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Summary

Reliable determinations of fatigue crack growth thresholds are important for fatigue crack
growth analyses, especially for helicopter airframe components, since the analyses rely mainly
on crack growth data in the near-threshold region. This region is often characterized by

considerable data scatter, including scatter in the threshold values.

The NLR and DSTO have participated in a joint project on helicopter fatigue called
HeliDamTol. This project has two main objectives. The first is to develop reliable methods of
fatigue crack growth analysis for helicopter airframe components. The second is to incorporate
these methods into an Operational Damage Assessment Tool (ODAT), which is intended to

improve the operational readiness of a helicopter fleet.

The present report is a contribution to the first main objective of HeliDamTol. The report
presents experimental determinations of fatigue crack growth thresholds in aluminium alloy
7075-T7351 plate material used for the hinge beams on the NH90 helicopter carbon-epoxy
composite tail boom. Interpretation of the experimental determinations was aided by

fractographic observations of the thresholds and near-threshold crack growth regions.

The thresholds were determined for the positive stress ratio range R = 0.1 — 0.95. The results

may be expressed as follows:

(D) For R > 0.58 the measured fatigue crack growth threshold stress intensity range AKy, is

equal to the effective, or intrinsic threshold stress intensity range AK,, and is given by
R >0.58 : AKy, = AK, = 1.44 £ 0.25 MPaym
2) For R <0.58 the measured AKth depends on R:
R <0.58 : AKy, = [(2.35 £ 0.25) - 1.57R] MPaVm
The results include a scatterband of + 0.25 MPaVm for all values of AKy,, and consequent
variations in AKy, of about 11 — 17 %. These variations are most probably due to variable crack

front topographies and profiles in the threshold region, and they represent intrinsic limitations to

the accuracy of AKy, values.
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On the other hand, despite evident effects of humidity on the threshold and near-threshold
fracture topography and the amount of fracture surface oxidation at threshold, the determined
AKy, values seem independent of normal changes in atmospheric humidity ranging from 17 —
43 % R.H. This is probably sufficient to account for the average atmospheric conditions

experienced by helicopters during service.
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Nomenclature and acronyms

R = Sin/Smax = Kinin/Kinax
R>R,

Ry

Kinaxs Kinin
AK = Kinax - Kinin

Kmax,th ) Kmin,th

AI<th = Kmax,th - Kmin,th
Kmax,o
Kop

AKO = Kmax,o - Kop

CT

D.C.
DFOM
FEG-SEM
ISIS

ODAT

Stress or stress intensity factor ratio for a fatigue load cycle
Stress or stress intensity factor ratios with no crack closure
Linear roughness parameter

Maximum and minimum stress intensity factors

Stress intensity factor range

Maximum and minimum stress intensity factors at the fatigue
crack growth threshold

Fatigue crack growth threshold stress intensity factor range
Maximum stress intensity factor for AKy, when R =0
Crack opening stress intensity factor

Effective, or intrinsic, fatigue crack growth threshold stress
intensity factor range

Crack length

Fatigue crack growth rate

Number of cycles

Tensile strength

Yield strength (generally at 0.2% offset)
AEroSPace

American Society for Testing and Materials
Compact Tension (specimen)

Direct Current

Deep Focus Optical Microscope

Field Emission Gun Scanning Electron Microscope

NLR automated system for D.C. potential drop measurement
of crack growth

Operational Damage Assessment Tool

Longitudinal
Transverse (long-transverse)
Short-transverse

Crack plane orientation (L = loading direction, T = crack
growth direction)

Crack plane orientation (T = loading direction, L = crack
growth direction)
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1 Introduction

Reliable determinations of fatigue crack growth thresholds are important for fatigue crack
growth analyses, especially for helicopter airframe components (Irving et al. 2003; Vaughan
and Chang 2003; Wanhill and Bos 2004). This is because these analyses rely mainly on crack
growth data in the near-threshold region. This region is often characterized by considerable data
scatter, including scatter in the threshold values.

The NLR and DSTO have participated in a joint project on helicopter fatigue called
HeliDamTol. This project has two main objectives. The first is to develop reliable methods of
fatigue crack growth analysis for helicopter airframe components. The second is to incorporate
these methods into an Operational Damage Assessment Tool (ODAT), which is intended to
improve the operational readiness of a helicopter fleet.

This report is a contribution to the first main objective of HeliDamTol. The report presents
experimental determinations of fatigue crack growth thresholds in aluminium alloy 7075-T7351
plate material used for the hinge beams on the NH90 helicopter carbon-epoxy composite tail
boom. The tail boom folds forward to reduce parking and storage space.

Interpretation of the experimental determinations was aided by fractographic observations of the
thresholds and near-threshold crack growth regions.

2 Test programme

2.1 Material and specimens

Production quality aluminium alloy 7075-T7351 plate material was obtained from Fokker AESP
in the form of two pieces 900(L) x 62(T) x 40(S) mm. This material had the nominal
mechanical properties 6, =435 MPa and 6, = 505 MPa.

10 mm thick Compact tension (CT) specimens were machined from the plate such that loading
would be in the longitudinal (L) direction and crack growth in the long-transverse (T) direction.
The crack plane orientation is then referred to as L-T. The specimens were provided with drilled
holes for the electrical leads of a D.C. potential drop automated crack growth measurement
system (ISIS), see figure 1.

2.1 Types of tests

Two types of tests were used to determine the fatigue thresholds. These are illustrated
schematically in figure 2:

(1) Constant R tests: The applied loads are reduced during fatigue crack growth such that the
stress ratio, R, remains constant while the cyclic stress intensity factor range, AK ,
gradually decreases to the threshold value, AKy,.

(2) Constant K, tests: The applied loads are changed during fatigue crack growth such that
the maximum stress intensity factor, K. , remains constant while the minimum stress
intensity factor, K, , gradually increases until AK reaches AKy,.




NLR-TP-2009-596 NLRS

>

Constant R tests are useful for obtaining AKy, values over a wide range of R, from R =0 to R >
0.8. In the present programme values of R = 0.1, 0.4, 0.7 and 0.8 were selected. Constant K.«
tests are useful for obtaining AKy, values in the range R = 0.7 to R > 0.9. This range is
particularly of interest for helicopter airframe components (Wanhill and Bos 2004). K,,.x values
of 5, 15 and 25 MPaVm were selected.

All tests were done following ASTM Standard E 647, using an MTS 810 electrohydraulic
machine equipped with a 10kN load cell and customized specimen grips. The specimens were
electrically insulated from the grips by the use of SiC ceramic loading pins. The fatigue stress
waveform was sinusoidal, with a cycle frequency of 40Hz. ISIS measurements of crack lengths
were made automatically every 0.1 mm of crack growth until approaching the thresholds, when
measurements were made every 10,000 cycles. Each ISIS measurement required a hold time of
5 s at maximum load. Optical (travelling microscope) measurements of crack lengths were made
as intermittent checks on the ISIS measurements. This kind of check is essential for each test.

The environment surrounding the specimens was laboratory air. A dummy specimen was
required to eliminate the effects of ambient temperature fluctuations on the D.C. potential drop
measurements. Also, after the first tests, with R = 0.1, examination of the near-threshold fatigue
fracture surfaces, see section 4, indicated that the environment influenced the fatigue fracture
topography. This unexpected and previously unreported result led to continuous measurements
of the air temperature and relative humidity during the remaining tests'.

2.2 Test plan

Table 1 lists the specimens used for the AKy, determinations and ISIS calibration. Each AKy,
specimen was used for three tests. The two-digit specimen code refers to locations and positions
in the original plate material: the first digit gives a location at which three specimens were
machined from the plate thickness; the second digit refers to the top (1), middle (2) or bottom
(3) specimen at each location.

Table 1 Specimen allocations for threshold test determinations

Specimen code Type of test

1-2 Kmax = 5 MPaVm

1-3 R=0.1

2-1 D.C. potential drop calibration
2-2 R=0.7

3-1 R=04

6-2 Koax = 15 MPavm

6-3 R=0.8

8-1 Koax = 25 MPaVm

2.3  Fractography

Following ASTM E 647, the fracture surfaces of the AKy, specimens were examined optically at
low magnifications to measure the final crack front lengths and curvatures. These measurements
were used to correct the ISIS crack length data and the nominal calculated stress intensity
factors, if necessary.

Detailed fractography was done using a Philips Field Emission Gun Scanning Electron
Microscope (FEG-SEM) and DSTO-customized Deep Focus Optical Microscope (DFOM).

The measurement of ambient air temperature and humidity is not mentioned in ASTM E 647.
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3 Threshold test results

The ISIS crack length versus cycles data were corrected for offsets; an apparent influence of
making optical measurements, when the tests had to be temporarily stopped; and data dropouts.
Then the data were processed to obtain crack growth rate, da/dN, versus AK data. The methods
to do the corrections and processing have been incorporated into a MATLAB Graphical User
Interface developed by the NLR (Huls 2007).

It was found that the constant R threshold tests were reliable. However, 5 of the 9 constant K.«
tests were invalid: one each for K, values of 5 and 15 MPa\/m, for reasons unknown; and all
three for Kinax = 25 MPaVm. The SiC ceramic loading pins were found to be severely cracked
after the third Ky = 25 MPaVm test, and it is possible that they started to crack already during
the first test (which was on the same specimen, as mentioned in subsection 2.3).

Figures 3 — 8 show the corrected da/dN versus AK data for each value of R and K,,,x . Plotted in
this way the data show the considerable scatter in crack growth rates over the entire range of
AK, especially as da/dN decreases below 10” m/cycle.

The data shown in figures 3 — 8 were used to derive AKy, values according to ASTM E 647. For
each test a vertical-line best fit was made to the lowest set of data points below, or downwardly
approaching, 10™'° m/cycle. The best fit AK values at 107" m/cycle were taken to be the AKy,
values. Table 2 gives these values and also the corresponding K.« 1 values.

Table 2 7075-T7351 L-T fatigue crack growth thresholds

Type of test R AKow MPaVm) | Kpaxsw (MPaVm)
2.07 2.30
0.1 2.34 2.60
1.96 2.12
1.55 2.58
0.4 1.45 2.42
1.59 2.65
Constant R
1.45 4.83
0.7 1.69 5.63
1.19 3.97
1.32 6.60
0.8 1.55 7.75
1.41 7.05
Kmex = 5 MPaVm | 0.70 (test 2) 1.42 5.00
0.69 (test 3) 1.55 5.00
Kiax = 15 MPaVm | 0.92 (test 1) 1.22 15.0
0.92 (test 3) 1.21 15.0

Figures 9 — 11 present the values from table 2 in a specific sequence: K .xm versus R; the two-
parameter AKy, versus Ki.xm diagram; and finally AKy, as a function of R. These figures will
now be discussed:
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Figure 9: A plot of Kuuxm versus R enables determination of K., and R, , as shown in the
figure. The best fit value of Kuxo is 2.5 MPa\/m, and R.=0.58. Also, the horizontal part of
the plot, from R = 0 to R = 0.58, indicates that K., will be constant for negative R (Doker
2005).

Figure 10: A plot of AKy, versus Kpum , indicating the best fit value of K., , gives a
scatterband for AK, , as shown. The value of AK, 1s 1.44 + 0.25 MPaVm.

Figure 11: The best fit value of K.« , the value of R, , and the scatterband for AK, are added to
a plot of AKy, versus R. This enables estimating the scatterband for AKy, as a function of R. The
result is as follows:

e R>0.58:AKy=AK,=1.44£0.25 MPaym
e R<0.58:AKy=[(2.35%0.25)- 1.57R] MPaVm

Obtaining the fatigue crack growth thresholds via this sequence of plots means that scatter in all
the AKy values is considered when making the final AKy, versus R plot. This is more
representative than simply fitting a curve to the AKy, versus R data (Doker 2005). This final
result has a scatterband of + 0.25 MPaVm. This is the same as the 7075-T7351 threshold
scatterband obtained by Marci (2000).

Figure 12 compares the AKy versus R and AKy versus Kpaxm values from the present
investigation and from Marci (2000). Bearing in mind that the 7075-T7351 aluminium alloy
came from different batches, the specimen orientations were different, and the tests were done
using different equipment in different laboratories, the agreement is very good. The effective, or
intrinsic, fatigue crack growth threshold stress intensity factor ranges, AK, = Ko - Kop , are
slightly different:

e Marci: 1.0 < AK, < 1.5 MPaVm
NLR :1.19<AK, < 1.69 MPaVm

4 Threshold and near- threshold fractography

4.1 Background information and procedure

Rather surprisingly, there has been limited investigation of the near-threshold fatigue fracture
topography of aluminium alloys. The following is known, or suggested, about overaged 7000
series alloys like 7075-T7351 (Vasudévan and Suresh 1982; Suresh et al. 1984):

D Atmospheric humidity influences the oxidation of the near-threshold fracture surface.
Increased humidity increases the oxide thickness.

2) At low R values oxidation may play a dominant role in influencing the near-threshold
fatigue crack growth behaviour. Increased oxidation enhances fatigue crack closure and
could arrest the fatigue cracks. In other words, enhanced fracture surface oxidation
might lead to higher values of AKy,, though this was not explicitly stated by Vasudévan
and Suresh.

10
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3) At high R values other factors besides oxidation may play a role, namely the fracture
surface roughness and crack front profile.

In terms of fractographic observation there is a difference in scale. Fracture surface oxidation
and any variations in oxide thickness are properly observable only at medium-to-high SEM
magnifications, generally beyond the capability of optical microscopy. However, fracture
surface roughnesses and crack front profiles are most readily observed and compared at lower
magnifications.

Owing to this difference in observational scale, we shall first survey the fracture surface
roughnesses and near-threshold crack front profiles, using both the DFOM and FEG-SEM. This
survey is followed by more localised, and hence more detailed, examination of the threshold
and near-threshold region, relying mainly on FEG-SEM images for interpretation.

4.2  Survey of near-threshold crack front profiles and roughnesses

4.2.1 FEG-SEM stereo images

Figures 13 — 31 give examples of the threshold and near-threshold fatigue crack front profiles
and roughnesses. The stereo images were prepared for viewing using the anaglyph viewer in the
envelope attached to the inside back cover of this report.

Table 3 classifies the threshold and near-threshold fatigue fracture features per test condition,
including the local relative humidity (R.H.), temperature, and fracture surface roughness (Ry) at
threshold. The following trends were observed:

e At low to intermediate stress ratios (R = 0.1 — 0.4) the fracture topography consisted mainly
of flat “scallops” (locally curved crack fronts) separated by narrow ridges. The scallops in
figures 13 — 15 were clearly marked by alternating light and dark bands having the contours
of the fatigue crack fronts. Observation of these bands for the specimen tested at R = 0.1 led
to recording the humidity and temperature for the remaining tests, see Appendix A. Though
much less evident, the alternation of light and dark bands can also be seen in figures 19, 20
and 24.

e At high stress ratios (R = 0.67 — 0.8) the scallops tended to be fewer, ill-defined and
separated by wide and rough ridges, giving an overall increase in fracture surface
roughness. However, one test where the threshold was reached at higher humidities (2-2:
IIT) was better characterized by flat scallops separated by narrow ridges.

e At very high stress ratios (R = 0.92 — 0.95) the fracture topographies consisted of mixtures
of flat facets and rough ridges.

e The fracture surface roughnesses showed considerable variation, but there was a tendency
for the roughness to increase with increasing stress ratio.

11
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Table 3 Classification of 7075-T7351 L-T threshold and near-threshold fatigue fracture features

R Specimen | Thresholds Threshold Threshold RL Fatigue fracture features
code and figures R.H. (%) Temp. (°C)
I :fig. 13 - - 1.10 scalloped flat fracture separated by narrow ridges; light and dark
0.1 1-3 II : fig. 14 - - 1.09 bands contouring the crack fronts prior to threshold
I : fig. 15 - - 1.10
I :fig. 16 29 - 30 24 1.21 scalloped flat fracture separated by narrow ridges; faint light and
0.4 3-1 II : fig. 17 38-39 * 1.05 dark bands contouring the crack fronts prior to threshold
III : fig. 18 26 - 27 20 1.20
I :fig. 19 17-18 22 1.21 scalloped fracture separated by wide and rough ridges; light and
0.67-0.70 1-2 II : fig. 20 23-24 23 1.18 dark bands contouring the crack fronts prior to threshold
I : fig. 21 25-26 23 1.14
I :fig. 22 29-30 21 1.20 I, II: wide and rough ridges separating some scalloped fracture
0.7 2-2 Il : fig. 23 42 -43 21 1.15 I11: scalloped flat fracture separated by narrow ridges: light and
I1I : fig. 24 38-39 20 1.10 dark bands prior to threshold
I :fig. 25 33-34 22 1.25
0.8 6-3 II : fig. 26 26 - 27 22 1.20 wide and rough ridges separating some scalloped fracture
11 : fig. 27 23-24 22 1.25
I :fig. 28 21-22 25 1.27
0.92 6-2 II : fig. 29 28 -29 25 1.18 mixtures of flat facets and rough ridges
11 : fig. 30 31-32 25 1.15
0.95 8-1 I :fig. 31 30 26 1.31 mixtures of flat facets and rough ridges

* Data dropout near end of test

965-600C-dL-H1IN
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4.2.2 Comparisons of FEG-SEM and DFOM images

Figures 32 — 38 compare FEG-SEM and DFOM overviews of some of the thresholds, covering
the range R = 0.1 — 0.92 and for various local R.H. values, see table 4. In the first instance the
FEG-SEM and DFOM images look very different. In fact, it requires considerable expertise to
match the same features observed by these techniques. Perhaps the most obvious correlations,
apart from the transitions from third thresholds to overload fracture, are provided by the flat
scallops. These tend to be highly reflective in the DFOM images, see figures 32, 33 and 35.
Also, table 4 suggests that there is a correlation between the occurrence of flat scallops and local
relative humidities approaching 40 %.

Table 4 Threshold fracture surfaces selected for FEG-SEM and DFOM comparisons

R Specimen | Thresholds | Threshold Fatigue fracture features
code and figures | R.H. (%)
0.1 1-3 111 : fig. 32 — mainly flat scallops
0.4 3-1 11 : fig. 33 38 -39 mainly flat scallops
I:fig. 34 29-30 mainly wide rough ridges
0.7 2-2 I : fig. 35 38-39 mainly flat scallops
0.8 6-3 II: fig. 36 26 - 27 mainly wide rough ridges
I: fig. 37 21-22 flat facets and rough ridges
0.92 6-2 II1 : fig. 38 31-32 flat facets and rough ridges

4.3 Detailed fractography in the threshold/near-threshold region

As mentioned in subsection 4.2.1, the FEG-SEM images in figures 13 — 15, and to a lesser
extent figures 19, 20 and 24, show alternations of light and dark bands which have the contours
of the fatigue crack fronts. Figure 39 gives a perspective view of a typical dark band between
two light ones on a flat scallop. This view shows that (a) the dark band has an even flatter
topography and (b) the fracture surface details are partially obscured by an overlying featureless
layer.

Interpretation of the FEG-SEM image dark band phenomenon has been aided by detailed
examination of the thresholds by both FEG-SEM and DFOM imaging. Figures 40 — 43 give
examples from which the following conclusions are drawn:

) The FEG-SEM dark bands correspond to highly reflective and almost featureless bands
in DFOM images, see figures 40 and 42.

2) These bands occurred only at relative humidities approaching 40 %, compare figures 41
and 42.
3) These almost featureless bands are the result of a brittle layer overlying the fatigue

fracture surfaces, see figure 43.

4 The most obvious explanation for these bands is that they are due to fracture surface
oxidation that requires a local relative humidity approaching 40 %, and certainly more
than 30 %. This explanation is semi-quantitatively consistent with the earlier work of
Vasudévan and Suresh (1982) and Suresh et al. (1984) mentioned in subsection 4.1.

13



NLR-TP-2009-596 NLRS

>

They observed enhanced near-threshold fracture surface oxidation for overaged 7000
series alloys tested in air of 95 % R.H.

5 Discussion

As stated in the introduction to this report, the present investigation is a contribution to the first
main objective of the HeliDamTol programme: namely, the development of reliable methods of
fatigue crack growth analysis for helicopter airframe components.

Of primary importance to this objective is the determination of fatigue crack growth thresholds,
AKy,. Figures 11 and 12 show the final results of the present investigation, including the very
good agreement with Marci’s data (Marci 2000). Our results may be quantitatively expressed as
follows:

e R>058:AK =AK, = 1.44 + 0.25 MPaym
e R<0.58:AKy = [(2.35+0.25) - 1.57R] MPaVm

The scatterband is + 0.25 MPaVm, which is the same as that obtained by Marci. He stated that a
scatterband of = 0.2 MPaVm is “a realistic aim for the experimental determination of AKy,.”
However, this seems slightly optimistic.

The scatterbands signify variations in AKy, of about 11 — 17 %, the latter value being for R >
0.58. These variations are significant, certainly in the context of modelling fatigue crack growth,
and the question naturally arises why there are such significant variations.

In our opinion, a reasonable answer to this question is given by the fractography survey in
subsection 4.2. At and near the fatigue crack thresholds the individual crack front topographies
and profiles showed considerable variations, especially for higher R. These variations would
probably have affected the local crack driving forces (stress intensity factor ranges) both
geometrically and through variations in roughness-induced fatigue crack closure. This
explanation agrees with the suggestions of Vasudévan and Suresh (1982) and Suresh et al.
(1984).

However, our results do not fit with the suggestion by Vasudévan and Suresh (1982) about the
effect of atmospheric humidity on near-threshold fatigue crack growth, namely that at low R
values oxide build-up could arrest cracks. (As stated in subsection 4.1, this type of crack arrest
would be expected to cause higher AKy, values.) Figure 44 shows that there were no consistent
correlations between the local variations in atmospheric humidity, ranging from 17 — 43 %
R.H., and AKy,. This is despite the evident effects of humidity on (a) the threshold and near-
threshold fracture topography, see subsection 4.2, and (b) the amount of fracture surface
oxidation at threshold, see subsection 4.3.

A likely reason for this discrepancy, if it should be called that, is the relative severity of the air
environments. Vasudévan and Suresh (1982) tested overaged 7000 series alloys in air of 95 %
R.H., considerably above the maximum local relative humidity (43 % R.H.) at threshold in our
tests. Certainly, it is known that severe test environments (sump tank water and synthetic
seawater) result in increased AKy, values owing to oxide build-up (Wanhill and Schra 1990).

14
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In the light of the foregoing remarks, we arrive at the following main conclusions:

€)) For positive R all values of AKy, will be subject to variations of at least + 0.25 MPaVm.
This has to be considered as the limiting accuracy for fatigue crack growth modelling.

2) The presently determined AKy, values and variations of AKy, cover normal changes
in atmospheric humidity ranging from 17 — 43 % R.H. This range is probably sufficient
to account for the average atmospheric conditions experienced by helicopters during
service.

6 Conclusions

Fatigue crack growth thresholds, AKy, , were determined for the aluminium alloy plate material
7075-T7351, as used for the NH90 helicopter hinge beams. The parameter AKy, is of primary
importance for modelling fatigue crack growth in the airframes of helicopters and other
aerospace vehicles.

The thresholds were determined for the positive stress ratio range R = 0.1 — 0.95. The results
may be expressed as follows:

) For R > 0.58 the measured fatigue crack growth threshold stress intensity range AKy, is
equal to the effective, or intrinsic threshold stress intensity range AK, , and is given by

R >0.58 : AKy, = AK, = 1.44 + 0.25 MPaVm
2) For R <0.58 the measured AKy, depends on R:
R <0.58 : AKy, = [(2.35£0.25) - 1.57R] MPavVm

The results include a scatterband of + 0.25 MPaVm for all values of AKy, , and consequent
variations in AKy, of about 11 — 17 %. These variations are most probably due to variable crack
front topographies and profiles in the threshold region, and they represent intrinsic limitations to
the accuracy of AKy, values.

On the other hand, despite evident effects of humidity on the threshold and near-threshold
fracture topography and the amount of fracture surface oxidation at threshold, the determined
AKy, values seem independent of normal changes in atmospheric humidity ranging from 17 —
43 % R.H. This is probably sufficient to account for the average atmospheric conditions
experienced by helicopters during service.

15
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Fig. 39 Perspective view, constructed from a FEG-SEM stereopair, of a typical dark band
between two light ones on a flat scallop: specimen 1-3, R =0.1
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Fig. 44 Comparison of threshold atmospheric humidities (R.H.) and AKy, values
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Temperature and humidity records during testing
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