τ1
,

it removes one token per arc in Ain,O(T) corresponding with CT
τ1

from each of its input places
(i.e. tokens are not removed along enabling arcs). Next, T produces zero or one token along
each output arc: If (eT

τ1
, aT

τ1
) is a random hybrid vector generated from probability measure

FT(·; CT
τ1
), then vector eT

τ1
∈ {0, 1}|Aout(T)| is an |Aout(T)|-dimensional vector of zeros and

ones, where the ith vector element corresponds with the ith outgoing arc of transition T. An
output place gets a token iff it is connected to an arc that corresponds with a vector element
1. Moreover, aT

τ1
∈ C(P(Aout(T))) specifies the colours of the produced tokens, i.e. if the first

1 in eT
τ1

corresponds with an arc from T to Pj, then the first n(Pj) elements in vector aT
τ1

are
assigned to the token produced in output place Pj. The remaining elements in aT

τ1
are assigned

to other tokens in the same way. The random hybrid vector from FT(·; CT
τ1
) is characterised by

defining the inverse of FT(·; CT
τ1
) as a measurable function F inv

T : [0, 1]× C(P(Ain,OE(T))) →
{0, 1}|Aout(T)| × C(P(Aout(T))) such that μL{u | F inv

T (u, c) ∈ H} = FT(H; c) for H in the
Borel set of {0, 1}|Aout(T)| × C(P(Aout(T))) and μL is the Lebesgue measure. Then (eT

τ1
, aT

τ1
) =

F inv
T (U, CT

τ1
). Each firing transition uses one new uniform random variable U ∼ U[0, 1] per

firing to determine its output tokens.

&"���
��� ���� ��	
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At t = τ1, zero or more transitions are pre-enabled (if this number is zero, no transitions will
fire anymore). If these include immediate transitions, then these are fired without delay, but
with use of rules R0–R4. If after this, still immediate transitions are enabled, then these are also
fired, and so forth, until no more immediate transitions are enabled. Each of the immediate
transitions that fire uses their firing measure and one uniform random variable (per firing) to
determine the number and colours of their output tokens. Next, the SDCPN is executed in the
same way as described above for the situation from τ0 onwards.
In order to keep track of the identity of individual tokens, the tokens in a place are ordered
according to the time at which they entered the place, or, if several tokens are produced for
one place at the same time, according to the order within the set of arcs A = {A1, . . . , A|A|}
along which these tokens were produced (the firing measure produces zero or one token along
each output arc). If due to rule R1, a transition fires two or more tokens along one arc at the
same time, their assigned order is according to the colours they have (smallest colour first). If
under these conditions, two tokens have exactly the same colour, they are indistinguishable
and the marking will not be dependent on their order.

��' �� 
! 	
����	
�� �����		
The marking of the SDCPN is given by the numbers of tokens in the places and the associated
colour values of these tokens. Due to the uniquely defined order of the tokens, the marking is
unique except possibly when one or more transitions fire (particularly, immediate transitions
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fire without delay hence a sequence of immediate transitions firing will generate a sequence of
markings at the same time instant). The SDCPN marking at each time instant can be mapped
to a probabilistically unique SDCPN stochastic process {Mt, Ct} as follows: For any t ≥ τ0, let
a token distribution be characterised by the vector M′

t = (M′
1,t, . . . , M′

|P|,t), where M′
i,t ∈ N

denotes the number of tokens in place Pi at time t and 1, . . . , |P| refers to a unique ordering
of places adopted for SDCPN. At times t ∈ (τk−1, τk) when no transition fires, the token
distribution is unique and the SDCPN discrete process state Mt is defined to be equal to M′

t.
The associated colours of these tokens are gathered in a column vector Ct which first contains
all colours of tokens in place P1, next (i.e. below it) all colours of tokens in place P2, etc, until
place P|P|, where 1, . . . , |P| refers to a unique ordering of places adopted for SDCPN. Within a
place the colours of the tokens are ordered according to the unique ordering of tokens within
their place defined for SDCPN (see under SDCPN execution above).
If at time t = τk one or more transitions fire, then the set of applicable token distributions is
collected in M̃τk = {M′

τk
| M′

τk
is a token distribution at time τk}, and the SDCPN discrete

process state at time τk is defined by Mτk = {M′
τk
| M′

τk
∈ M̃τk and no transitions are enabled

in M′
τk
}. In other words, Mτk is defined to be the token distribution that occurs after all tran-

sitions that fire at time τk have been fired. The associated colours of these tokens are gathered
in a column vector Cτk in the same way as described above. This construction ensures that
the process {Mt, Ct} has limits from the left and is continuous from the right, i.e., it satisfies
the càdlàg property. If at a time t when one or more transitions fire, the process {Mt} jumps
to the same value again, and only Ct makes a jump, then the càdlàg property for {Ct} (hence
for {Mt, Ct}) is still maintained due to the timing construction of {Mt} above and the direct
coupling of {Ct} with {Mt}.

'� (���

This section presents, following (Bujorianu & Lygeros, 2006), a definition of general stochastic
hybrid system (GSHS) and its execution.

Definition 3.1 (General stochastic hybrid system). A GSHS is an automaton (K, d, X , f , g, Init,
λ, Q), where

• K is a countable set.

• d : K → N maps each θ ∈ K to a natural number.

• X : K → {Eθ ; θ ∈ K} maps each θ ∈ K to an open subset Eθ of R
d(θ). With this, the hybrid

state space is given by E � {{θ} × Eθ ; θ ∈ K}.

• f : E → {R
d(θ); θ ∈ K} is a vector field.

• g : E → {R
d(θ)×h; θ ∈ K} is a matrix field, with h ∈ N.

• Init: B(E) → [0, 1] is an initial probability measure, with B(E) the Borel σ-algebra on E.

• λ : E → R
+ is a jump rate function.

• Q : B(E)× (E∪ ∂E) → [0, 1] is a GSHS transition measure, where ∂E � {{θ}× ∂Eθ; θ ∈ K}
is the boundary of E, in which ∂Eθ is the boundary of Eθ .

Definition 3.2 (GSHS execution). A stochastic process {θt, Xt} is called a GSHS execution if there
exists a sequence of stopping times 0 = τ0 < τ1 < τ2 · · · such that for each k ∈ N:

• (θ0, X0) is an E-valued random variable extracted according to probability measure Init.
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• For t ∈ [τk, τk+1), θt = θτk and Xt = Xk
t , where for t ≥ τk, Xk

t is a solution of the stochastic

differential equation dXk
t = f (θτk , Xk

t )dt + g(θτk , Xk
t )dB

θτk
t with initial condition Xk

τk
= Xτk ,

and where {Bθ
t } is h-dimensional standard Brownian motion for each θ ∈ K.

• τk+1 = τk + σk, where σk is chosen according to a survivor function given by F(t) =

1(t<τ∗) exp(−
∫ t

0 λ(θ, Xk
s )ds). Here, τ∗ = inf{t > τk | Xk

t ∈ ∂Eθτk
} and 1 is indicator

function.

• The probability distribution of (θτk+1, Xτk+1), i.e. the hybrid state right after the jump, is gov-
erned by the law Q(·; (θτk , Xτk+1−)).

(Bujorianu & Lygeros, 2006) show that under assumptions G1-G4 below, a GSHS execution is
a strong Markov Process and has the càdlàg property (right continuous with left hand limits).

G1 f (θ, ·) and g(θ, ·) are Lipschitz continuous and bounded. This yields that for each ini-
tial state (θ, x) at initial time τ there exists a pathwise unique solution Xt to dXt =
f (θ, Xt)dt + g(θ, Xt)dBt, where {Bt} is h-dimensional standard Brownian motion.

G2 λ : E → R
+ is a measurable function such that for all ξ ∈ E, there is ε(ξ) > 0 such that

t → λ(θt, Xt) is integrable on [0, ε(ξ)).

G3 For each fixed A ∈ B(E), the map ξ → Q(A; ξ) is measurable and for any (θ, x) ∈
E ∪ ∂E, Q(·; θ, x) is a probability measure.

G4 If Nt = ∑k 1(t≥τk), then it is assumed that for every starting point (θ, x) and for all
t ∈ R

+, ENt < ∞. This means, there will be a finite number of jumps in finite time.

)� ���&

This section presents, following (Blom, 2003) and (Blom et al., 2003), a definition of hybrid
stochastic differential equation (HSDE) and gives conditions under which the HSDE has a path-
wise unique solution. This pathwise unique solution is referred to as HSDE solution process or
GSHP. The basic advantage of using HSDE in defining a GSHP over using GSHS is that with
the HSDE approach the spontaneous jump mechanism is explicitly built on an underlying
stochastic basis, whereas in GSHS the execution itself imposes an underlying stochastic basis.
The differences are further discussed in Section 4.3.
For the HSDE setting we start with a complete stochastic basis (Ω,�, F, P, T), in which a
complete probability space (Ω,�, P) is equipped with a right-continuous filtration F = {�t}
on the positive time line T = R

+. This stochastic basis is endowed with a probability measure
μθ0,X0 for the initial state, an independent h-dimensional standard Wiener process {Wt} and
an independent homogeneous Poisson random measure pP(dt, dz) on T × R

d+1.

Definition 4.1 (Hybrid stochastic differential equation). An HSDE on stochastic basis
(Ω,�, F, P, T), is defined as a set of equations (1)-(8) in which a collection of elements (M, E, f ,
g, μθ0,X0 , Λ, ψ, ρ, μ, pP, {Wt}) appear.

This section is organised as follows: Section 4.1 explains the elements and the equations (1)-
(8) that define HSDE. Section 4.2 shows that under a number of HSDE conditions H1-H8, the
HSDE has a pathwise unique solution which is a semi-martingale. Section 4.3 discusses the
differences between GSHP as solution of HSDE and GSHP as execution of GSHS.
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This section presents the elements and equations that define a HSDE on a hybrid state space.
The elements (M, E, f , g, μθ0,X0 , Λ, ψ, ρ, μ, pP, {Wt}) are defined as follows:

• M = {ϑ1, . . . , ϑN} is a finite set, N ∈ N, 1 ≤ N < ∞.

• E = {{θ} × Eθ ; θ ∈ M} is the hybrid state space, where for each θ ∈ M, Eθ is an open
subset of R

n with boundary ∂Eθ . The boundary of E is ∂E = {{θ} × ∂Eθ ; θ ∈ M}.

• f : M × R
n → R

n is a measurable mapping.

• g : M × R
n → R

n×h is a measurable mapping.

• μθ0,X0 : Ω × B(E) → [0, 1] is a probability measure for the initial random variables θ0,
X0, which are defined on the stochastic basis; μθ0,X0 is assumed to be invertible.

• Λ : M × R
n → [0, ∞) is a measurable mapping.

• ψ : M × M × R
n × R

d → R
n is a measurable mapping such that x + ψ(ϑ, θ, x, z) ∈ Eϑ

for all x ∈ Eθ , z ∈ R
d, and ϑ, θ ∈ M.

• ρ : M × M × R
n → [0, ∞) is a measurable mapping such that ∑

N
i=1 ρ(ϑi, θ, x) = 1 for all

θ ∈ M, x ∈ R
n.

• μ : Ω × R
d → [0, 1] is a probability measure which is assumed to be invertible.

• pP : Ω × T × R
d+1 → {0, 1} is a homogeneous Poisson random measure on the

stochastic basis, independent of (θ0, X0). The intensity measure of pP(dt, dz) equals
dt · μL(dz1) · μ(dz), where z = Col{z1, z} and μL is the Lebesgue measure.

• W : Ω × T → R
h such that {Wt} is an h-dimensional standard Wiener process on the

stochastic basis, and independent of (θ0, X0) and pP.

Using these elements, the HSDE process {θ∗t , X∗
t } is defined as follows:

θ∗t = θk
t for all t ∈ [τb

k , τb
k+1), k = 0, 1, 2, . . . (1)

X∗
t = Xk

t for all t ∈ [τb
k , τb

k+1), k = 0, 1, 2, . . . (2)

Hence {θ∗t , X∗
t } consists of a concatenation of processes {θk

t , Xk
t } which are defined by (3)-(8)

below. If the system (1)-(8) has a solution in probabilistic sense, then the process {θ∗t , X∗
t } is

referred to as HSDE solution process or GSHP.

dθk
t =

N

∑
i=1

(ϑi − θk
t−)pP(dt, (Σi−1(θ

k
t−, Xk

t−), Σi(θ
k
t−, Xk

t−)]× R
d) (3)

dXk
t = f (θk

t , Xk
t )dt + g(θk

t , Xk
t )dWt +

∫
Rd

ψ(θk
t , θk

t−, Xk
t−, z)pP(dt, (0, Λ(θk

t−, Xk
t−)]× dz) (4)

with θ0
0 = θ0, X0

0 = X0 and with Σ0 through ΣN measurable mappings satisfying, for θ ∈ M,
ϑj ∈ M, x ∈ R

n:

Σi(θ, x) =

{
Λ(θ, x) ∑

i
j=1 ρ(ϑj, θ, x) if i > 0

0 if i = 0
(5)

In addition, for k = 0, 1, 2, . . ., with τb
0 = 0:

τb
k+1 � inf{t > τb

k | (θk
t , Xk

t ) ∈ ∂E} (6)

P{θk+1
τb

k+1
= ϑ, Xk+1

τb
k+1

∈ A | θk
τb

k+1−
= θ, Xk

τb
k+1−

= x} = Q({ϑ} × A; θ, x) (7)

for A ∈ B(Rn), where Q is given by

Q({ϑ} × A; θ, x) = ρ(ϑ, θ, x)
∫

Rd
1A(x + ψ(ϑ, θ, x, z))μ(dz) (8)
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This subsection shows that under a set of sufficient conditions H1-H8, the HSDE (1)-(8) has a
pathwise unique solution. Note that the existence of a pathwise unique solution guarantees
the existence of a unique solution in probabilistic sense.

Proposition 4.1. Let conditions H1-H8 below hold true. Let (θ∗0 (ω), X∗
0 (ω)) = (θ0, X0) ∈ E for all

ω. Then for every initial condition (θ0, X0), (1)-(8) has a pathwise unique solution {θ∗t , X∗
t } which is

càdlàg and adapted and is a semi-martingale assuming values in the hybrid state space E.

H1 For all θ ∈ M there exists a constant K(θ) such that for all x ∈ R
n, | f (θ, x)|2 +

‖g(θ, x))‖2 ≤ K(θ)(1 + |x|2), where |a|2 = ∑i(ai)
2 and ||b||2 = ∑i,j(bij)

2.

H2 For all r ∈ N and for all θ ∈ M there exists a constant Lr(θ) such that for all x and y
in the ball Br = {z ∈ R

n | |z| ≤ r + 1}, | f (θ, x) − f (θ, y)|2 + ‖g(θ, x) − g(θ, y)‖2 ≤
Lr(θ)|x − y|2.

H3 For each θ ∈ M, the mapping Λ(θ, ·) : R
n → [0, ∞) is continuous and bounded, with

upper bound a constant CΛ.

H4 For all (θ, ϑ) ∈ M
2, the mapping ρ(ϑ, θ, ·) : R

n → [0, ∞) is continuous.

H5 For all r ∈ N there exists a constant Mr(θ) such that
sup
|x|≤r

∫
Rd

|ψ(ϑ, θ, x, z)|μ(dz) ≤ Mr(θ), for all ϑ, θ ∈ M

H6 |ψ(θ, θ, x, z)| = 0 or > 1 for all θ ∈ M, x ∈ R
n, z ∈ R

d

H7 {(θ∗t , X∗
t )} hits the boundary ∂E a finite number of times on any finite time interval

H8 |ϑi − ϑj| > 1 for i �= j, with | · | a suitable metric well defined on M.

(Blom, 2003) has used (Lepeltier & Marchal, 1976) to prove a version of Proposition 4.1 where
E = M × R

n, i.e. there are no boundaries with instantaneous jumps. Subsequently, (Blom
et al., 2003) have proven the proposition under H1-H8 and the additional condition that {τb

k }
is a sequence of predictable stopping times. (Krystul, 2006; Krystul & Blom, 2005) have shown
that this additional condition can be removed. An overview of various HSDE versions is given
in (Krystul et al., 2007).

)�' ��	��		��� �� ���& ���	�	 (���
HSDE and GSHS have a lot of similarities. Both concatenate different solutions of SDEs with
hybrid jumps at each moment of switching to another SDE. Hence the differences are of a
rather technical nature. This section collects these technical differences between GSHS and its
GSHP execution, versus HSDE and its GSHP solution:

1. For GSHS, the discrete state space is a countable space of discrete variables. For HSDE,
the discrete state space is a finite set.

2. For GSHS, the continuous state is Euclidean with a dimension dependent on θ. For
HSDE, the continuous state is Euclidean with constant dimension n.

3. The times of spontaneous jump of the GSHS execution are driven by a survivor function
which imposes a stochastic basis. For HSDE, the times of spontaneous jumps are driven
by a Poisson random measure endowed upon a given stochastic basis.

4. For GSHS, the size of jump is driven by a transition measure Q. For HSDE, the jump
size is determined by probability measure μ and measurable mappings ψ and ρ.
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5. GSHS involves |K| Brownian motions. HSDE involves one Wiener process only.

6. For GSHS, the drift and diffusion coefficient are assumed (globally) Lipschitz and
bounded. For HSDE, the drift and dissusion coefficient are locally Lipschitz and are
allowed to grow with the continuous state.

For 1) and 2), GSHS has as advantage of being more general than HSDE. HSDE however
has significant advantages regarding issues 3)-6): Regarding 3)-5), HSDE has the advantage
that this allows to establish the semi-martingale property. Regarding 6), HSDE removes the
particular restriction of GSHS which excludes jump linear systems.

+� �� 
!, (��� ��� ���& ��� ��	������

This section shows that for each SDCPN there exists a GSHS which is bisimular, and there
exists a HSDE which is bisimular. This is shown in the four theorems below.

Theorem 5.1. Consider an arbitrary GSHS (K, d, X , f , g, Init, λ, Q) with a finite domain K. If for
each θ and initial value X0, the stochastic differential equation dXt = f (θ, Xt)dt + g(θ, Xt)dBt has a
unique solution in probabilistic sense, then this GSHS can be mapped into an SDCPN (P , T , A, N ,
S , C, I , V , W , G , D, F ) satisfying R0-R4. If the resulting SDCPN is executed on a probability space
endowed with standard Brownian motion (one for each place), then the resulting SDCPN process and
the GSHS execution are probabilistically equivalent.

Proof. See (Everdij & Blom, 2006).

Theorem 5.2. Consider an arbitrary SDCPN (P , T , A, N , S , C, I , V , W , G , D, F ) satisfying R0-
R4. If in the initial marking no immediate transition is enabled, and if the number of tokens remains
finite for t → ∞, then this SDCPN can be mapped into a GSHS (K, d, X , f , g, Init, λ, Q). If the
original SDCPN is executed on a probability space endowed with Brownian motion (one for each place)
then the resulting GSHS execution and the SDCPN process are probabilistically equivalent.

Proof. See (Everdij & Blom, 2006).

Theorem 5.3 (HSDE into SDCPN). Consider an arbitrary HSDE (1)-(8) with elements (M, E, f ,
g, μθ0,X0 , Λ, ψ, ρ, μ, pP, {Wt}). If for each θ the stochastic differential equation dXt = f (θ, Xt)dt +
g(θ, Xt)dWt has a unique solution in probabilistic sense and if Λ is bounded, then the elements of
this HSDE can be mapped into an SDCPN (P , T , A, N , S , C, I , V , W , G , D, F ) satisfying R0–
R4. If the resulting SDCPN is executed on a probability space endowed with sequences of standard
Brownian motions (one sequence for each place), then the resulting SDCPN process and the HSDE
solution process are probabilistically equivalent.

Proof. See Appendix A.

Theorem 5.4 (SDCPN into HSDE). Consider an arbitrary SDCPN (P , T , A, N , S , C, I , V ,
W , G , D, F ) satisfying R0–R4. If in the initial marking no immediate transition is enabled, if the
delay rates DT are bounded, and if the number of tokens remains finite for t → ∞, then this SDCPN
can be mapped into a HSDE (1)-(8) with elements (M, E, f , g, μθ0,X0 , Λ, ψ, ρ, μ, pP, {Wt}). If
the original SDCPN is executed on a probability space which is endowed with sequences of standard
Brownian motions (one sequence for each place), then the resulting HSDE solution process and the
SDCPN process are probabilistically equivalent.

Proof. See Appendix B.
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Theorems 5.1 and 5.2 imply that SDCPN and GSHS are bisimilar. Theorems 5.3 and 5.4 imply
that SDCPN and HSDE are bisimilar. The implications are that GSHS and HSDE are also
bisimilar and that the strengths of all three formalisms come within reach of each other. The
use of this bisimilarity is illustrated by an example in the following two sections.

-� �� 
! �"�����

To illustrate the advantages of SDCPN when modelling a complex system, consider a sim-
plified model of the evolution of an aircraft in one sector of airspace. The deviation of this
aircraft from its intended path is affected by its engine system and its navigation system. Each
of these aircraft systems can be in either Working (functioning properly) or Not working (op-
erating in some failure mode). Both systems switch between these modes independently and
with exponentially distributed sojourn times, with finite rates δ3 (engine repaired), δ4 (engine
fails), δ5 (navigation repaired) and δ6 (navigation fails), respectively. If both systems are Work-
ing, the aircraft evolves in Nominal mode and the position Yt and velocity St of the aircraft are
determined by dXt = V1(Xt)dt +W1dWt, where Xt = (Yt, St)

′. If either one, or both, of the
systems is Not working, the aircraft evolves in Non-nominal mode and the position and veloc-
ity of the aircraft are determined by dXt = V2(Xt)dt +W2dWt. The factors W1 and W2 are
determined by wind fluctuations. Initially, the aircraft has position Y0 and velocity S0, while
both its systems are Working. The evaluation of this process may be stopped when the aircraft
has Landed, i.e. its vertical position and velocity are equal to zero.
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I T2
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P1

G T7

G T8
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D
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•
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Fig. 4. SDCPN graph for the aircraft evolution example

Fig. 4 shows the SDCPN graph for this example, where,

• P1 denotes aircraft evolution Nominal, i.e. evolution is according to V1 and W1.

• P2 denotes aircraft evolution Non-nominal, i.e. evolution is according to V2 and W2.

• P3 and P4 denote engine system Not working and Working, respectively.

• P5 and P6 denote navigation system Not working and Working, respectively.

• P7 denotes the aircraft has landed.

• T1a and T1b denote a transition of aircraft evolution from Nominal to Non-nominal, due
to engine system or navigation system Not working, respectively.
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• T2 denotes a transition of aircraft evolution from Non-nominal to Nominal, due to engine
system and navigation system both Working again.

• T3 through T6 denote transitions between Working and Not working of the engine and
navigation systems.

• T7 and T8 denote transitions of the aircraft landing.

The graph in Fig. 4 completely defines SDCPN elements P , T , A and N , where TG = {T7, T8},
TD = {T3, T4, T5, T6} and TI = {T1a, T1b, T2}. The other SDCPN elements are specified below:

S : Two colour types are defined; S = {R
0, R

6}.

C: C(P1) = C(P2) = C(P7) = R
6, i.e. tokens in P1, P2 and P7 have colours in R

6; the
colour components model the 3-dimensional position and 3-dimensional velocity of the
aircraft. C(P3) = C(P4) = C(P5) = C(P6) = R

0 � ∅.

I : Place P1 initially has a token with colour X0 = (Y0, S0)
′, with Y0 ∈ R

2 × (0, ∞) and
S0 ∈ R

3 \ Col{0, 0, 0}. Places P4 and P6 initially each have a token without colour.

V , W : The token colour functions for places P1, P2 and P7 are determined by (V1,W1),
(V2,W2), and (V7,W7), respectively, where (V7,W7) = (0, 0). For places P3 – P6 there
is no token colour function.

G : Transitions T7 and T8 have a guard defined by GT7 = GT8 = R
2 × (0, ∞)× R

2 × (0, ∞).

D: The jump rates for transitions T3, T4, T5 and T6 are DT3 (·) = δ3, DT4 (·) = δ4, DT5 (·) = δ5
and DT6 (·) = δ6.

F : Each transition has a unique output place, to which it fires a token with a colour (if
applicable) equal to the colour of the token removed.

.� /�����% �� �� 
! �"����� 
� ���& ��� (���

Next we transform the SDCPN of Section 6 into an HSDE. The first step is to construct the
state space M for the HSDE discrete process {θt}. This is done by identifying the SDCPN
reachability graph. Nodes in the reachability graph provide the number of tokens in each of the
SDCPN places. Arrows connect these nodes as they represent transitions firing. The SDCPN
of Fig. 4 has seven places hence the reachability graph for this example has elements that are
vectors of length 7. These nodes, excluding the nodes that enable immediate transitions, form
the HSDE discrete state space.
The reachability graph is shown in Fig. 5, with nodes that form the HSDE discrete state space
in Bold typeface, i.e. M = {V1, . . . , V8}, with V1 = (1, 0, 0, 1, 0, 1, 0), V2 = (0, 1, 1, 0, 0, 1, 0),
V3 = (0, 1, 1, 0, 1, 0, 0), V4 = (0, 1, 0, 1, 1, 0, 0), V5 = (0, 0, 0, 1, 0, 1, 1), V6 = (0, 0, 1, 0, 0, 1, 1),
V7 = (0, 0, 1, 0, 1, 0, 1), V8 = (0, 0, 0, 1, 1, 0, 1). Since initially there is a token in places P1, P4 and
P6, the HSDE initial mode equals θ0 = V1 = (1, 0, 0, 1, 0, 1, 0). The HSDE initial continuous
state value equals the vector containing the initial colours of all initial tokens. Since the initial
colour of the token in Place P1 equals X0, and the tokens in places P4 and P6 have no colour, the
HSDE initial continuous state value equals Col{X0, ∅, ∅} = X0. The HSDE drift coefficient f
is given by f (θ, ·) = V1(·) for θ = V1, f (θ, ·) = V2(·) for θ ∈ {V2, V3, V4}, and f (θ, ·) = 0 oth-
erwise. For the diffusion coefficient, g(θ, ·) = W1 for θ = V1, g(θ, ·) = W2 for θ ∈ {V2, V3, V4},
and g(θ, ·) = 0 otherwise. The hybrid state space is given by E = {{θ} × Eθ ; θ ∈ M}, where
for θ ∈ {V1, V2, V3, V4}: Eθ = R

2 × (0, ∞)× R
2 × (0, ∞) and for θ ∈ {V5, V6, V7, V8}: Eθ = R

6.
Always two delay transitions are pre-enabled: either T3 or T4 and either T5 or T6. This yields
Λ(V1, ·) = Λ(V5, ·) = δ4 + δ6, Λ(V2, ·) = Λ(V6, ·) = δ3 + δ6, Λ(V3, ·) = Λ(V7, ·) = δ3 + δ5,
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V4 =(0,1,1,0,1,0,0) (0,0,1,0,1,0,1)= V8

V2 =(0,1,1,0,0,1,0) (0,1,0,1,1,0,0)= V3

V6 =(0,0,0,1,1,0,1) (0,0,1,0,0,1,1)= V7

(1,0,1,0,0,1,0) (0,1,0,1,0,1,0) (1,0,0,1,1,0,0)

V1 =(1,0,0,1,0,1,0) (0,0,0,1,0,1,1)= V5

T5
T6 T3 T4

T8

T3
T4 T6 T5

T1a T3 T5 T1b
T8

T5 T6 T4
T3

T4 T2 T6

T7

T8

Fig. 5. Reachability graph for the SDCPN of Fig. 4. The nodes in bold type face correspond
with the elements of the HSDE discrete state space M.

Λ(V4, ·) = Λ(V8, ·) = δ4 + δ5. For the determination of elements ψ, ρ and μ, we first con-
struct a probability measure PQ, by making use of the reachability graph, the sets D, G and
F and the rules R0–R4. In Table 1, PQ(θ

′, x′; θ, x) = p denotes that if (θ, x) is the value of
the HSDE state before the hybrid jump, then, with probability p, (θ′, x′) is the value of the
HSDE state immediately after the jump. Since the continuous valued process jumps to the
same value with probability 1, we find that ψ(Vi, Vj, x, z) = 0 for all Vi, Vj, x, z. Moreover,
ρ(Vi , Vj, x) = PQ(Vi, x, Vj, x) and μ may be any given invertible probability measure.

Table 1. Example probability measure for size of jump

For x /∈ ∂EV1 : PQ(V2, x; V1, x) = δ4
δ4+δ6

, PQ(V4, x; V1, x) = δ6
δ4+δ6

For x ∈ ∂EV1 : PQ(V5, x; V1, x) = 1
For x /∈ ∂EV2 : PQ(V3, x; V2, x) = δ6

δ3+δ6
, PQ(V1, x; V2, x) = δ3

δ3+δ6

For x ∈ ∂EV2 : PQ(V6, x; V2, x) = 1
For x /∈ ∂EV3 : PQ(V4, x; V3, x) = δ3

δ3+δ5
, PQ(V2, x; V3, x) = δ5

δ3+δ5

For x ∈ ∂EV3 : PQ(V7, x; V3, x) = 1
For x /∈ ∂EV4 : PQ(V3, x; V4, x) = δ4

δ4+δ5
, PQ(V1, x; V4, x) = δ5

δ4+δ5

For x ∈ ∂EV4 : PQ(V8, x; V4, x) = 1
For all x: PQ(V6, x; V5, x) = δ4

δ4+δ6
, PQ(V8, x; V5, x) = δ6

δ4+δ6

For all x: PQ(V7, x; V6, x) = δ6
δ3+δ6

, PQ(V5, x; V6, x) = δ3
δ3+δ6

For all x: PQ(V8, x; V7, x) = δ3
δ3+δ5

, PQ(V6, x; V7, x) = δ5
δ3+δ5

For all x: PQ(V7, x; V8, x) = δ4
δ4+δ5

, PQ(V5, x; V8, x) = δ5
δ4+δ5

With this, the SDCPN of the aircraft evolution example is uniquely mapped to an HSDE. If
in addition, we want to make use of the HSDE properties of Proposition 4.1, i.e. the result-
ing HSDE solution process being adapted and a semi-martingale, we need to make sure that
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HSDE conditions H1-H8 are satisfied. It is shown below that they are, under the following
sufficient condition D1 for the example SDCPN.

D1 For P ∈ {P1, P2}, there exist Kv
P, Lv

P, Kw
P and Lw

P such that for all c, a ∈ C(P),
|VP(c)|2 ≤ Kv

P(1 + |c|2) and |VP(c)− VP(a)|2 ≤ Lv
P|c − a|2 and

‖WP(c)‖2 ≤ Kw
P (1 + |c|2) and ‖WP(c)−WP(a)‖2 ≤ Lw

P |c − a|2.

We verify that under condition D1, HSDE conditions H1-H8 hold true in this example.

H1: From the construction of f and g above we have for θ = V1: | f (θ, x)|2 + ‖g(θ, x)‖2 =
|V1(x)|2 + ‖W1(x)‖2 ≤ Kv

P1
(1 + |x|2) + Kw

P1
(1 + |x|2) = K(θ)(1 + |x|2), with K(θ) =

(Kv
P1
+ Kw

P1
). For θ = V2, V3, V4 the verification is with replacing V1, W1 by V2, W2.

H2: From the construction of f and g above we have for θ = V1: | f (θ, x) − f (θ, y)|2 +
‖g(θ, x)− g(θ, y)‖2 = |V1(x)− V1(y)|2 + ‖W1(x)−W1(y)‖2 ≤ Lv

P1
|x − y|2 + Lw

P1
|x −

y|2 = Lr(θ)|x − y|2 with Lr(θ) = Lv
P1
+ Lw

P1
. For θ = V2, V3, V4 replace V1, W1 by V2,

W2.

H3: Since δ3–δ6 are constant, for all θ, Λ(θ, ·) is bounded and continuous, with upper bound
CΛ = max{δ4 + δ6, δ3 + δ6, δ3 + δ5, δ4 + δ5}.

H4: Since for all θ, ϑ, PQ(ϑ, ·; θ, x) is constant, we find ρ(ϑ, θ, x) = PQ(ϑ, x, θ, x) is continuous.

H5 and H6: These are satisfied due to ψ(Vi, Vj, x, z) = 0 for all Vi, Vj, x, z.

H7: This condition holds due to δ3–δ6 being finite and the fact that in this SDCPN example,
there is no firing sequence of more than one guard transition.

H8: This condition holds for all V1, . . . , V8, with metric |a|2 = ∑i(ai)
2.

Thanks to this bisimilarity mapping we can now use HSDE tools to analyse the GSHP that is
defined by the execution of the SDCPN model for the example.
In (Everdij & Blom, 2008) we showed how the SDCPN for the aircraft evolution example
above is mapped to a GSHS. The main difference is that the GSHS transition measure Q is
defined by the probability measure PQ in Table 1 and that GSHS does not use elements ψ, ρ
and μ, but apart of these details the differences with the mapping of SDCPN elements into
HSDE elements are small. Thanks to this bisimilarity mapping, we can also use the automata
framework to analyse the GSHS that is defined by the SDCPN model.

0�  �����	���	

In order to combine the compositional specification power of Petri nets with the analysis
power of Markov processes, (Malhotra & Trivedi, 1994) and (Muppala et al., 2000) developed
a power hierarchy of dependability models. In (Everdij & Blom, 2003; 2005), the power hi-
erarchy was extended with dynamically coloured Petri nets (DCPN) and piecewise deterministic
Markov processes (PDP). In (Everdij & Blom, 2006), this power hierarchy was further extended
by stochastically and dynamically coloured Petri nets (SDCPN) and general stochastic hybrid process
(GSHP).
In this chapter the power-hierarchy has been further deepened by studying various ways to
develop GSHP. We started in Section 2 by defining SDCPN and the resulting SDCPN process.
In Section 3 we studied GSHP as an execution of a general stochastic hybrid system (GSHS). In
Section 4 we defined GSHP as a solution of a hybrid stochastic differential equation (HSDE) and
explained the differences between GSHS and HSDE. Next, in Section 5 we showed that GSHS,
HSDE and SDCPN are bisimilar. In Sections 6-7, the results were illustrated with an aircraft
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evolution example. The bisimilarities between SDCPN, GSHS and HSDE mean that each of
them inherits the strengths of the other two formalisms. This has been depicted in Fig. 2 in the
introduction. Hence, analysis tools designed for GSHS, HSDE and GSHP and their properties
become available for SDCPN. Examples of GSHP properties are convergence in discretisation,
existence of limits, existence of event probabilities, strong Markov properties, reachability
analysis. Examples of GSHS features are their connection to formal methods in automata
theory and optimal control theory. Examples of HSDE features are stochastic analysis tools for
semi-martingales. At the same time, numerous SDCPN features such as natural expression of
causal dependencies, concurrency and synchronisation mechanism, hierarchical and modular
construction, and graphical representation become available when modelling GSHS, HSDE
and GSHP through SDCPN. And these complementary advantages of SDCPN, GSHS, HSDE
and GSHP perspectives tend to increase with the complexity of the system considered.
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Consider an arbitrary HSDE (1)-(8) with elements (M, E, f , g, μθ0,X0 , Λ, ψ, ρ, μ, pP, {Wt}).
We assume that the stochastic differential equations defined by f and g have probabilistically
unique solutions and that Λ is bounded. First, we characterise SDCPN elements (P , T , A,
N , S , C, I , V , W , G , D, F ) in terms of HSDE elements (M, E, f , g, μθ0,X0 , Λ, ψ, ρ, μ, pP,
{Wt}). The thus constructed SDCPN is referred to as SDCPNHSDE. Subsequently, we show
that the SDCPNHSDE stochastic process is probabilistically equivalent to the stochastic process
defined by the original HSDE.
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We provide an into-mapping that characterises SDCPN elements (P , T , A, N , S , C, I , V , W ,
G , D, F ) in terms of HSDE elements (M, E, f , g, μθ0,X0 , Λ, ψ, ρ, μ, pP, {Wt}).

P = {Pθ; θ ∈ M}. Hence, for each θ ∈ M, there is one place Pθ . The places are ordered
Pϑ1 , . . . , PϑN

according to M = {ϑ1, . . . , ϑN}.

T = TG ∪ TD ∪ TI , with TI = ∅, TG = {TG
θ ; θ ∈ M}, TD = {TD

θ ; θ ∈ M}. Hence, for each
θ ∈ M there is one guard transition TG

θ and one delay transition TD
θ .

A = AO ∪AE ∪AI , with |AI | = 0, |AE| = 0, and |AO| = 2N + 2N2, where N = |M|. Hence,
there are no inhibitor arcs or enabling arcs in this SDCPNHSDE constructed, and the
number of ordinary arcs is 2N + 2N2.

N : The node function maps each arc in A = AO to a pair of nodes. These connected
pairs of nodes are: {(Pθ , TG

θ ); θ ∈ M} ∪ {(Pθ , TD
θ ); θ ∈ M} ∪ {(TG

θ , Pϑ); θ, ϑ ∈ M} ∪

{(TD
θ , Pϑ); θ, ϑ ∈ M}. Hence, each place Pθ (θ ∈ M) has two outgoing arcs: one to

guard transition TG
θ and one to delay transition TD

θ . Each transition has N outgoing
arcs: one arc to each place in P .

S = {R
n}.

C: For all θ ∈ M, C(Pθ) = R
n

I : For all θ0 ∈ M and X0 ∈ C(Pθ0 ) = R
n, I(Mθ0 , X0) = μθ0,x0(θ0, X0), where Mθ is the |P|-

dimensional vector that has a one at the element corresponding to place Pθ and zeros
elsewhere.

V : For all θ ∈ M, VPθ
(·) = f (θ, ·).

W : For all θ ∈ M, WPθ
(·) = g(θ, ·).

G : For all θ ∈ M, GTG
θ
= Eθ .
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D: For all θ ∈ M, DTD
θ
(·) = Λ(θ, ·). Since we assumed that Λ is bounded, e.g. Λ(θ, ·) ≤ CΛ,

we find that DTD
θ
(·) is bounded as well, and its upperbound is Cδ = CΛ.

F : Define for particular transition T, eϑ′
as the vector of length N containing a one at the

component corresponding with the arc from transition T to place Pϑ′ and zeros else-
where. Then for all θ ∈ M, and for T ∈ {TG

θ , TD
θ }, FT(eϑ′

, x′; x) = FQ
T (ϑ′, x′; θ, x), for all

x ∈ Eθ ∪ ∂Eθ , ϑ′ ∈ M and x′ ∈ Eϑ′ , where FQ
T is defined through

FQ
T ({ϑ′} × A′; θ, x) = ρ(ϑ′, θ, x)

∫
Rd

1A′ (x + ψ(ϑ′, θ, x, z))μ(dz) (9)

3�� 
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Next, we show that the SDCPNHSDE stochastic process is probabilistically equivalent to the
stochastic process defined by the original HSDE. This is done by showing: Equivalence of
initial states; Equivalence of continuous evolution until first jump; Equivalence of time of
jumps; Equivalence of size of jumps; Equivalence of processes after the first jump.
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The initial marking of the SDCPNHSDE is defined by I(Mθ0 , X0) = μθ0,X0(θ0, X0), where Mθ

is the N-dimensional vector that has a one at the element corresponding to place Pθ and zeros
elsewhere. Therefore, with probability I(Mθ0 , X0), at time t = τ0 there is one token in place Pθ0

which has colour X0. The initial state of the HSDE is (θ0, X0) with probability μθ0,X0 (θ0, X0).
Due to the mapping between the places Pθ ∈ P and the modes θ ∈ M, the initial states of
SDCPNHSDE and HSDE are probabilistically equivalent.

&*��������� �� ���
�����	 �����
��� ��
�� ��	
 5���4
The continuous part of the SDCPNHSDE stochastic process equals the vector that collects all
token colours. Since there is only one token in the constructed SDCPNHSDE at all times, this
vector equals the colour of this single token. Until the first jump, this colour follows the

stochastic differential equation dC
Pθ0
t = VPθ0

(C
Pθ0
t )dt + WPθ0

(C
Pθ0
t )dW

Pθ0
t which has proba-

bilistically unique solution C
Pθ0
t .

In the original HSDE solution process, the continuous process until the first jump follows
stochastic differential equation dX0

t = f (θ0
t , X0

t )dt + g(θ0
t , X0

t )dWt +
∫

Rd ψ(θ0
t , θ0

t−, X0
t−, z)

pP(dt, (0, Λ(θ0
t−, X0

t−)] × dz) where dθ0
t = ∑

N
i=0(ϑi − θ0

t−)pP(dt, (Σi−1(θ
0
t−, X0

t−),
Σi(θ

0
t−, X0

t−)]× R
d). Until the first jump, the Poisson terms in the stochastic differential equa-

tions above are equal to zero. What remains is: dθ0
t = 0 and dX0

t = f (θ0
t , X0

t )dt+ g(θ0
t , X0

t )dWt,
which are assumed to have a probabilistically unique solution θ0

t and X0
t .

Due to equivalence of initial states Mθ0 ≡ θ0 and C0 = X0, equivalence of drift coefficients
VPθ0

(·) = f (θ0, ·) and equivalence of diffusion coefficients WPθ0
(·) = g(θ0, ·), as long as no

jumps occur, we derive that for t ≥ τ0 = 0, Mθt = θ0
t and X0

t = C
Pθ0
t .

&*��������� �� 
��� �� 5���	4
For the SDCPNHSDE, for each arbitrary place in which the initial token may reside, two tran-
sitions are pre-enabled: a guard transition and a delay transition. If either of them becomes
enabled and fires, then the other becomes disabled. The time until the guard transition is en-

abled is t∗(Mθ0 , C0) � inf{t − τ0 > 0 | C
Pθ0
t ∈ ∂GTG

θ0
}. The time until the delay transition is
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enabled is σ
TD

θ0
1 = Dinv

TD
θ0

(U1), with Dinv
TD

θ0

(u) = inf{t − τ0 | exp(−
∫ t

τ0
DTD

θ0
(C

Pθ0
s )ds) ≤ u} and

U1 ∼ U[0, 1].
For HSDE, from Equation (6), using k = 0 and τb

0 = τ0, the time at which the continuous state
first hits the boundary of its state space is τb

1 � inf{t > τ0 | (θ0
t , X0

t ) ∈ {{θ} × ∂Eθ ; θ ∈ M}}.

It is easily seen that as long as θ0
t = θ0, then due to X0

t = C
Pθ0
t and the equality ∂GTG

θ0
= ∂Eθ0 ,

we have that inf{t > τ0 | (θ0
t , X0

t ) ∈ {{θ} × ∂Eθ ; θ ∈ M}} = τ0 + inf{t − τ0 > 0 |

C
Pθ0
t ∈ ∂GTG

θ0
}, hence τb

1 = τ0 + t∗(Mθ0 , C0). However, there is a possibility that at some

time τ
p
1 < τb

1 , the HSDE solution process state makes a jump due to the Poisson ran-
dom measure generating a point: Consider Equations (3) and (4), for k = 0. A jump
is generated when ∑

N
i=1(ϑi − θ0

t−)pP(dt, (Σi−1(θ
0
t−, X0

t−), Σi(θ
0
t−, X0

t−)] × R
d) �= 0 or when∫

Rd ψ(θ0
t , θ0

t−, X0
t−, z)pP(dt, (0, Λ(θ0

t−, X0
t−)]× dz) �= 0, or both. Consider the Poisson random

measure in Equation (4), i.e. pP(dt, (0, Λ(θ0
t−, X0

t−)]× dz), which is equal to zero, except at sin-
gular times when it generates a multivariate point ({τ

p
1 }, {z1}, {z}). Due to the Poisson ran-

dom measure being homogeneous and due to Λ(θ0
t−, X0

t−) ≤ CΛ, the point ({τ
p
1 }, {z1}, {z})

is generated as follows: Generate a triple (ε1, ν1, ν1), with ε1 ∼ Exp(CΛ), ν1 ∼ U[0, CΛ] and
ν1 ∼ μ. Accept this triple if ν1 ≤ Λ(θ0

τ0+ε1−, X0
τ0+ε1−), otherwise reject it. If it is accepted

then τ
p
1 = τ0 + ε1, z1 = ν1 and z = ν1. If it is not accepted then another triple (ε2, ν2, ν2)

is generated with ε2 ∼ Exp(CΛ), ν2 ∼ U[0, CΛ] and ν2 ∼ μ, and this triple is accepted if
ν2 ≤ Λ(θ0

τ0+ε1+ε2−, X0
τ0+ε1+ε2−). If it is accepted then τ0

1 = τ0 + ε1 + ε2, z1 = ν2 and z = ν2.
If it is not accepted then another triple (ε3, ν3, ν3) is generated, and so on. Hence if (εr , νr , νr)
is the first triple that is accepted then τ

p
1 = τ0 + ∑

r
n=1 εn and z1 = νr and z = νr . The in-

terarrival times of the triples accepted through this mechanism are exponential with intensity
Λ. In addition, due to DTD

θ
(·) = Λ(θ, ·), we find that τ

p
1 − τ0 is probabilistically equivalent to

σ
TD

θ0
1 . For HSDE, the time of the first jump is equal to the minimum of τb

1 and τ
p
1 . Due to the

reasoning above, this time of first jump is probabilistically equivalent to the time of first jump
of the SDCPNHSDE.

&*��������� �� 	�6� �� 5���	
For the SDCPNHSDE, the jump size is determined by the firing measure FT of the enabled
transition T: for all θ ∈ M and T ∈ {TG

θ , TD
θ }, FT(eϑ′

, x′; x) = FQ
T (ϑ′, x′; θ, x), for all x ∈

Eθ ∪ ∂Eθ , ϑ′ ∈ M and x′ ∈ Eϑ′ , where FQ
T is defined through

FQ
T ({ϑ′} × A′; θ, x) = ρ(ϑ′, θ, x)

∫
Rd

1A′ (x + ψ(ϑ′, θ, x, z))μ(dz)

For HSDE, the size of jumps is generated as follows: In case of a jump generated by Poisson
random measure at time t = τ

p
1 , the size of jump in {θ0

t } is given by

θ0
τ

p
1
− θ0

τ
p
1 −

=
N

∑
i=1

(ϑi − θ0
τ

p
1 −

)pP(dt, (Σi−1(θ
0
τ

p
1 −

, X0
τ

p
1 −

), Σi(θ
0
τ

p
1 −

, X0
τ

p
1 −

)]× R
d)

and the size of jump in {X0
t } is given by

X0
τ

p
1
− X0

τ
p
1 −

=
∫

Rd
ψ(θ0

τ
p
1

, θ0
τ

p
1 −

, X0
τ

p
1 −

, z)pP(dt, (0, Λ(θ0
τ

p
1 −

, X0
τ

p
1 −

)]× dz)
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Now use that the Poisson random measure has generated a point ({τ
p
1 }, {z1}, {z}), with z1 =

νr and z = νr as described above. Random variable z1 is used as follows: Notice that by Equa-
tion (5) and definition of ρ, for all θ ∈ M and all x ∈ R

n, the interval (0, Λ(θ, x)] is divided into
subintervals (Σi−1(θ, x), Σi(θ, x)], i.e. (0, Λ(θ, x)] = (Σ0(θ, x), Σ1(θ, x)] ∪ (Σ1(θ, x), Σ2(θ, x)] ∪
· · · ∪ (ΣN−1(θ, x), ΣN(θ, x)], where Σ0(θ, x) = 0 and ΣN(θ, x) = Λ(θ, x). The ith inter-
val, i.e. (Σi−1(θ, x), Σi(θ, x)] has a weight ρ(ϑi, θ, x) = (Σi(θ, x) − Σi−1(θ, x))/Λ(θ, x), with
∑

N
i=1 ρ(ϑi, θ, x) = 1. Due to z1 ∈ (0, Λ(θ0

τ
p
1 −

, X0
τ

p
1 −

)], there exists j ∈ {1, . . . , N} such that

z1 ∈ (Σj−1(θ
0
τ

p
1 −

, X0
τ

p
1 −

), Σj(θ
0
τ

p
1

, X0
τ

p
1
)]. This makes pP(dt, (Σi−1(θ

0
τ

p
1 −

, X0
τ

p
1 −

), Σi(θ
0
τ

p
1 −

, X0
τ

p
1 −

)]×

R
d) = 1 if i = j and = 0 for i �= j. Therefore, θ0

τ
p
1
− θ0

τ
p
1 −

= ϑj − θ0
τ

p
1 −

, i.e. at time

τ
p
1 , θt jumps from θ0

τ
p
1 −

= θ0 to θ0
τ

p
1

= ϑj. Next, the random variable z is used to deter-

mine X0
τ

p
1
− X0

τ
p
1 −

, i.e. in ({τ
p
1 }, {z1}, {z}), pP(dt, (0, Λ(θ0

t−, X0
t−)]× dz) = 1 and is zero else-

where. Therefore, X0
τ

p
1
− X0

τ
p
1 −

= ψ(ϑj, θ0
τ

p
1 −

, X0
τ

p
1 −

, z). This gives that at time τ
p
1 , Xt jumps

from X0
τ

p
1 −

to X0
τ

p
1 −

+ ψ(ϑj, θ0
τ

p
1 −

, X0
τ

p
1 −

, z). From this, we find that the probability for (θt, Xt)

to jump into ({ϑj}, A), given that the state right before the jump is (θ0
τ

p
1 −

, X0
τ

p
1 −

), is equal

to the probability that z1 is in (Σj−1(θ
0
τ

p
1 −

, X0
τ

p
1 −

), Σj(θ
0
τ

p
1 −

, X0
τ

p
1 −

)], times the probability that

X0
τ

p
1 −

+ ψ(ϑj, θ0
τ

p
1 −

, X0
τ

p
1 −

, z) is in A. This probability is equal to

ρ(ϑj, θ0
τ

p
1 −

, X0
τ

p
1 −

)
∫

Rd
1A(X

0
τ

p
1 −

+ ψ(ϑj, θ0
τ

p
1 −

, X0
τ

p
1 −

, z))μ(dz)

which is equal to Q({ϑj} × A; θ0
τ

p
1 −

, X0
τ

p
1 −

), according to Equation (8).

For boundary hitting type of jumps, the size of jump is given by Equation (7), i.e.

P{θ1
τb

1
= ϑ, X1

τb
1
∈ A | θ0

τb
1 −

= θ, X0
τb

1 −
= x} = Q({ϑ} × A; θ, x)

This shows that the jump size mechanisms for Poisson random measure type of jumps and
boundary hitting type of jumps are the same. Also note that for all ϑ′, x′, θ and x, and T ∈

TD ∪ TG, FQ
T (ϑ′, x′; θ, x) = Q(ϑ′, x′; θ, x). This means that the SDCPNHSDE state after the jump

and the HSDE solution process state after the jump are probabilistically equivalent.

&*��������� �� �����		�	 ��
�� 
�� ��	
 5���4
From τ1 = min{τb

1 , τ
p
1 } onwards, the probabilistic equivalence of the HSDE and SDCPNHSDE

processes is shown in the same way. If τ1 = τ
p
1 , then Equations (3) and (4) are used for k = 0;

if τ1 = τb
1 then these equations are used for k = 1. From stopping time τn−1 to stopping time

τn the HSDE solution process and the associated SDCPNHSDE process have probabilistically
equivalent paths and probabilistically equivalent stopping times. Due to the unique definition
of the SDCPNHSDE stochastic process at times when transitions fire, the SDCPNHSDE state at
stopping times is also equivalent to the HSDE solution process state at the stopping times and
both processes are càdlàg.
This completes the proof of Theorem 5.3.

3������" 74 
���� �� #������ +�)

Consider an arbitrary SDCPN (P , T , A, N , S , C, I , V , W , G , D, F ) that satisfies rules R0–R4.
It is assumed that in the initial marking no immediate transitions are enabled, that the delay
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rates DT are bounded, and that for t → ∞, the number of tokens remains finite. First, we
characterise the HSDE elements (M, E, f , g, μθ0,X0 , Λ, ψ, ρ, μ, pP, {Wt}), in terms of SDCPN
elements, where it is assumed that μ is given. The thus constructed HSDE is referred to as
HSDESDCPN. Subsequently, we show that the HSDESDCPN solution process is probabilisti-
cally equivalent to the stochastic process defined by the original SDCPN.

7��  ��	
���
��� �� ���&SDCPN ������
	
We provide an into-mapping that characterises HSDESDCPN elements (M, E, f , g, μθ0,X0 , Λ,
ψ, ρ, μ, pP, {Wt}) in terms of SDCPN elements (P , T , A, N , S , C, I , V , W , G , D, F ).

M The characterisation of M in terms of SDCPN elements is by means of the reachabil-
ity graph (RG). The nodes in the RG are token distributions, written as row vectors
(m1, . . . , m|P|), where mi is the number of tokens in place Pi. Arrows between nodes
are labelled by transitions, and indicate how the number of tokens in the places change
due to transition firings. Then M is composed of those nodes in the reachability graph
that do not enable an immediate transition, and N = |M|.

E For each θ ∈ M, corresponding with node m = (m1, . . . , m|P|) in the RG, define d(θ) =

∑
|P|
i=1 min(Pi). If under token distribution θ, no guard transitions are pre-enabled, then

Eθ = R
d(θ). If under token distribution θ, one or more guard transitions are pre-enabled,

then Eθ = R
d(θ) \ ∂Eθ , where ∂Eθ is constructed as follows: Without loss of generality,

suppose that under token distribution θ, the multi-set of pre-enabled guard transitions
is T1, . . . , Tk. This set may contain one transition multiple times, if such transition eval-
uates multiple input token vectors in parallel. Suppose {Pi1 , . . . , Piri

} = P(Ain,OE(Ti))

are the input places of Ti that are connected to Ti by means of ordinary or enabling
arcs. This set may contain one place multiple times if such place is connected to Ti by
multiple arcs (input arcs of Ti). Define di = ∑

ri
j=1 n(Pij

), then ∂Eθ = ∂G′
T1
∪ . . . ∪ ∂G′

Tk
,

where G′
Ti

= [GTi × R
d(θ)−di] ∈ R

d(θ). Here [·] denotes a special ordering of all vec-
tor elements: Vector elements are ordered according to the unique ordering of places
and to the unique ordering of tokens within their place defined for SDCPN. Finally,
E = {{θ} × Eθ ; θ ∈ M}.

f For each θ ∈ M and x ∈ Eθ , f (θ, x) = Col|P|
i=1

{
Colmi

j=1{VPi(cij)}
}

, where x =

Col|P|
i=1

{
Colmi

j=1{cij}
}

and θ corresponds to (m1, . . . , m|P|).

g: For each θ ∈ M and x ∈ Eθ ,

g(θ, x) = Row{Diag|P|
i=1

{
Diagmi

j=1{WPi(cij)}
}

, OΣ
|P |
i=1(mmax

i −mi)h(Pi)}, where

• OΣ
|P |
i=1(mmax

i −mi)h(Pi) is a square matrix of dimension (Σ
|P|
i=1(m

max
i − mi)h(Pi)) ×

(Σ
|P|
i=1(m

max
i − mi)h(Pi)) that contains only zeros. In the g(θ, ·) constructed above

it is put to the right of the block that contains the matrices WPi .

• mmax
i = maxθ∈M{mi | θ = (m1, . . . , m|P|)} is the maximum number of tokens that

exists in place Pi. This maximum mmax
i exists due to the condition that for t → ∞

the number of tokens remains finite.

μθ0,X0 : μθ0,X0(M0, C0) = I(M0, C0) for all M0 and C0, where M0 = (M1,0, . . . , M|P|,0), with
Mi,0 the initial number of tokens in place Pi, with the places ordered according to the
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unique ordering adopted for SDCPN, and C0 ∈ R
d(θ0) containing the colours of these

tokens. Due to the condition that no immediate transitions are enabled in the initial
marking (which prevents vanishing token distributions to be current at the initial time),
the constructed M0 and C0 are uniquely defined.

Λ: For each θ ∈ M and x ∈ Eθ , Λ(θ, x) = ∑
k
n=1 DTn(c

Tn ), where T1, . . . , Tk refers to the multi-
set of transitions in TD that, under token distribution θ, are pre-enabled, and cTn are the
respective elements of x that are used to pre-enable these transitions. This set T1, . . . , Tk
may contain one transition multiple times, if multiple input token vectors are evaluated
in parallel. If the set of pre-enabled delay transitions is empty in θ, then Λ(θ, ·) = 0.

ψ, ρ, μ: we make use of the assumption that μ is given. As part of the construction, define
a probability measure PQ(θ

′, A; θ, x), the value of which equals the probability that if
a jump occurs, and if the value of the HSDE solution process just prior to the jump
is (θ, x), then the value of the HSDE solution process just after the jump is in (θ′, A).
Probability PQ(θ

′, A; θ, x) is characterised in terms of the SDCPN by the reachability
graph (RG), elements D, G and Rules R0–R4 and the set F . This is done in four steps,
precisely following the characterisation of the GSHS transition measure Q in terms of
SDCPN elements in the appendix of (Everdij & Blom, 2006). Next, we characterise ψ
and ρ in terms of this result: For HSDE, due to Equation (7), the probability that given a
jump from (θ, x), the state after the jump is in (θ′, A) is given by Q({θ′} × A; θ, x) hence
we find that PQ = Q. Here, Q is given by Equation (8). From this, we find

ρ(θ′, θ, x) = Q({θ′} × R
n; θ, x)

Next write, for any x′,

Q({θ′}, x′; θ, x) = ρ(θ′, θ, x) · P{x + ψ(θ′, θ, x, z) = x′}

= ρ(θ′, θ, x) · P{z = ψinv(x′ − x)}

= ρ(θ′, θ, x) · μ(ψinv(x′ − x))

where ψinv is such that μL{u | ψinv(u) ∈ B} = ψ(θ′, θ, x, B). Therefore,

μ(ψinv(x′ − x)) =
Q({θ′}, x′; θ, x)

ρ(θ′, θ, x)

and ψ is finally defined by

ψinv(x′ − x)) = μinv
(

Q({θ′}, x′; θ, x)
ρ(θ′, θ, x)

)
{Wt}: This is generated according to the standard mechanism to generate Wiener pro-

cesses. An h-dimensional Wiener process is constructed by collecting a number of

h = ∑
|P|
i=1 mmax

i h(Pi) independent one-dimensional Wiener processes in a vector.
Adding zeros and transforming discrete state vectors We add a sufficient number of zeros

to some of the elements in order to create a constant dimension for the HSDESDCPN

hybrid state space. Denote n = maxθ d(θ), 0a as a column vector of zeros in R
a and 0a×b

as a matrix of zeros in R
a×b, then E is redefined as E = {{θ} × (Eθ × R

n−d(θ)); θ ∈ M};
f is redefined as Col{ f , 0n−d(θ)}; g is redefined as Col{g, 0(n−d(θ))×Σimmax

i ·h(Pi)}; X0 is
redefined as Col{X0, 0n−d(θ)} and ψ is redefined as Col{ψ, 0n−d(θ)}.

This shows that all HSDESDCPN elements can be characterised uniquely in terms of SDCPN
elements.
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Subsequently, we show that the solution of the constructed HSDESDCPN delivers a stochastic
process which is probabilistically equivalent to the process defined by the SDCPN. This is
done by showing: Equivalence of initial states; Equivalence of continuous evolution until first
jump; Equivalence of time of jumps; Equivalence of size of jumps; Equivalence of processes
after the first jump.

&*��������� �� ���
��� 	
�
�	4
The initial HSDESDCPN-process state (θ0, X0) at t = τ0 is equivalent to the initial SDCPN state
through the mapping constructed above. If I inv denotes the inverse of I and μinv

θ0,X0
denotes

the inverse of μθ0,X0 , then the random variable (M0, C0) = I inv(U) is equivalent to the random
variable (θ0, X0) = μinv

θ0,X0
(U). Due to equivalence between I and μθ0,X0 , the initial states are

probabilistically equivalent.

&*��������� �� ���
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�� ��	
 5���4
At times t when no jump occurs, the HSDESDCPN-process evolves according to f and g, driven
by a Wiener process, and the SDCPN-process evolves according to V = {VP; P ∈ P} and
W = {WP; P ∈ P}, driven by Brownian motion. Through the mappings between f and V
and between g and W developed above, and through the probabilistic equivalence between
Brownian motions and Wiener processes, these evolutions provide probabilistically equiva-
lent processes Xt and Ct for all t > τ0, until the first jump.

&*��������� �� 
��� �� 5���	4
The times of jumps are generated by forced jumps and spontaneous jumps. In SDCPN, the
forced jumps are represented by guard transitions; in HSDE, the forced jumps are represented
by continuous state space boundary hits. Due to the mapping between the boundary of the
HSDESDCPN state space ∂Eθ and the boundaries of the transition guards of the guard transi-
tions {∂GT; T ∈ TG}, the HSDESDCPN forced jumps and the SDCPN forced jumps occur at the
same time. The HSDESDCPN spontaneous jumps are generated by a Poisson random measure
that uses a rate Λ. The SDCPN spontaneous jumps are generated by the delay transitions
that use rates {DT; T ∈ TD}. Due to the mapping between Λ and {DT; T ∈ TD}, the time of
spontaneous jump is according to the same rate for both HSDESDCPN and SDCPN.

&*��������� �� 	�6� �� 5���	4
At times when a jump occurs, the HSDESDCPN-process makes a jump generated by ψ, ρ and
μ, while the SDCPN-process makes a jump generated by F . Through the mapping between
ψ, ρ, μ and F , these jumps provide probabilistically equivalent processes.

&*��������� �� �����		�	 ��
�� 
�� ��	
 5���4
After the first jump, equivalence is shown in a similar way as above.
This completes the proof of Theorem 5.4.
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