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Summary 

In Daum (1992) it has been very well explained that sensor resolution modeling is crucial for 
the tracking of closely spaced targets. For non-maneuvering targets appropriate models and 
tracking approaches have been developed by Chang & Bar-Shalom (1984) and by Koch & Van 
Keuk (1997). This paper combines their sensor resolution submodels with a descriptor system 
approach towards tracking two suddenly maneuvering closely spaced targets from 
measurements that may be false, missing or unresolved. Using this descriptor system formalism, 
exact Bayesian and approximate filter equations are derived.  
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1 Introduction 

In [1] and [2] it has been explained that sensor resolution modeling is very important for the 
tracking of closely spaced targets. The key issue is that the probability of resolution typically is 
worse than the probability of correct measurement association. Hence, optimizing the latter 
requires modeling the former. In literature there are a few papers which develop good resolution 
models and incorporate them into effective target tracking. [3] introduces a hard measurement 
distance threshold model regarding yes/no resolution, and incorporates the corresponding Error 
density function within JPDA. [4] incorporates this Error function modeling with  Multiple 
Hypothesis Tracking (MHT). [5] introduces a Gaussian shaped measure for the probability of 
resolution, and shows that this combines smoothly with a Gaussian mixture framework of MHT. 
[6] enhances this MHT approach towards suddenly maneuvering targets by incorporating IMM. 
[7] utilizes group tracking to determine false and missing measurements and assess targets that 
merge with or split from a group. 
The aim of this paper is to combine resolution submodels of [3] and [5] with the descriptor 
system approach by the authors towards tracking multiple maneuvering targets from missing 
and false measurements. This approach was introduced in [8] to derive, in a mathematically 
unambiguous way, exact and approximate Bayesian equations for filtering multiple targets from 
possibly missing and false measurements. For linear Gaussian targets the descriptor system 
approach did lead to novel tracking filters which were referred to as CPDA, CPDA* and 
JPDA*, where the * refers to a particular track coalescence avoiding pruning of permutation 
hypotheses [8]. Of these filters, CPDA performs comparable to JPDA [9] and JPDA-Coupled 
[10], whereas CPDA* and JPDA* performs significantly better. In a follow-up series of studies 
the descriptor system approach is extended to situations of  Markov jump linear targets, 
including the development of several novel approximate Bayesian filters, i.e.: 
 
• IMMJPDA* [11], [12] which prunes particular permutation hypotheses (similar as 

JPDA*) into a descriptor system version of the IMMJPDA filter  by [13];   
• JIMMCPDA [14] which is in theory the best combination of PDA and IMM for multiple 

Markov jump linear targets. 1 
• JIMMCPDA* [15] which prunes particular permutation hypotheses in JIMMCPDA similar 

as in CPDA* ; 
• Particle filter implementations of the exact Bayesian filter equations [14], [16]. 
 

                                                      
1 In [17] a version of JIMMCPDA for independently maneuvering targets is developed under the name IMMJPDA-Coupled 
filter. 
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A comparison of these tracking filters through Monte Carlo simulations [14] shows that 
JIMMCPDA* and IMMJPDA* performs much better than JIMMCPDA and IMMJPDA, and 
also remarkably well in comparison to a good particle filter implementation of the exact 
Bayesian filter equations. 
This paper is organized as follows. Section 2 defines the two-target tracking problem 
considered. Section 3 formulates this as a problem of filtering for a jump-linear descriptor 
system with independent identically distributed (i.i.d.) stochastic coefficients. Section 4 
develops exact Bayesian filter equations. Section 5 develops equations for the conditional mean 
and covariance. Sections 6 and 7 specify the JIMMCPDAR and JIMMCPDAR* filters 
respectively. Section 8 presents a discussion of the results. 
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2 The two-target tracking problem 

We consider two targets and assume that the state of each target is modeled as a jump linear 
system:  

 

1 1 1( ) ( ) 1 2i i i i i i i
t t t t tx a x b w iθ θ+ + += + , = ,   (1) 

 
where i

tx  is the n -vectorial state of the i -th target, i
tθ  is the Markovian switching mode of the 

i -th target and assumes values from {1 }N, ..,M  according to a transition probability matrix 
iΠ , ( )i i

ta θ  and ( )i i
tb θ  are ( )n n× - and ( )n n′× -matrices and i

tw  is a sequence of i.i.d. standard 
Gaussian variables of dimension n′  with i

tw  , j
tw  independent for all i  ≠  j  and i

tw  , 0
ix ,  0

jx  
independent for all i j≠ .     

We assume that a potential measurement originating from target i  is also modeled as a jump 
linear system:  
 

( ) ( ) 1 2i i i i i i i
t t t t tz h x g v iθ θ= + , = ,  (2)  

 
where i

tz  is an m -vector, ( )i i
th θ  is an ( m n× )-matrix and ( )i i

tg θ  is an ( m m′× )-matrix, and i
tv  is 

a sequence of i.i.d. standard Gaussian variables of dimension m′  with i
tv  and j

tv  independent for 
all i  ≠  j . Moreover i

tv  is independent of  0
jx   and j

tw  for all i , j .  

Let  
1

2
t

t
t

x
x

x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1

2
t

t
t

θ
θ

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1

2
t

t
t

w
w

w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, and 1 1 2 2( ) Diag{ ( ) ( )}t t tA a aθ θ θ= , , 1 1 2 2( ) Diag{ ( ) ( )}t t tB b bθ θ θ= , ,  

Then we can model the state of our 2  targets as follows:  
 

1 1 1( ) ( )t t t t tx A x B wθ θ+ + += +   (3)  

 
with A  and B  of size 2 2n n×  and 2 2n n′×  respectively, with { }tθ  assuming values from 

2{1 }N, ...,  according to transition probability matrix η θ
⎡ ⎤
⎢ ⎥,⎣ ⎦

Π = Π . If the 2  targets switch mode 

independently of each other, then:  
 

2

1 i i
i

iη θ η θ, ,=
Π = Π∏   (4)  

 
for every 2 2 and {1 }Nη θ ∈ = ,...,M .  
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Next with 
1

2
t

t
t

z
z

z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1

2
t

t
t

v
v

v
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, and 1 1 2 2( ) Diag{ ( ) ( )}t t tH h hθ θ θ= , , 1 1 2 2( ) Diag{ ( ) ( )}t t tG g gθ θ θ= , ,  

we obtain:  
 

( ) ( )t t t t tz H x G vθ θ= +   (5)  

 
with ( )tH θ  and ( )tG θ  of size 2 2m n×  and 2 2m m′×  respectively.  

In order to incorporate limited sensor resolution with Bayesian filtering, [5] adopts a non-zero 
probability that two close targets merge. This event of merging or not is represented by a zero-
one-valued process tκ , where 1tκ =  refers to merging, and 0tκ =  means non-merging. 

Following [5] we assume:  
 

(0 ) 1 (1 )
t t t t t tx xp x p xκ θ κ θθ θ| , | ,| , = − | ,  (6) 

 
1 1 1 2 2 2 1 1 1 1 2 2 21(1 ) exp{ ( ) ( ) ( ) ( ) ( ) }

2t t t

T

xp x h x h x R h x h xκ θ θ θ θ θ θ θ−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟| , ⎝ ⎠ ⎝ ⎠

| , = − − ⋅ − =  

11exp ( ) ( ) [ ] ( )
2

T T I
x H R I I H x

I
θ θ θ−⎧ ⎫⎡ ⎤⎪ ⎪= − −⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

M  (7) 

 
where ( )R θ  is an m m×  resolution capability matrix:  

 
1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( )

[ ] ( ) { , } ( ) [ ]

T T
r r

T T
r r

R g I g g I g

I I G Diag I I G I I

θ θ θ θ θ

θ θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= + =

= M M   (8) 

with 1 '{ ,.., }r mI Diag r r=  and typically 1.ir >   
Following [3], [10], for 1tκ =  we assume that with probability 0

dP  the merged potential 
measurement 1 2( ) / 2t tz z+  is observed at moment t . And for 0tκ = , we assume that with a non-
zero detection probability, i

dP , the potential measurement i
tz  is observed at moment t ,  

independently per target. 
Let tF  denote the number of false measurements at moment t , we assume tF  to be Poisson 

distributed:  
 

( )( ) exp( ) 0 1 2

0 else

t

F

F
Vp F V F
F
λ λ= − , = , , , ...

!
= ,

  (9.a) 

 
where λ  is the spatial density of false measurements and V  is the volume of the observed 
region. Thus Vλ  is the expected number of false measurements in the observed region. We 
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assume that the false measurements are uniformly distributed in the observed region, which 
means that a column-vector tv∗  of tF  i.i.d. false measurements has the following density:  

 
|

( )
t t

F
v F

p v F V∗
∗ −| =   (9.b) 

 
Furthermore we assume that the process { }tv∗  is a sequence of independent vectors, which are 
independent of { } { } { }t t tx w v, ,  and of the merging and detection.    
At moment t  a vector observation ty  is made, the components of which consist of tF  false 
measurements and tD  detected (merged) potential measurements, in an arbitrary order. The total 
number tL  of measurements is: 

 
t t tL D F= + .  (9.c) 

 

The multi-target tracking problem is to estimate ( )t tx θ,  from observations { , ;0 }t s sY L y s t
Δ

≤ ≤ .  
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3 Descriptor system formulation 

In order to prepare for a Bayesian evaluation of this tracking problem, in this section we 
develop an equation which relates the potential measurements tz mathematically to the true 
measurements ty .  
Let i tφ ,  be the detection indicator of target i . For  0tκ =  it assumes the value 1 with probability 

0i
dP > , independently of j tφ , , j i≠ , and the value 0 with probability (1 )i

dP− . For 1tκ = , with 
probability 0 0dP >   the two potential measurements merge to form one true measurement, i.e. 

1
2i tφ , =  for 1 2i = , , and with probability 01 dP−  the merged potential measurements do  not form 

a true measurement, i.e.  0i tφ , =  for 1 2i = , . The resulting detection indicator vector 

1, 2,[ ]T
t t tφ φ φ=  is a sequence { }tφ  of i.i.d. vectors, and with a tκ -conditional distribution:  

 

( ) ( ) { }

( ) ( )

2 1 2
| d d

1

12
0 02

1

( | ) 1 if  0,  0,1         

1
0 21 if  1,  ,
0 1

2
0 else.                                 

i i

t t

i i

i i

i

d d
i

p P P

P P

φ φ

φ κ

φ φ

φ κ κ φ

κ φ

−

=

−

=

= − = ∈

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎡ ⎤⎪ ⎪= − = ∈ ⎢ ⎥⎨ ⎬⎢ ⎥
⎣ ⎦ ⎢ ⎥⎪ ⎪

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
=

∏

∏  (10) 

Summation over all components of tφ  yields 

 
 

1

M
t i ti

D φ ,=
= ∑ .  (11) 

 
We want to use this target indicator process { }tφ  within an equation that relates ty  to tz . To 
accomplish this, we first introduce the following operator Φ : for an M ′ -vector φ′  with (0,1)-

valued components ,iφ′  {1, },i M ′∈ we define 
1

( ) M
ii

D φ φ
′

=

Δ
′ ′∑  and the operator Φ  producing 

( )φ′Φ  as a (0 1), -valued matrix of size ( )D Mφ′ ′×  of which the i th row equals the i th non-zero 

row of Diag{ }φ′ . And, if 1 1[ ]
2 2

Tφ′ = , then 1 1( ) [ ]
2 2

φ′Φ = . We also define an underlining 

notation: ( ) ( ) ,mIφ φ
Δ

′ ′Φ Φ ⊗  with mI  a unit-matrix of size m  and ⊗  Kronecker product, i.e.  

 
m m

m

m m

aI bI
a b

I
c d

cI dI

⎡ ⎤Δ⎡ ⎤ ⎢ ⎥⊗ ......⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

M

M
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With this the vector of detected measurements tz%  satisfies:  

 
( )          if  0t t t tz Dz φ= Φ >%  (12) 

 
We next introduce a stochastic t tD L× -matrix process }{ tχ%  such that  

 
         if  0tt tty Dzχ = >% %   (13) 

 

where mtt Iχ χ
Δ

⊗% % . 

Substitution of (5) into (12) and this into (13) yield: 
 

( ) ( ) ( ) ( ) if 0t t t t t t t tty H x G v Dχ φ θ φ θ= Φ +Φ >%   (14) 

 
Notice that the size of t

χ%  is t tD m L m×  and the size of ( )tφΦ  is tD m Mm× . Equation (14) is a 
jump-linear Gaussian descriptor system [18] with stochastic i.i.d. coefficients t

χ%  and ( )tφΦ . 

Together with equations (3), (4) and (6) through (11), equation (14) captures the filtering 
problem to be solved in a mathematically well defined system of equations. 
Following (14), all target to measurement relevant associations and permutations are covered by 
( )t tφ χ, % -hypotheses with 0tD > . To this set of hypotheses we add one for the situation 0tD =  
through the hypothesis 2{0}tφ =  and {} tL

tχ =% . Hence, through defining the weights  

 

( ) { | }t t t t ttProb Yβ φ κ χ θ φ φ κ κ χ θ θχ
Δ

, , , = , = , = , =% %%  (15) 

 
the law of total probability yields:  
 

, | |( ) ( ) ( | )
t t t t t t t ttx Y t x Yp x p xθ θ φ κ χ

χ φ κ

θ β φ κ χ θ θ φ κ χ, , , ,
, ,

, = , , , , , ,∑ %
%

% %  (16) 

 
With this the problem is to characterize the terms in the last summation, which is done in the 
next section. 
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4 Bayesian filter equations  

In this section a Bayesian characterization of the conditional density | ( )
t t tx Yp xθ θ, ,  is given where 

tY  denotes the σ -algebra generated by measurements up to and including moment t .  

 
Proposition 1  

For any { }2 1 1{0,1} [ ]
2 2

Tφ ∈ ∪ , such that 
2

1

( ) i t
i

D Lφ φ
=

Δ
≤∑ , and any tχ%  matrix realization χ%  of 

size ( ) tD Lφ × , the following holds true:  

 
1| | ,

|

( | ) ( | , )
( | )

( )
t t t t t t t t

t t t t tt

x t x Yz
x Y

t

p y x p x
p x

F
θ φ θ κ

θ κ φ χ

χ θ φ θ κ
θ κ φ χ

φ κ χ θ
−, , ,

, , , ,

, , ⋅
, , , =

, , ,
%

%

%
%

%
  (17) 

 
( )

1 1

( )
| | , |( ) ( ) ( | ) ( | ) ( )t

t t t t t t t

L D
t t Y Y tF p p p cφ

φ κ κ θ θβ φ κ χ θ φ κ χ θ λ φ κ κ θ θ
− −

−, , , = , , , ⋅ ⋅ ⋅ /% %  (18) 

 
where ( )tF φ κ χ θ, , ,%  and tc  are such that they normalize | ( | )

t t t t ttx Yp xθ κ φ χ θ κ φ χ, , , , , , ,%
%  and ( )tβ φ κ χ θ, , ,%  

respectively.  
 
Proof: Omitted due to space limitation. It largely follows the proof of Theorem 1 in [16] 
 
Proposition 2  
The conditional density 

1| , , ( | , )
t t t tx Yp xθ κ θ κ

−
 in Proposition 1 satisfies for 0tκ =  and 1tκ =  

respectively:  

1 1 1| , , | , | , ,
( )1( | ,0) ( | ) ( | ,1)

1 ( ) 1 ( )t t t t t t t t t t t

t
x Y x Y x Y

t t

c
p x p x p x

c cθ κ θ θ κ
θ

θ θ θ
θ θ− − −

= −
− −

 (19) 

 

1 1| , , | , | ,( | ,1) (1| , ) ( | ) / ( )
t t t t t t t t t tx Y x x Y tp x p x p x cθ κ κ θ θθ θ θ θ

− −
=  (20) 

 

1| ,( ) (1| )
t t tt Yc pκ θθ θ

−
=  (21) 

 
Proof: Follows from Bayes and subsequent evaluation. 
The next step is to combine Propositions 1 and 2 for the derivation of a characterization of the 
exact Bayesian measurement update equations in the following Theorem.  
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Theorem 1  
The measurement updating of 

1, | ( , )
t t tx Yp xθ θ

−
 to , | ( , )

t t tx Yp xθ θ  satisfies, for 2{1,.., }Nθ ∈ : 

 
0 0 1

, | | , , , | , , , ,
, ,

( , ) ( , , ) ( | , , ) ( , , ) ( | ,1, , )
t t t t t t t t t t t t t t

r
x Y t x Y t x Yp x p x p xθ θ χ φ θ κ χ φ

φ χ φ χ

θ β θ χ φ θ χ φ β θ χ φ θ χ φ== +∑ ∑% %
% %

% % % %  (22) 

 
( )

1

2 ( )
| | |

1( , , ) ( , , ) ( ) ( | ) ( | 0) ( )
t t t t t t

D
t t t Y

t

F c p p p
c

φκ κ κ
φ κ φ κ θβ θ χ φ θ χ φ θ λ φ κ κ φ θ

−

− ⎡ ⎤= ⋅ −⎣ ⎦% %  (23) 

 
1| , , | ,0

| , , , 0

( | , , ) ( | )
( | , , )

( , , )
t t t t t t t

t t t t t

z x t x Yr
x Y

t

p y x p x
p x

F
θ φ θ

θ χ φ

χ θ φ θ
θ χ φ

θ χ φ
−= = %

%

%
%

%
 (24) 

 
1| , , | , ,

| , , , , 1

( | , , ) ( | ,1)
( | ,1, , )

( , , )
t t t t t t t t

t t t t t t

z x t x Y
x Y

t

p y x p x
p x

F
θ φ θ κ

θ κ χ φ

χ θ φ θ
θ χ φ

θ χ φ
−= %

%

%
%

%
 (25) 

 
{ }| , , ( | , , ) ; ( ) ( ) , ( ) ( ) ( ) ( )

t t t t

T T
z x t tp y x N y H x G Gθ φ χ θ φ χ φ θ φ θ θ φ= Φ Φ Φ%

% %  (26) 

 
with 

1| , , ( | ,1)
t t t tx Yp xθ κ θ

−
 and ( )tc θ satisfying (20) and (21) respectively, 0 ( , , )tF θ χ φ%  and 1( , , )tF θ χ φ%  

normalization functions, and tc  such that
, , ,

( , , ) 1t
κ

θ κ φ χ

β θ χ φ =∑
%

. 

Proof of Theorem 1  
When 0r =  there is always resolution, which implies eq. (24). Under the condition 0r >  we 
substitute (20) into (17) for 1κ =  to get equation (25) with 1( , , ) ( ,1, , )t tF Fθ χ φ θ χ φ=% % . 

To get (22) and (23), we first substitute (19) into (17) for 0κ = : 
 

[ ] [ ]
1 1| , | , ,

| , , , , | , ,

( | ) ( ) ( | ,1)
( | ,0, , ) ( | , , )

1 ( ) ( ,0, , ) 1 ( ) ( ,0, , )
t t t t t t t

t t t t t t t t t t

x Y t x Y
x Y z x t

t t t t

p x c p x
p x p y x

c F c F
θ θ κ

θ κ χ φ θ φ

θ θ θ
θ χ φ χ θ φ

θ θ χ φ θ θ χ φ
− −

⎡ ⎤
= ⋅ −⎢ ⎥

− −⎢ ⎥⎣ ⎦
% %

% %
% %

(27) 

 
Next, substituting (24) and (25) into (27) and subsequent evaluation yields: 
 

( ) ( )

| , , , ,

0 1
0

| , , , | , , , ,

( | ,0, , )

( , , ) ( , , )
( | , , ) / 1 ( ) ( ) ( | ,1, , ) / 1 ( )

( ,0, , ) ( ,0, , )

t t t t t t

t t t t t t t t t t t

x Y

rt t
x Y t t x Y t

t t

p x

F F
p x c c p x c

F F

θ κ χ φ

θ χ φ θ κ χ φ

θ χ φ

θ χ φ θ χ φ
θ χ φ θ θ θ χ φ θ

θ χ φ θ χ φ
=

=

= − − − =

%

% %

%

% %
% %

% %

  

1
0

| , , , | , , , ,1 1

( , , )1 ( | , , ) ( | ,1, , )
1 ( , , ) 1 ( , , )t t t t t t t t t t t

r t
x Y x Y

t t

c
p x p x

c cθ χ φ θ κ χ φ
θ φ χ

θ χ φ θ χ φ
θ φ χ θ φ χ

== −
− −% %

%
% %

% %
 (H1) 

with:  
1

1
0

( , , )( , , ) ( )
( , , )

t
t t

t

Fc c
F

θ χ φθ χ φ θ
θ χ φ

=
%

%
%

, and (H2) 

( ) ( )
0 1( , , ) ( , , )

( ,0, , ) ( )
1 ( ) 1 ( )
t t

t t
t t

F F
F c

c c
θ χ φ θ χ φ

θ χ φ θ
θ θ

= −
− −

% %
%  (H3) 
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Substitution of equation (H1) into equation (16) yields: 
 

( )

( )

0
, | | , , , , | , , ,1

, ,

1

| , , , ,1
,

( ,0, , )
( | ) ( ,1, , ) ( | ,1, , ) ( | , , )

1 ( , , )

( ,0, , ) ( , , )
( | ,1, , )

1 ( , , )

t t t t t t t t t t t t t t

t t t t t t

rt
x Y t x Y x Y

t

t t
x Y

t

p x p x p x
c

c
p x

c

θ θ κ χ φ θ χ φ
φ χ φ χ

θ κ χ φ
φ χ

β θ χ φ
θ β θ χ φ θ χ φ θ χ φ

θ φ χ

β θ χ φ θ φ χ
θ χ φ

θ φ χ

== + +
−

−
−

∑ ∑

∑

% %
% %

%
%

%
% % %

%

% %
%

%

 

which implies (22) with: 
 

( )
0

1

( , 0, , )( , , )
1 ( , , )

t
t

tc
β θ χ φβ θ χ φ

θ φ χ
=

−

%
%

%
, and 

( )
1

1
1

( , , )( , , ) ( ,1, , ) ( , 0, , )
1 ( , , )

t
t t t

t

c
c
θ φ χβ θ χ φ β θ χ φ β θ χ φ
θ φ χ

= −
−

%
% % %

%
 

 
Substitution of (18) and subsequent evaluation, using (H2) and (H3), yield: 
 

( )
1

2 ( )0 0
| |

1( , , ) ( , , ) ( | 0) ( )
t t t t

D
t t Y

t

F p p
c

φ
φ κ θβ θ χ φ θ χ φ λ φ θ

−

−=% %  

 
( )

1

2 ( )1 1 0 1
| |

1( , , ) ( , , ) ( ) ( |1) ( ) ( , , ) ( , , )
t t t t

D
t t t Y t t

t

F c p p c
c

φ
φ κ θβ θ χ φ θ χ φ θ λ φ θ β θ χ φ θ χ φ

−

−= − =% % % %  

( ) ( )
1 1

2 ( ) 2 ( )1 1
| | | |

1 1( , , ) ( ) ( |1) ( ) ( , , ) ( ) ( | 0) ( )
t t t t t t t t

D D
t t Y t t Y

t t

F c p p F c p p
c c

φ φ
φ κ θ φ κ θθ χ φ θ λ φ θ θ χ φ θ λ φ θ

− −

− −= − =% %  

( )
1

2 ( )1
| | |

1 ( , , ) ( ) ( |1) ( | 0) ( )
t t t t t t

D
t t Y

t

F c p p p
c

φ
φ κ φ κ θθ χ φ θ λ φ φ θ

−

− ⎡ ⎤= −⎣ ⎦%  

 

which implies eq. (23). From the above also follows 
1 1

0 0
( , , ) ( , , , )t t

κ

κ κ

β θ χ φ β θ κ χ φ
= =

=∑ ∑% % . Hence tc  

normalizes not only ( , , , )tβ θ κ χ φ%  but also ( , , )t
κβ θ χ φ% .   Q.E.D. 
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5 Conditional mean and covariance 

Having characterized a set of equations for the measurement update of the conditional density, 
our next step is to assume that the joint-mode-conditionally predicted joint target state has a  
density 

1| ( | )
t t tx Yp xθ θ

−,  which is Gaussian for each joint θ . 

 
Theorem 2   
For each 2{1 }Nθ ∈ ,..., , let 

1| ( | )
t t tx Yp xθ θ

−,  be Gaussian with mean ( )tx θ , covariance ( )tP θ and 
let

1| ( ) 0
t tYpθ θ

−
> . Then | ( | )

t t tx Yp xθ θ,  is a Gaussian mixture, with overall weight | ( )
t tYpθ θ , overall 

mean ˆ ( )tx θ  and overall covariance ˆ ( )tP θ ,  satisfying:  

 
| ( ) ( )

t tY tp κ
θ

κ φ χ

θ β φ χ θ
, ,

= , ,∑
%

%   (28) 

 
where ( )t

κβ φ χ θ, ,% satisfies (25), and:  

 
1 1 0 0
| |

, ,

ˆ ˆ ˆ( ) ( , ) ( , , ) ( , ) ( , , )t t t t tx x xθ θ
φ χ φ χ

θ β χ φ θ χ φ β χ φ θ χ φ= +∑ ∑
% %

% % % %        (29) 

 
1 1 1 1
|

,

0 0 0 0
|

,

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( , ) ( , , ) ( ) ( , , ) ( )

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , , ) ( ) ( , , ) ( )

T

t t t t t t t

T

t t t t t t

P P x x x x

P x x x x

θ
φ χ

θ
φ χ

θ β χ φ θ φ θ χ φ θ θ χ φ θ

β χ φ θ φ θ χ φ θ θ χ φ θ

⎡ ⎤⎡ ⎤⎡ ⎤= + − − +⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤+ + − −⎣ ⎦⎣ ⎦⎣ ⎦

∑

∑
%

%

% % %

% % %
 (30) 

 
with: 
 

| |( ) ( ) ( )
t tt t Ypκ κ

θ θβ φ χ β φ χ θ θ, = , , /% %   (31) 

 
ˆ ( ) ( ) ( ) ( )t t t tx x Kκ κ κ κθ φ χ θ θ φ μ φ χ θ, , = + , , ,% %   (32.a) 

 
ˆ ( ) ( ) ( ) ( ) ( ) ( )t t t tP P K H Pκ κ κ κθ φ θ θ φ φ θ θ, = − , Φ   (32.b) 

 
where: 
 

( ) ( ) ( ) ( )t t ty H xκ κμ φ χ θ χ φ θ θ, , = − Φ% %   (33.a) 

1 0
( ) ( ) ( ) ( ) ( ) if   

0

0
0 if   

0

T T
t t tK P H Qκ κ κφ θ θ θ φ φ θ φ

φ

− ⎡ ⎤
, = Φ , ≠ ,⎢ ⎥

⎣ ⎦
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 (33.b) 

[ ]( ) ( ) ( ) ( ) ( )t t t tx x K I I H xκ θ θ κ θ θ θ= − −M   (34.a) 
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[ ]( ) ( ) ( ) ( ) ( )t t t tP P K I I H Pκ θ θ κ θ θ θ= − −M   (34.b) 

1( ) ( ) ( ) ( )T
t t t

I
K P H Q

I
θ θ θ θ −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
  (34.c) 

[ ]( ) ( ) ( ) ( ) ( )T
t t

I
Q I I H P H R

I
θ θ θ θ θ

⎡ ⎤⎡ ⎤= − +⎢ ⎥⎣ ⎦ −⎣ ⎦
M   (34.d) 

1
1 ( ) 22

2

1( ) exp{ ( ) ( ) ( )}/[(2 ) { ( )}] ,   {0}
2

                 1                       ,  {0}

T mD
t t t t tF Q Det Q if

if

κ κ κ κ φ κφ χ θ μ φ χ θ φ θ μ φ χ θ π φ θ φ

φ

−, , = − , , , , , , ≠

= =

% % %   (35.a) 

( ) ( )( ( ) ( ) ( ) ( ) ( ) ) ( )T T T
t tQ H P H G Gκ κφ θ φ θ θ θ θ θ φ, =Φ + Φ  (35.b) 

[ ]
1
2

1
1
2

( ) 1( ) exp ( ) ( ) ( ) ( ) ( )
2( )

T T
t t t t

t

R I
c x H Q I I H x

IQ

θ
θ θ θ θ θ θ

θ

−⎧ ⎫⎡ ⎤⎪ ⎪= ⋅ − −⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭
M  (36) 

 
Proof outline: Eqs. (28) through (31) follow from integrations over (22). Completing the square 
in equation (20) yields (34.a,b,c,d) and (36). Completing the square in equation (24) and (25) 
yield (32.a,b), (33.a,b) and (35.a,b). Q.E.D.  
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6 Joint IMM Coupled PDA filter with Resolution 

Proposition 4 and Theorem 2 provide conditional characterizations for the joint targets modes 
and states. Here we use these equations to specify the JIMMCPDAR filter algorithm (this 
acronym stands for Joint IMM Coupled PDA Resolution). A filter cycle starts with, for each 

2{1 }Nθ ∈ ,..., , conditional mode probability 
1 1| ( )

t tYpθ θ
− −

 and conditional mean and covariance : 

 

1 1 1 1ˆ ( ) { }t t t tx E x Yθ θ θ− − − −

Δ
| = ,  , and 

1 1 1 1 1 1 1
ˆ ˆ ˆ( ) {[ ( )][ ( )] | }T
t t t t t t tP E x x x x Yθ θ θ θ θ− − − − − − −

Δ
− − = ,   

 
One filter cycle consists of the following seven steps.   
 
JIMMCPDAR Step 1: Interaction  
Equal to step 1 of JIMMCPDA [14]. 
 
JIMMCPDAR Step 2: Prediction 
Equal to step 2 of JIMMCPDA [14]. 
 
JIMMCPDAR Step 3: Merging prediction: 
For all {1θ ∈ ,..., 2}N , evaluate equations (34.a,b,c,d). 

 
JIMMCPDAR Step 4:  Gating: 
Following [10], now per κ  value:  
Let , ( )i

tQκ θ  be the i-th m m×  diagonal block matrix of the κ -conditional predicted ( )tQκ θ , with    

 
( ) ( ) ( ) ( ) ( ) ( )T T

t tQ H P H G Gκ κθ θ θ θ θ θ= +  (37) 

 
Identify for each target i  and κ -value the mode ,i

t
κθ  for which Det , ( )i

tQκ θ  is largest:  

 
, ,Argmax{Det ( )}i i

t tQκ κ

θ
θ θ=    (38) 

 
and identify for each target i  a κ -dependent gate ,i m

tGκ ∈R  as follows: 

 
{ }, , , , , , 1 , , ,[ ( ) ( )] ( ) [ ( ) ( )]i i m i i i i i T i i i i i i i

t t t t t t t t tG z z h x Q z h xκ κ κ κ κ κ κ κ κθ θ θ θ θ ν−= ∈ ; − ⋅ ⋅ − ≤R  (39) 
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with ν  the gate size. If the j -th measurement y j
t  falls outside gate ,i

tGκ ; i.e. ,j i
t ty Gκ∉ , then 

under tκ κ=  the j -th component of the i -th row of [ ( ) ]Tφ χΦ %  is assumed to equal zero at 

moment t . Per κ -value this reduces the set of possible detection/permutation hypotheses to be 
evaluated for tχ% given tφ φ=  to χ% ∈ ( )t

κ φ%X .  

 
JIMMCPDAR Step 5: Hypothesis evaluation. 
Using (23) as approximation and adapting the d

iP  and 0
dP  in (10) for reduced detection 

probability due to limited gate size ν  yields:  
 

( )
1

2 ( )
|| |

( ) ( ) ( ) ( | ) ( | 0) ( ) for ( )

0 for ( )

t tt t t t

D
t t t Y t t

t

F c p p p cφκ κ κ κ
θφ κ φ κ

κ

β φ χ θ φ χ θ θ λ φ κ κ φ θ χ φ

χ φ

−

− ⎡ ⎤, , ≅ , , ⋅ − / ∈⎣ ⎦
= ∉

%% % %

%%

X

X
 (40) 

 
( ) ( )

( )( ) ( )

(1 )2 22 2
d d| 1

1 ( ) ( )0 02 2
d d

( | ) [ ] if =0, {0,1}1 ( ) ( )Chi Chi

1
0 2                    if =1, ,1 ( ) ( )Chi Chi 0 1

2
0 else

i i

t t

i i
m mi

D D
m m

p P P

P P

φ φ

φ κ

φ φ

φ κ κ φν ν

κ φν ν

−

=

−

= ∈− ⋅ ⋅

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎡ ⎤⎪ ⎪= ∈− ⋅ ⋅ ⎢ ⎥⎨ ⎬⎢ ⎥
⎣ ⎦ ⎢ ⎥⎪ ⎪

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
=

∏

 (41) 

 
with ( )t

κμ φ χ θ, ,% , ( )tFκ φ χ θ, ,% , ( )tQκ φ θ, and ( )tc θ  to be evaluated by (33.a), (35.a,b) and (36) 
respectively, with tc  normalizing ( )t

κβ φ χ θ, ,% , and 2 ( )Chim ⋅  the Chi-squared cumulative 

distribution function with m  degrees of freedom.  
 
JIMMCPDAR Step 6: Measurement-based update, by evaluating equations (28) - (32) and 
(33.b). 
 
JIMMCPDAR Step 7: Output equations: 
 

2
|

{1 }

ˆ ˆ( ) ( )
t tt Y t

N

x p xθ
θ

θ θ
∈ ,...,

= ⋅∑   (42) 

 

2
|

{1 }

ˆ ˆ ˆ ˆ ˆ ˆ( )( ( ) [ ( ) ] [ ( ) ] )
t t

T
t Y t t t t t

N

P p P x x x xθ
θ

θ θ θ θ
∈ ,...,

= + − ⋅ −∑  (43) 
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7 Track-coalescence-avoiding JIMMCPDAR filter  

A shortcoming of JIMMCPDA is its sensitivity to track coalescence. With the JIMMCPDA* 
approach, [15] has shown that this is due to JIMMCPDA’s merging over permutation 
hypotheses, and that a suitable hypothesis pruning may provide an effective countermeasure. In 
order to develop such a pruning for JIMMCPDAR we need to introduce some additional 
processes and notation. Following [8], tχ%  can be written as: 

 
( ) if 0t t tt Dχ ψχ = Φ > .%   (44) 

 
where tχ  is a t tD D×  permutation matrix, which is conditionally independent of tφ  given tD , 
and where  1[ ]

t

T
t t L tψ ψ ψ, ,= ... , with {0 1}i tψ , ∈ ,  the target indicator at moment t  for measurement 

i , which assumes the value one if measurement i  belongs to a detected target and zero if 
measurement i  comes from clutter. tψ  is conditionally independent of tφ  and tχ  given tD  and 

tL . Moreover, { }tχ  and { }tψ  are i.i.d. sequences. 

The JIMMCPDA* filter equations are obtained from the JIMMCPDA algorithm by pruning per 
( , )t t tφ ψ θ, -hypothesis all except the most likely tχ -hypothesis prior to measurement updating. 

The physical explanation why this is working for two targets has been given by [5]. If targets 
move closely spaced for a longer period of time, then the pdf of the individual targets tend to 
become of a symmetric form invariant against a permutation of the objects. Because for two 
targets permutations are possible for 0tκ = and [1 1]T

tφ =  only, the JIMMCPDA* hypothesis 
pruning strategy needs to be extended for that case only. For 0κ =  and [1 1]Tφ =  evaluate all 
(ψ , )θ  hypotheses and prune per such (ψ , )θ -hypothesis all except the most likely χ -
hypothesis. To do so, define for every ψ  and θ  a mapping ˆ (t ψχ , )θ :  

 
0ˆ ( ) Argmax ( ( ) [1 1] )T
tt

χ
θ ψ β θ χ ψχ

Δ
, , Φ ,  (45.a) 

 
with maximization over all permutation matrices χ  of size 2 2× . The strategy of evaluating for 

0κ = and [1 1]Tφ =  all ( )ψ θ, -hypotheses and only one χ -hypothesis implies that we adopt per 
( )φ χ θ, ,% -hypothesis the following hypothesis weights ˆ ( )t

κβ θ χ φ, ,% :  

 
( ) ( )ˆ ˆˆ, ( ), , ( ), / if ( ) 1 or if ( ) 2 and ( , )

0 else            
t t tc D Dκ κβ θ χ ψ φ β θ χ ψ φ φ φ χ χ θ ψΦ = Φ ≤ = =

=
 (45.b) 

 
with ˆ tc  a normalization constant for t̂

κβ ; i.e. such that  

 
( )

, , ,

ˆ , , 1t
κ

κ φ χ θ

β θ χ φ =∑
%

%  
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Inserting these particular weights within JIMMCPDAR, yields JIMMCPDAR*, consisting of 
the following cycle of of 8 steps (the first five are equivalent to the first five JIMMCPDAR 
steps):    
 
JIMMCPDAR* Steps 1-5:   
Equivalent to JIMMCPDAR Steps 1-5.    
 
JIMMCPDAR* Step 6: Hypothesis pruning.   
Evaluate the new hypothesis weights using eqs. (45.a,b). 
 
JIMMCPDAR* Step 7: Measurement-based update:  
Equivalent to JIMMCPDAR Step 6, but with t

κβ  replaced by t̂
κβ . 

 
JIMMCPDAR* Step 8: Output equations:   
Equivalent to JIMMCPDAR Step 7. 
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8 Discussion of results 

This paper incorporated resolution submodels of [3] and [5] within the descriptor system 
approach of [8], [14] and [15] towards filtering two Markov jump linear targets from possibly 
unresolved, missing and false observations. For this descriptor system we developed the exact 
Bayesian measurement update equations (Theorem 1), and novel filter algorithms, 
JIMMCPDAR and JIMMCPDAR*. For closely spaced targets these filter algorithms differ 
significantly from the JIMMCPDA and JIMMCPDA* filter algorithms. In follow-up work the 
effectivity of these new filters will be shown through Monte Carlo simulations relative to 
JIMMCPDA and JIMMCPDA*, and relative to a good particle filter. For such particle filter the 
exact Bayesian filter equations of Theorem 1 will be used.   
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Appendix A Acronyms 

CPDA Coupled PDA 
CPDA* Track-coalescence-avoiding CPDA 
IMM Interacting Multiple Model 
IMMJPDA Interacting Multiple Model Joint Probabilistic Data Association 
IMMJPDA* Track-coalescence-avoiding IMMJPDA 
IMMPDA Interacting Multiple Model Probabilistic Data Association 
JIMMCPDA Joint Interacting Multiple Model Coupled Probabilistic Data Association 
JIMMCPDA* Track-coalescence-avoiding JIMMCPDA 
JIMMCPDAR JIMMCPDA with Resolution 
JIMMCPDAR* Track-coalescence-avoiding JIMMCPDAR 
JPDA Joint PDA 
JPDA* Track-coalescence-avoiding JPDA 
MHT Multiple Hypotheses Tracking 
PDA Probabilistic Data Association 
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Appendix B List of Symbols 

( )i ia θ  Target i’s state transition matrix of size n n×  as a function of mode iθ  
( )A θ  Joint targets state transition matrix as a function of joint mode θ  
( )i ib θ  Target i’s state noise gain matrix of size n n′×  as a function of mode iθ  
( )B θ  Joint targets state noise gain matrix as a function of joint mode θ  
tD  Total number of detected targets at moment t 

tF  Total number of false measurements at moment t 
,i tφ  Detection indicator for target i at moment t 

tφ  Detection indicator vector at moment t, containing the detection indicators for all targets 
at moment t 

Φ  Matrix operator to link the detection indicator vector with the measurement model 
( )i ig θ  Target i’s measurement noise gain matrix of size m m′×  as a function of mode iθ  
( )G θ  Joint targets measurement noise gain matrix as a function of joint mode θ  
tχ%  (0,1)-matrix that is used to randomly select target measurements from the measurement 

vector ty  

tχ%  “Inflated” tχ%  matrix of proper size such that it randomly selects target measurements 
from the measurement vector ty  by means of matrix multiplication. 

( )i ih θ  Target i’s state-to-measurement transition matrix of size m n×  as a function of mode iθ  
( )H θ  Joint targets state-to-measurement transition matrix as a function of joint mode θ  

I  Unit-matrix 
rI  Diagonal matrix with its i-th diagonal equal to the i-th element of the vector r  
tκ  Merging indicator at moment t 
tL  The number of measurements at moment t 
λ  Spatial density of false measurements 
M  Total number of targets 
M  Set of possible modes of  target 
N  Total number of modes of a target 

i
dP  Detection probability of target i 
ηθΠ  Transition probability of a target switching from mode η  to mode θ  

Π  Transition probability matrix 
.i tψ  Target indicator for measurement i at moment t 

tψ  Target indicator vector at moment t, containing the target indicators for all 
measurements at moment t 

ir  Resolution capability factor for the i-th noise component of a potential target 
measurement 

( )R θ  Resolution capability matrix of size m m×  
i
tθ  Mode of target i at moment t 
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tθ  Joint targets mode at moment t 
i
tv  Sequence of i.i.d. standard Gaussian variables of dimension m′  representing the 

measurement noise for target i 
tv  Joint targets measurement noise vector 
*
tv  Column vector of tF  i.i.d. false measurements 

V  Volume of the observed region 
i
tw  Sequence of i.i.d. standard Gaussian variables of dimension n′  representing the system 

noise for target i 
tw  Joint targets system noise vector 
i
tx  n-vectorial state of target i at moment t 
tx  Joint targets state vector at moment t 
k
ty  k-th measurement at moment t 
ty  Measurement vector at moment t, containing all measurements at moment t 
tY  σ -algebra generated by measurements up to and including moment t  
i
tz  m-vectorial potential measurement of target i at moment t 
tz  Joint measurements vector at moment t, containing the potential measurements of all 

targets at moment t 
tz%  Joint measurements vector at moment t, containing the potential measurements of all 

detected targets at moment t in a fixed order 
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