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Problem area 
Using the Resin Transfer Moulding 
(RTM) manufacturing technique, it 
has become possible to produce 
thick composite components in a 
cost-effective way. This enables the 
replacement of complex metal 
forgings by composite components. 
These components are mounted to 
the aircraft structure via rather thick 
(up to 70 mm) and heavy lugs 
where all loads are transferred. 
Besides the usual in-plane loads, 
large out-of-plane transverse loads 
may be acting on the attachment 
lugs as well.  
The influence of transverse loads on 
the failure behaviour (statically and 
in fatigue) of thick composite 
structures was investigated in a 
2007 Strategic Research 
Programme “Transverse load 
introduction in thick composite 
aircraft structures”. The programme 

showed that composites are indeed 
sensitive to fatigue for stresses in 
the matrix-dominated transverse 
shear mode. Further, the research 
gave strong indications that in some 
cases traditional Interlaminar Shear 
(ILS) failure criteria are somewhat 
conservative. 
Therefore, a supplemental in-house 
NLR research programme 
“Bezwijkcriteria voor composieten” 
was started in which these failure 
criteria are investigated into greater 
detail. The results are described in 
the current report. 
 
Description of work 
The work can be divided in two 
major parts, the formulation of a 
new failure criterion and the 
evaluation of that criterion using 
statistical analysis. 
The new criterion should result in a 
better representation of the failure 
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behaviour than the traditional 
criteria. The supporting evidence is 
gathered in a test programme on 
ILS coupons with several different 
ply interfaces. 
Next, a statistical analysis 
procedure is developed. It is used to 
compare the strength prediction of 
the new and traditional criteria with 
the data found by test. By doing so, 
any observed differences between 
predictions become quantifiable 
instead of a just a general feeling 
based on observation. 
 
Results and conclusions 
The test results on thin ILS coupons 
show distinct differences for the 
strength of different interfaces. This 
was confirmed by statistical 
analysis of these test results. Not all 
differences in strength can be 
explained by traditional ILS criteria, 
such as Hashin and Kim&Soni. 
However, the newly formulated 
“ply interface” criterion is able to 
predict/explain these differences. 
The ILS strength of any arbitrary 
interface is calculated based on: 

• The local ply stresses in 
both plies adjacent to the 
interface 

• The difference in ply angles 
between the two plies 

• The two shear strength 
values S13 and S23 of the 
0/0 and 90/90 interface. 

At first sight, application of the new 
criterion results in a slightly better 
strength prediction for certain 
configurations. 
 

In order to confirm that feeling, a 
statistical method has been 
developed to evaluate different 
failure criteria. It is suitable for 
general application, so any criterion 
can be checked with this particular 
procedure. The basic assumption of 
this method is that in order to 
correctly describe the failure 
behaviour both variance and mean 
value should be predicted 
accurately by the criterion. This 
implies that there is a relation 
between the distributions or data 
scatter for different configurations, 
which actually exist in reality and is 
captured correctly by the criterion. 
Application of this procedure to the 
newly developed ply interface 
criterion and traditional criteria 
shows that the new criterion indeed 
performs better. This is especially 
the case for the 0/90 and 0/45 
interfaces, or more generally for 
configurations with highly 
dissimilar ply stresses in the two 
plies adjacent to the interface. 
 
Applicability 
The newly developed criterion is a 
static ILS failure criterion suitable 
for use in the design of any 
composite component in which 
transverse shear stresses occur. 
The statistical procedure for 
evaluation of failure criteria is even 
more general. Any criterion can be 
checked with this particular 
procedure. It provides evidence 
whether the criterion is a good 
representation of the actual failure 
behaviour. 
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Summary 

The current report describes the results from an in-house NLR research programme 
“Bezwijkcriteria voor composieten” in which failure criteria are investigated to predict the 
Interlaminar Shear Strength of composite laminates. The work can be divided in two major 
parts, the formulation of a new failure criterion and the evaluation of that criterion using 
statistical analysis. 
 
Test results on thin ILS coupons show distinct differences for the strength of different 
interfaces. Not all differences in strength can be explained by traditional ILS criteria, such as 
Hashin and Kim&Soni. However, the newly formulated “ply interface” criterion is able to 
predict/explain these differences. Also, application of the new criterion seems to result in a 
slightly better strength prediction for certain configurations. 
In order to confirm that feeling, a statistical method has been developed to evaluate different 
failure criteria. It is suitable for general application, so any criterion can be checked with this 
particular procedure. The basic assumption of this method is that, in order to correctly describe 
the failure behaviour, both variance and mean value should be predicted accurately by the 
criterion. Application of this procedure to the newly developed ply interface criterion and 
traditional criteria shows that the new criterion indeed performs better. This is especially the 
case for the 0/90 and 0/45 interfaces, or more generally for configurations with highly dissimilar 
ply stresses in the two plies adjacent to the interface. 
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Abbreviations 

ANOVA   Analysis of variance 
ASTM   American Society for Testing and Materials 
CFRP    Carbon Fibre Reinforced Plastic 
CDF   Cumulative Density Function 
CPT   Classical Plate Theory 
FEM   Finite Element Method 
ILS   Interlaminar Shear 
ILSS   Interlaminar Shear Strength 
NIVR   Nederlands Instituut voor Vliegtuigontwikkeling en Ruimtevaart 
NLR   National Aerospace Laboratory NLR 
PDF   Probability Density Function 
RTM   Resin Transfer Moulding 
SPA   Stork SP Aerospace B.V. 
SRP   Strategic Research Programme 
UD   Uni-Directional 
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Symbols 

b width 
E modulus of elasticity 
h height 
L length 
lv span length 
M bending moment per unit length  
N axial force per unit length 
P force, concentrated load, probability 
p pressure (force per unit area) 
Q transverse force per unit length 
S13, S23 transverse shear strength in the local 13 and 23 directions of a ply, 

transverse shear strength of the 0/0 and 90/90 interface 
t thickness 
V shear force 
W width 
x, y, z rectangular coordinates, distances 
 
 
ε normal strain 
ε1, ε2 normal strains in the local 11 and 22 directions of a ply 
εx, εy normal strains in the global x and y directions of a laminate 
γ shear strain 
γ12, γ13, γ23 shear strains in the local 12, 13 and 23 directions of a ply 
γxy, γxz, γyz shear strains in the global xy, xz and yz directions of a laminate 
κ curvature 
ν Poisson’s ratio 
σ normal stress 
σ1, σ2, σ3 normal stresses in the local 11, 22 and 33 directions of a ply 
σx, σy, σz normal stresses in the global x, y and z directions of a laminate 
τ shear stress 
τ 12, τ 13, τ 23 shear stresses in the local 12, 13 and 23 directions of a ply 
τ xy, τ xz, τ yz shear stresses in the global xy, xz and yz directions of a laminate 
θ ply angle 
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1 Introduction 

Using the Resin Transfer Moulding (RTM) manufacturing technique, it has become possible to 
produce thick composite components in a cost-effective way. This enables the replacement of 
complex metal forgings by composite components, which was demonstrated in several recent 
technology programmes (ALCAS, NIVR CVO-ACCOLADE, CODEMA LA gear). The 
components investigated under these programmes are mounted to the aircraft structure via 
relatively thick (up to 70 mm) and heavy lugs where all loads are transferred. Besides the usual 
in-plane loads, large out-of-plane transverse loads may be acting on the attachment lugs as well. 
This is especially the case for the ALCAS Main Landing Gear support beam, but is also very 
relevant for torque links, trailing arms, motor pylons and any heavily loaded fitting in general, 
see figure 1 and figure 2.  
As Carbon Fibre Reinforced Plastic (CFRP) materials show excellent strength and stiffness 
properties when loaded in the fibre direction, structures under in-plane loading usually 
outperform their metallic counterparts, especially when subjected to fatigue. However, the 
composite’s ability to withstand out-of-plane loading is predominantly governed by the 
properties of the matrix, which has a much lower static strength and is much more sensitive to 
fatigue. This is of importance particularly for thick components. Thin components, even when 
loaded by a relatively small transverse load, will deform largely by bending. This causes high 
in-plane compressive and tensile stresses in the outer fibres of the laminate. Consequently, the 
strength of such components is determined by the in-plane tension and/or compression 
allowable of the single CFRP ply, and the transverse shear stresses may be ignored. However,  
 

In-plane load 
Out-of-plane or transverse load 

 
Fig. 1   ACCOLADE Generic Composite Brace and its primary load components 
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In-plane load 

Transverse load 

 
Fig. 2   ALCAS Main Landing Gear support beam and its primary load components 

 
while the bending strength increases quadratically with the thickness, the strength in transverse 
direction increases only linearly. Then, the failure behaviour of thick composite structures will 
change under influence of the transverse shear stresses that are caused by the transverse loading. 
Therefore, in 2007 a Strategic Research Programme was started towards thick composites under 
transverse loading (Ref. 1). This programme was funded by the Netherlands Agency for 
Aerospace Programmes (NIVR) and Stork SP Aerospace B.V. (SPA). Also, parts of the work 
were performed by or in cooperation with Stork SP Aerospace B.V. The programme showed 
that composites are indeed sensitive to fatigue for stresses in the matrix-dominated transverse 
shear mode. Further, the research gave strong indications (but no hard evidence) that, although 
the failure location was predicted correctly, in some cases traditional Interlaminar Shear (ILS) 
failure criteria are too conservative, see figure 3 where the criticality analysis shows criterion 
values close to 1.2 for the Lecuyer criterion. This means that the strength is underestimated by 
almost 20 %. 
 



 
NLR-TP-2009-262 

 
  9  

Criticality of plies

-15

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1 1.2

Crite rion value  [-]

z 
[m

m
]

Lecuyer

Ply interface
criterion

 

-45/90 interface 

 

z 

x 

Through Thickness Shear Stress

-20

-15

-10

-5

0

5

10

15

20

-20 0 20 40 60 80

tau [MPa]

z 
[m

m
]

tau_xz (FEM)
tau_yz (FEM)

 
Fig. 3  Transverse shear stresses in thick coupons and criticality of the different interfaces 

 
In order to provide the evidence that traditional failure criteria are conservative and that an 
alternative criterion actually performs better, a supplemental in-house NLR research programme 
“Bezwijkcriteria voor composieten” was started in which these failure criteria are investigated 
into greater detail. That work is presented in the current report. First, some additional testing is 
performed on uni-directional prepreg material to be used for the formulation of the new criterion 
in chapter 2. Next, a statistical procedure is set up to evaluate the different criteria in chapter 3. 
The procedure is a generic method that could be applied to any other criterion as well. Finally, 
in chapter 4 conclusions are drawn and recommendations are given. 
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2 Formulation of a new failure criterion 

This chapter starts with an analytical derivation of the transverse shear stresses in a composite 
plate under transverse loading. The formulas are used to determine the failure stress in the ILS 
coupon tests. These test results formed the cause for the formulation of a new failure criterion. 
 
2.1 Analytical derivation of transverse shear stresses 
The full analytical derivation of the in-plane and transverse stresses in a flat plate is presented in 
Appendix A, see reference 1 as well. The most important results are summarised in this 
paragraph for both an isotropic and a composite flat plate/beam. 
All formulas have been derived under the condition that only forces in the x-direction are 
considered without gradients in y-direction. Any loads in transverse direction are applied to the 
top surface and normal to that surface. 
 
Strains and stresses in an isotropic plate/beam 
For an isotropic flat plate or beam with only loads applied in x-direction or to the top surface 
and normal to that surface, the formulas for the in-plane strains and stresses become: 
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The through-thickness stresses can be calculated with: 
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Eq. 1 clearly shows that for isotropic materials the stress components yσ  and xyτ  are zero 

through the entire thickness, while xσ  varies linearly with the z-coordinate. Notice that strains 

(and curvature) in y-direction are not zero due to the Poisson’s effect.  
The through-thickness normal stress σz is defined by a third order polynomial. The maximum 
through-thickness normal stress is found at the upper surface (where the load is applied) and is 
equal to pz =σ  which is exactly the applied surface load. The through-thickness shear stress 
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τxz has a parabolic distribution through the thickness. The maximum is found in the middle of 
the plate/beam at 0=z  and is equal to hQxxz 2

3=τ . 

 
Strains and stresses in a composite plate/beam 
The well-known formula according to Classical Laminate Theory is presented by: 
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After inversion of the ABD-matrix, here denoted as abd with components aij, bij, and dij, the 
strains and stresses can be calculated in both the global coordinate system and in the local ply 
coordinate system (under the condition that all applied loads in y-direction are zero): 
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The through-thickness stresses can be calculated with: 
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Eq. 4 and Eq. 5 completely define the stress state in a beam (under the condition that any 
surface load is applied to the top surface and normal to that surface). The through-thickness 
shear stress τxz has a parabolic distribution through the thickness of each layer. The (global) 
distribution through the laminate depends on the lay-up. This is shown in Appendix B. 
 
2.2 Interlaminar shear strength of thin test coupons 
All tests are done on laminates made from uni-directional (UD) prepreg material Hexply NCHR 
913/35 %/132/HTA7 with nominal ply thickness 0.124 mm (Vf = 60 %). To determine the 
influence of fibre orientations and the different ply interfaces on the interlaminar shear strength, 
interlaminar shear test are done on specimens with different lay-ups as given in table 1. Not all 
specimens were tested, only eight per configuration. 
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Table 1  Different lay-ups for shear strength determination 

Specimen Number Notation Lay-up Failure location 

Config 1 1/12 0/0 016,0,0,0,0,0,016 0/0 interface 
Config 2 13/24 0/90 016,0,0,90,0,0,016 0/90 interface 
Config 3 25/36 0/45 016,0,0,45,0,0,016 0/45 interface 
Config 4 37/48 45/90 016,0,45,90,45,0,016 45/90 interface 
Config 5 49/60 45/45 016,0,45,45,45,0,016 45/45 interface 
Config 6 61/72 -45/45 016,0,45,-45,45,0,016 -45/45 interface 
Config 7 73/84 90/901 016,0,90,90,90,0,016 90/90 interface 
Config 8 85/96 90/902 016,45,90,90,90,45,016 90/90 interface 
Config 9 97/108 -30/30 016,0,30,-30,30,0,016 -30/30 interface 

Config 10 109/120 -60/60 016,0,60,-60,60,0,016 -60/60 interface 
Config 11 121/132 30/30 016,0,30,30,30,0,016 30/30 interface 
Config 12 133/144 60/60 016,0,60,60,60,0,016 60/60 interface 

 
 

Figure 4 gives the specimen configuration and the test set-up. The tests at RT are carried out 
under laboratory conditions at ambient temperature, typically 22 °C. Before testing, the actual 
thickness and the width of the specimens are measured in the middle of the specimen. All 
specimens are tested in the 250 kN Scheck Trebel test machine with a 50 kN load cell under 
displacement rate control. The crosshead displacement rate of the test machine was 1.0 mm/min. 
The span (lv) between the centres of the supports of the test fixture was 18 mm (approximately 4 
times the thickness). The displacement and load signals are logged during the tests. 
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Fig. 4  Specimen configuration and schematic test set-up 
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All specimens failed in a catastrophic mode. After the first load drop, the specimens did no 
longer have any load carrying capabilities. The maximum load is used to determine the shear 
stress at the critical interface. This requires the use of the measured thickness and width of the 
specimens in combination with the formula for transverse shear stresses (Eq. 5) as derived in the 
previous paragraph, because the stress distribution depends on the lay-up. This is shown in 
figure 5(a) where the “soft” inner plies of configuration 8 result in a slightly blunter curve for 
the transverse shear stresses. The stresses in global laminate direction can of course be 
transferred to local ply stresses, see figure 5(b). It shows that the three inner 90° plies are mainly 
loaded in shear in their local 23-direction, while shear stresses in 13-direction are (very close to) 
zero. 
The failure stress τxz in the critical interface is given for all specimens in figure 6. The blue 
diamonds are the individual test results. The red cross is the mean value of each configuration 
and the red bars give the upper and lower bounds for 90 % coverage with 95 % confidence 
interval (B-basis confidence level). It can be seen that both the mean value and scatter differ 
between configurations. As one would expect, the 0/0 interface shows the highest strength, 
while the 90/90 interface shows the lowest strength. 
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    (a)  Stresses in global laminate directions           (b)  Stresses in local ply directions 

Fig. 5  Shear stress distribution in specimen V8-1 with lay-up [016,45,90,90,90,45,016] 
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Fig. 6  Failure stress on the critical interface for all ILS specimens 

 
As mentioned above, the shear stresses in global laminate direction can be transferred to their 
local ply directions. The following equations have to be applied for the two plies adjacent to the 
critical interface: 

22ply ,22ply ,2ply ,23

22ply ,22ply ,2ply ,13

11ply ,11ply ,1ply ,23

11ply ,11ply ,1ply ,13

cossin

sincos
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θτθττ

θτθττ

θτθττ

θτθττ

⋅+⋅−=

⋅+⋅=

⋅+⋅−=

⋅+⋅=

yzxz

yzxz

yzxz

yzxz

  Eq. 6 

When both plies adjacent to the interface have identical ply angles (θ/θ interface), the stresses in 
both plies are the same. The local ply stresses in those configurations are shown in figure 7. 
For interfaces of plies with dissimilar ply angles, different local ply stresses occur in the two 
plies, so these have to be plotted separately. Appendix B shows these local ply stresses in both 
plies. Different configurations have been combined in a single picture. According to figure C-1 
and figure C-2 there appears to be an elliptical correlation between τ13 and τ23 for both the θ/θ 
interface and the θ/-θ interface. Further, close investigation of figure C-3, figure C-4 and figure 
C-5, shows that failure of the 0/θ, 45/θ and 90/θ interface seems not to depend solely on the 
stresses in respectively the 0°, 45° and 90° ply. For instance, when looking at the failure stress 
in the 45° ply in figure C-4, it is possible to distinguish the three different groups with the 0/45, 
45/45 and 45/90 interfaces. This indicates that failure does not depend on the stress in the 45° 
ply alone; the strength of the interface is influenced by the other ply as well.  
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Fig. 7  Failure stress in local ply directions for θ/θ interface 

 
2.3 Interlaminar shear strength criteria 
In this section, an overview is given of traditional failure criteria and why they fail to predict the 
strength of all interfaces correctly. This has resulted in the formulation of a new failure criterion 
for the interlaminar shear strength. 
 
2.3.1 Traditional ILSS criteria 
Reference 1 gives a more extensive overview of failure criteria, such as Puck, Chamis, Tsai-Wu, 
Christensen, Hashin, Kim and Soni, Brewer and Lagace, and Lecuyer. Investigation of these 
criteria shows that both Tsai-Wu and Christensen include transverse shear stresses in their 
criteria. However, the transverse shear strength is assumed to be enclosed in the axial shear 
strength (F66 in Tsai-Wu, β1 in Christensen) and in the transverse normal strength (F22 in Tsai-
Wu, α1 in Christensen). The transverse shear strength is not used separately in these criteria. It 
seems that both criteria assume that any transverse shear stress component promotes axial shear 
failures, but transverse shearing is not considered as a failure mode itself. Hashin, Kim and 
Soni, Brewer and Lagace, and Lecuyer all consider transverse stresses (τ13, τ23, σ22, σ33) and 
transverse strengths (S13, S23, S22, S33) in their criteria. When only transverse shear stresses are 
considered and other stress components are neglected, all criteria reduce to the following form: 

12
23

2
23

2
13

2
13 ≤+

SS
ττ

  Eq. 7 

Generally, the S23 strength of a uni-directional ply is smaller than the S13 strength. 
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Although the criteria all look the same their application is quite different, because the Hashin 
criterion is associated with lamina failures, while Kim and Soni, Brewer and Lagace, and 
Lecuyer are associated with out-of-lamina failures. The first approach (lamina failures) 
considers the shear stress components within each single ply in the laminate separately. The 
strength of the laminate is determined by the most critically loaded ply. So this results in a 
search for the weakest ply. However, the criterion cannot reproduce some of the dissimilar ply 
interface strengths observed in the coupon tests of figure 6: 

• that the 0/45-interface is stronger than the 45/45-interface under shear loading in 
laminate xz-direction 

• that the 0/90 interface is stronger than the 45/90 interface which in turn is stronger than 
the 90/90 interface under shear loading in laminate xz-direction 

The Hashin criterion will identify the 45° ply as the weakest ply in the first case and the 90° ply 
in the second case. Therefore, the predicted strength will be the same for a 0/45 as for a 45/45 
laminate. Also, the predicted strength will be the same for a 0/90, a 45/90 and a 90/90 laminate. 
The strength depends on a single ply only and not on the stresses and orientation of both plies 
adjacent to the interface. This is justifiable, because Hashin assumes lamina failure. However, 
this makes the criterion unsuitable to predict the strength of all the interfaces, because test 
results seem to suggest that the interface strength depends on both plies. 
As the second approach assumes out-of-lamina failures, these criteria do result in a strength 
prediction for the interface. The criteria are usually applied to predict the onset of edge 
delaminations by considering average interlaminar stresses in the interface computed on a 
critical length. These average stresses are applied in a failure criterion in combination with the 
transverse strengths. The transverse strengths are determined experimentally. They are the 
strengths of the interface, usually in global laminate direction (not local ply directions). They 
therefore depend on the laminate lay-up or ply angles at both sides of the interface, which is 
exactly what is observed in the ILS test results of figure 6; the interface strength depends on the 
orientation of both plies. In other words, the experimentally determined transverse strength 
values are only valid for a specific ply interface. For an accurate failure prediction, application 
of these out-of-lamina failure criteria is limited to a certain family of laminates, e.g. [±θn]S 
laminates with (5°<θ<30°). For general application of these criteria in a composite structure, 
transverse strength values would have to be determined for all different ply interfaces of all 
laminates in the structure. This is of course not very practical. 
So, it must be concluded that, theoretically, the failure criterion of Eq. 7 can not give an 
accurate prediction of the strength of all the interfaces of figure 6, either because lamina failures 
are assumed (not taking into account both plies adjacent to the interface), or because the tested 
interfaces are not all part of the same family of laminates. 
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When the failure criterion of Eq. 7 is applied anyway, the criterion values of figure 8 are found. 
They have been determined using the local ply failure stresses τ13 and τ23 in each specimen, 
calculated according to paragraph 2.1 and 2.2. The strength values for S13 and S23 are based on 
the two test configurations with the 0/0 and the 90/902 interface. The average strength values are 
used, and these are equal to respectively 100.3 MPa and 83.4 MPa. 
In figure 8, a value exceeding 1.0 implies that, according to the criterion, failure should already 
have occurred. A value below 1.0 implies that failure was not yet expected. Naturally, for 
configurations 1 and 8 the average criterion value is equal to exactly 1.0, because these strength 
values were used as input. At first sight, the strength prediction seems quite accurate; all values 
are fairly close to 1.0. A more detailed investigation, however, shows that the strength of 
especially the 0/90 interface is somewhat underestimated. As argued above, this is exactly what 
one would expect with this criterion. Equal strengths are predicted for the 90/90 and 0/90 
interface, whereas test results show a higher strength for the 0/90 configuration. This confirms 
the above-formulated suspicion that the failure criterion of Eq. 7 cannot give an accurate 
strength prediction for all interfaces. Therefore, in the next section a new criterion is developed. 
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Fig. 8  Value of the failure criterion using the mean strengths of the 0/0 and 90/902 interface 

 
2.3.2 Formulation of a new ILSS criterion 
From the ILS test results it was observed that cracks mainly occur in the interface in between 
plies and not or less within the ply. It is conceived that the interface is weaker than the ply itself. 
Therefore, in the new failure criterion the stresses in the interface between two plies will be 
used to predict interlaminar shear failures.  
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(a)  Load causing τ13 stress in both plies  (b)  Load causing τ23 stress in both plies 

 
 

 

 

 
(c)  Load causing τ13 stress in bottom ply and τ23 stress in top ply 

 
Fig. 9  Different loads causing different shear stresses in the plies adjacent to the interface 
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Figure 9 shows different types of loading on different types of laminates. These cause different 
ply stresses, i.e. shear stress τ13 in both plies (a), shear stress τ23 in both plies (b), or shear stress 
τ13 in bottom ply and shear stress τ23 in top ply (c). These ply stresses also result in stresses in 
the ply interface. Figure 9(a) and (b) show that there is a distinct difference between τ13 and τ23 
loading. Therefore, it becomes self-evident to assume that the local ply stresses τ13 and τ23 each 
cause different stresses in the interface according to stress concentration factors K1 and K2, 
respectively. This gives the following interface stresses in global xz- and yz-directions: 
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  Eq. 8 

 
Further, it is assumed that each ply adjacent to the interface contributes to the total stress 
according to its own local stress state. The cumulative stress in the interface is found by 
combining the global stress components caused by both plies: 
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τττ

τττ

+=

+=
  Eq. 9 

 
Next, the stress components are combined in an invariant stress, similar to Von Mises. The 
invariant stress is calculated with: 

( )222 3 yzxz ττσ +⋅=   Eq. 10 

 
Substitution of Eq. 8 into Eq. 9 and into Eq. 10 results in: 
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  Eq. 11 

 
The invariant stress is used in the following failure criterion: 
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  Eq. 12 
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At least two test configurations are necessary to determine the unknown tress concentration 
factors K1 and K2. Usually one selects a test configuration with only shear stresses in the 13-
direction, and another configuration with only shear stresses in the 23-direction. In other words, 
the shear strength of a 0/0 interface and of a 90/90 interface is determined: 
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When this is substituted into Eq. 11 and into the criterion of Eq. 12 the following criterion is 
found for the strength of the ply interface: 
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  Eq. 13 

 
According to the newly defined criterion, interlaminar shear failure of the interface depends on: 

• the local ply stresses τ13 and τ23 in both plies adjacent to the interface 
• the difference in ply angles between both plies 
• the two shear strength values S13 and S23 of the 0/0 and 90/90 interface 

Notice that the ply interface criterion of Eq. 13 reduces to the same form as the single ply 
criterion of Eq. 7 for lamina failures in case both plies adjacent to the interface have the same 
ply angle θ1 = θ2. Also, when the out-of-lamina strength of a specific interface is used as input 
to deduce the two shear strength values S13 and S23 of the 0/0 and 90/90 interface, exactly the 
same (elliptical) strength distribution for the interface is found as predicted by the Eq. 7. But, 
the criterion of Eq. 7 is only valid for that particular family of laminates, whereas the ply 
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interface criterion of Eq. 13 can be applied to any other interface as well. In other words, the 
traditional failure criteria associated with lamina failures (Hashin) or with out-of-lamina failures 
(Kim and Soni, Brewer and Lagace, and Lecuyer) represent specific cases of the more general 
ply interface criterion. 
 
Application of the failure criterion of Eq. 13 to the test data of figure 6, results in the criterion 
values of figure 10. They have been determined using the local ply failure stresses τ13 and τ23 in 
both plies adjacent to the interface for each specimen, calculated according to paragraph 2.1 and 
2.2. The strength values for S13 and S23 are based on the two test configurations with the 0/0 and 
the 90/902 interface. Once again, the average strength values are used, respectively 100.3 MPa 
and 83.4 MPa. 
Comparison of figure 10 with figure 8 seems to suggest that the newly developed failure 
criterion indeed gives a better prediction of the strength of all the different interfaces. This 
becomes apparent especially for the 0/90 and 0/45 interfaces (configuration 2 and 3) where the 
largest differences between the two criteria are to be expected. Whereas the traditional criterion 
of Eq. 7 results in an overly conservative strength prediction (criterion values exceeding 1.0), 
the ply interface criterion of Eq. 13 finds values closer to 1.0. In the next chapter statistical 
proof will be given that the new failure criterion is a better representation of the actual failure 
behaviour. 
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Fig. 10  Value of the failure criterion using the mean strengths of the 0/0 and 90/902 interface 

 



 
NLR-TP-2009-262 

 
  23  

3 Evaluation of failure criteria using statistical analysis 

In this chapter a statistical analysis procedure is employed to evaluate the traditional and the 
newly developed criterion of paragraph 2.3. First, some general background information is 
given on statistical analysis techniques. These techniques are applied to the test data to 
investigate whether different interfaces indeed show different strength values or if this is 
nothing more than scatter in the test results. Finally, a procedure is developed for the evaluation 
of different failure criteria using statistical analysis. 
 
3.1 General background of statistical analysis 
Statistical analysis can help to decide whether observed differences between test data sets are 
“real” or due to data scatter. Analysis of variance (ANOVA) gives a statistical test of whether 
the means of several groups are all equal. The test does not tell which group(s) are different 
from the others...just that there is a difference. “Post-hoc” (after the fact) tests have to be used to 
examine which groups differ from each other. There is a wide variety of post-hoc tests, but the 
most common is to do an F-test and/or T-test. Both are statistical hypothesis tests. 
A statistical hypothesis test is a method of making statistical decisions using experimental data. 
These decisions are made using null-hypothesis tests; it answers the question: 
 

Assuming that the null hypothesis is true, what is the probability of observing a value for the 
test statistic that is at least as extreme as the value that was actually observed? 

 
If the probability of observing a value that was actually observed is very low (below a certain 
critical confidence level) this causes the null hypothesis to be rejected in favour of the 
alternative hypothesis. So, statistical hypothesis testing is used to make a decision about 
whether the data contradicts the null hypothesis: this is called significance testing. A null-
hypothesis is never proven by such methods, as the absence of evidence against the null-
hypothesis does not establish it. In other words, one may either reject, or not reject the null-
hypothesis; one cannot accept it. Failing to reject it still allows for the possibility of obtaining 
further data and then re-examining the same hypothesis. 
 
Below, the F-test and T-test are discussed. The F-test is used to determine whether two 
experimental data sets have different variances. The T-test is used to determine whether two 
experimental data sets have different means. 



 
NLR-TP-2009-262 

 
  24  

The F-test 
An F-test is used to investigate the hypothesis that the standard deviations of two normally 
distributed populations are equal, and thus that they are of comparable origin. It is used to 
compare the variances of two populations, see figure 11. The null-hypothesis is formulated as 
follows: 
 

Two sets of data (1 and 2), with sample variances σ1 and σ2, are both part of the same 
population, so that their population variances are equal, σ1 = σ2. 

 
If we accept this hypothesis, we are saying that despite the fact that the samples came from two 
different measurements, they are part of the same overall population. If we reject the hypothesis, 
we are saying the population variances are different, and that we are dealing with two separate 
populations or sets of data. 
The F-test returns the probability that the variances in data sets 1 and 2 are not significantly 
different. Below a certain confidence level (often P<5 %) the hypothesis is rejected; the 
population variances are not equal, so the two sets of data are not part of the same population. 
Please remember, that a confidence level P>5 % does not prove that the sample variances are 
equal, just that there is not enough proof to reject the null-hypothesis. 
Note that in testing equality of variances, the F-test is extremely non-robust to non-normality. 
That is, even if the data displays only modest deviation from the normal distribution, the test is 
unreliable and should not be used. 

  

Small variance 

Medium variance 

Large variance 

Large variance 

Large variance 

 
Fig. 11  Three scenario’s for differences between variances 
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The T-test 
A T-test is used to investigate the hypothesis that the means of two normally distributed 
populations are equal, and thus that they are of comparable origin. It is used to compare the 
means of two populations, see figure 12. The null-hypothesis is formulated as follows: 
 

Two sets of data (1 and 2), with sample means μ1 and μ2, are both part of the same 
population, so that their populations means are equal, μ1 = μ2. 

 
If we accept this hypothesis, we are saying that despite the fact that the samples came from two 
different measurements, they are part of the same overall population. If we reject the hypothesis, 
we are saying the population means are different, and that we are dealing with two separate 
populations or sets of data. 
The T-test returns the probability that the means in data sets 1 and 2 are not significantly 
different. Below a certain confidence level (often P<5 %) the hypothesis is rejected; the 
population means are not equal, so the two sets of data are not part of the same population. 
Please remember, that a confidence level P>5 % does not prove that the sample means are 
equal, just that there is not enough proof to reject the null-hypothesis. 
 

 Small variance 

Medium variance 

Large variance 

  
Fig. 12  Three scenario’s for differences between means 

 
As an example, consider the three situations shown in figure 12. Notice that the difference 
between the means is the same in all three situations. However, the three situations give the 
impression of being very different. The top example shows a case with low variability within 
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each group. The second situation shows the moderate variability case. The third shows the case 
with high variability. Clearly, the two groups appear most different or distinct in the low-
variability case, because there is relatively little overlap between the two bell-shaped curves. In 
the high variability case, the group difference appears least striking because the two bell-shaped 
distributions overlap so much. This leads us to the following conclusion: when looking at the 
differences between scores for two groups, one should judge the difference between their means 
relative to their variability. The T-test does just this.  
 
3.2 Evaluation of test results 
Figure 6 shows the failure stress of all the different configurations. Each configuration has its 
own mean value and variance. This distribution can be represented by, for instance, a bell-
shaped curve. However, there are several different formulas to describe the shape of this curve. 
The most well-known shapes are the “Normal”, “LogNormal” and “Weibull” distributions. 
Alternatives are “Cauchy”, “Gumbel”, “Laplace”, and there are many others. 
At NLR the software programme RAP++ has been developed, see reference 6. The programme 
can be used to fit all the different distributions through the test data and find the one with the 
best fit. It turns out that only the “Normal” and “LogNormal” distribution is able to represent 
the data scatter or variance for all configurations. Figure 13 shows the best fit for a normal 
distribution through the test data for the 0/90 interface. The probability plot shows that the 
normal distribution is very accurate (see reference 6 for a more elaborate discussion on 
Probability Plots, Probability Density Functions and Cumulative Density Functions). In all 
further analyses the normal distribution is used, because it is an accurate representation of the 
test variance and because it is also the assumed distribution when performing an F-test. 
 

 

    
(a)  Probability plot    (b)  Probability Density Function 

Fig. 13  Normal distribution fitted through the test data for the 0/90 interface (config 2) 
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The statistical analysis techniques of paragraph 3.1 are applied to the test data in order to 
investigate whether different interfaces indeed show different strength values or if this is 
nothing more than scatter in the test results. Of special interest are the four configurations with 
the 90/θ interfaces, because these result in a clear difference between the strength predictions 
according to traditional criteria and the newly developed ply interface criterion. The traditional 
“single ply” criterion predicts identical strengths for all configurations with the 90° ply being 
the critical ply in all configurations. Contrary, the ply interface criterion predicts different 
strengths for different interfaces. 
Figure 14 shows the failure stress τxz for the specimens of the four 90/θ configurations. In figure 
15 a normal distribution has been fitted through the test data for each configuration. This 
already offers better insight in the differences between the four configurations. Based on these 
two figures, one would probably regard configuration 7 and 8 as the same, whereas 
configurations 2 and 4 would be regarded as different sets of data. 
Next, the F- and T-tests are applied to the test data to quantify this impression. The F-test is 
used to determine whether the assumption of equal variances for two sets of data should be 
rejected or not. If not, a T-test (assuming equal variances) is applied to determine whether the 
assumption of equal means should be rejected or not. For both tests a critical confidence level of 
5 % is taken. When the probability is below 5 % the hypothesis of equal variances/means is 
rejected. A two-way comparison is made in which all of the data sets are compared separately 
with each other. The minimum confidence level of both tests is given in table 2. It can be seen 
that in this case, the initial feeling is supported by the significance testing. There is only a very 
small probability that the test results for the 0/90 and 45/90 interfaces are the same as for any of 
the other configurations. In other words, it is very likely that different sets of data have been 
found, each with their own strength values. The only two data sets, for which the null-
hypothesis of equal variances and equal means may not be rejected, are the two configurations 
with the 90/90 interface. Of course, one would expect to find similar failure stresses because the 
strength is dictated by the same critical interface. 
 
The above shows how statistical analyses can be used to interpret the test results. Statistical 
analysis points out distinct differences for the strength of 0/90, 45/90 and 90/90 interfaces. For a 
correct representation of the failure behaviour, this should of course be captured by the failure 
criterion. However, this is not the case for the traditional “single ply” criteria presented in 
paragraph 2.3.1.  
The results also show that it is not necessary to place a 45° ply in between the outer 0° plies and 
the inner 90° plies of the ILS specimens to ensure a proper failure location (the 90/90 interface), 
because similar strength values have been found for both configurations. In fact, it is even better 
to leave out the 45° ply. The test results of figure 6 show that the strength of the 45/90 interface  
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Fig. 14  ILS failure stresses for the 90/θ interfaces 
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Fig. 15  ILS strength distributions (PDF) for the 90/θ interfaces 

 

Table 2  Significance level that the observed differences are due to chance (90/θ interfaces),  
  i.e. probability that the variances and means of two data sets are equal 

0/90 45/90 90/901 90/902

0/90 100% 0.0% 0.0% 0.0%
45/90 100% 2.2% 3.0%
90/901 100% 50.9%
90/902 100%  
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Table 3  Significance level that the observed differences are due to chance (all interfaces),  
  i.e. probability that the variances and means of two data sets are equal 

0/0 0/90 0/45 45/90 45/45 45/-45 90/901 90/902 30/-30 60/-60 30/30 60/60
0/0 100% 0.2% 0.1% 0.0% 0.0% 1.7% 0.0% 0.0% 0.2% 0.0% 1.0% 0.0%

0/90 100% 31.3% 0.0% 2.8% 11.2% 0.0% 0.0% 55.7% 1.8% 40.7% 0.0%
0/45 100% 0.0% 0.5% 24.7% 0.0% 0.0% 12.5% 0.3% 7.4% 0.0%
45/90 100% 0.0% 0.0% 2.2% 3.0% 0.0% 0.0% 0.0% 0.1%
45/45 100% 0.1% 0.0% 0.0% 10.7% 83.3% 4.6% 3.6%
45/-45 100% 0.0% 0.0% 5.3% 0.1% 19.0% 0.0%
90/901 100% 50.9% 0.0% 0.0% 0.0% 0.0%
90/902 100% 0.0% 0.0% 0.0% 0.0%
30/-30 100% 7.3% 57.5% 0.0%
60/-60 100% 3.2% 6.0%
30/30 100% 0.0%
60/60 100%  

 
is smaller than the strength of the 0/90 interface, so interleaving a 45° ply actually increases the 
chance of failure at the wrong interface. 
 
For the sake of completeness, the significance level has been determined for all configurations. 
This is shown in table 3. It can be seen that in most cases the assumption of equal variances and 
equal means has to be rejected, indicating different strength values for different interfaces. 
Please remember, that a confidence level P>5 % does not prove that identical sets of data have 
been found, just that there is not enough proof to reject the null-hypothesis of equal variances 
and equal means. There is still the possibility of obtaining further data (e.g. by testing more 
samples or by application of other load cases) and then re-examining the same hypothesis. 
 
3.3 Evaluation of failure criteria 
The previous paragraph already gives ample reason not to use the traditional “single ply” 
criteria of paragraph 2.3.1. These criteria cannot explain all the different strengths observed in 
tests. This is taken care of in the out-of-lamina criteria by limiting their validity to a certain 
“family of laminates”, but this of course makes them unsuitable for general application. 
Although the newly developed ply interface criterion of paragraph 2.3.2 is able to predict 
different strength values for different interfaces and seems to perform better (compare Fig. 8 to 
Fig. 10), this does not prove yet that it really is a better representation of the interface strength. 
Therefore, a procedure has been developed to rank/evaluate failure criteria. This is discussed 
below. 
 
3.3.1 Statistical procedure 
The here-presented method or procedure for evaluation of failure criteria is suitable for general 
application. Any criterion can be checked with this particular procedure. 
All criteria need test results as input. This can be either strength data or strain data. In the case 
of the two criteria evaluated here (Eq. 7 and Eq. 13), it is strength data for S13 and S23. These are 
the strengths of the 0/0 interface and the 90/90 interface and are generated by tests on the  
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appropriate specimen configuration. The evaluation procedure starts with fitting a probability 
density function on these test results; step 1 in figure 16. Different distributions are found for 
the required strength input data. 
This curve with the “best fit” for the strength distribution and a certain failure criterion are used 
in a Monte-Carlo-Simulation to predict the strength of all other configurations and loading 
conditions; step 2 in figure 16. Different criteria will of course result in different predictions. 
Usually the criteria need some reworking as well. In this case, the maximum shear stress in 
global laminate direction τxz on the critical interface has to be determined for each 
configuration. For the “single ply” criterion of paragraph 2.3.1 this becomes: 
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For the ply interface criterion of paragraph 2.3.2 one can derive: 
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 Eq. 15 

 
So, with Eq. 14 and Eq. 15 and with the two probability density functions for S13 and S23 a new 
strength distribution can be predicted for every other configuration, because this only depends 
now on the ply angles θ1 and θ2 of the two plies adjacent to the interface. The Monte Carlo 
Simulation calculates these new strength distributions or probability density functions for all 
other configurations. 
Finally, the predicted strength (which is an entire distribution function) can be compared with 
the actual failures found by test; step 3 in figure 16. Of course the F-test and T-test can be used 
to calculate the confidence level for the assumption of equal means and variances. If the 
confidence level or probability is too small (below 5 %) the prediction is not accurate enough 
and the failure criterion is not successful in predicting the correct strength of the interface. 
 
The most important assumption in the above-outlined approach is that both variance and mean 
value should be predicted accurately by the failure criterion in order to correctly describe the 
failure behaviour. This implies that the predicted relation between the distributions of test 
results for different configurations, is assumed to exist in reality as well!! 
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3.3.2 Evaluation of ILS failure criteria 
Figure 17 gives the results after application of the statistical procedure of the previous paragraph 
to the 0/90 and 0/45 configurations. The dark green line gives the predicted probability density 
function according to the “single ply” criterion (Eq. 7 and Eq. 14). The light green line gives the 
predicted probability density function in accordance with the ply interface criterion (Eq. 13 and 
Eq. 15). The blue diamonds are actual failures found by test on that particular interface, for 
which the fitted normal distribution is shown as well (the red line). For comparison between 
prediction and test results with the F- and T-test, not the fitted distribution is used but the 
(limited amount of) actual test points.  
It can be seen in figure 17 that for the 0/90 and 0/45 interface the strength prediction of the ply 
interface criterion resembles the test data better than the “single ply” criterion. This is confirmed 
by the F- and T-test. Whereas the probability of equal variances and equal means cannot be 
rejected for the ply interface criterion (P>5 %), both the variances and the means are regarded as 
unequal for the prediction with the “single ply” criterion; the probability for equal variances is 
only 1.1 % and 1.5 % for the 0/90 and 0/45 interface, and the probability for equal means is 
0.0 % for both interfaces. This is summarised in table 4 with the simple statements 
“Equal/Unequal variances” and “Equal/Unequal means”. 
 
Table 4  Application of F-test and T-test to compare test data with strength predictions 

Config
Ply interface

criterion
Single ply
criterion

0/0 Equal variances Equal variances
Equal means Equal means

0/90 Equal variances Unequal variances
Equal means Unequal means

0/45 Equal variances Unequal variances
Equal means Unequal means

45/90 Equal variances Equal variances
Equal means Equal means

45/45 Equal variances Equal variances
Equal means Equal means

45/-45 Equal variances Equal variances
Unequal means Unequal means

90/901 Equal variances Equal variances
Equal means Equal means

90/902 Equal variances Equal variances
Equal means Equal means

30/-30 Equal variances Equal variances
Equal means Equal means

60/-60 Equal variances Equal variances
Equal means Equal means

30/30 Equal variances Equal variances
Equal means Equal means

60/60 Unequal variances Unequal variances
Equal means Equal means  
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(a)  Probability density functions for the strength of 0/90 interface 

 

 
(b)  Probability density functions for the strength of 0/45 interface 

 
Fig. 17  Test results compared to strength predictions using the procedure of paragraph 3.3.1 
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Table 4 shows the results for all other configurations as well. It can be seen that for the two 
investigated criteria the only differences are found for the 0/90 and 0/45 interface, already 
shown in figure 17. Please notice, that this does not mean that there are no differences 
whatsoever for the two predictions, just that both predictions are ranked/classified the same by 
the F- and T-test. This is shown in figure 18 for the 45/90 interface. Especially the mean value 
differs for the two predictions. However, although the mean value predicted by the ply interface 
criterion is closer to the actual test results (1.7 % difference) than the mean value predicted by 
the “single ply” criterion (2.6 % difference), the null hypothesis of equal means and variances 
cannot be rejected yet for neither one of the criteria. Of course it is still possible to obtain more 
test data by which one or even both predictions may be classified as unequal. 
Based on the formulation of the two criteria, Eq. 7 and Eq. 14 compared to Eq. 13 and Eq. 15, 
the largest differences would indeed be expected for the configurations with the 0/90, 0/45 and 
45/90 interface. All other configurations result in exactly the same prediction (for the θ/θ 
interfaces) or only very small differences (for the θ/-θ interfaces). When performing an F- and 
T-test on these predictions both criteria will be ranked the same. 
Finally, it can be seen in table 4 that with the ply interface criterion only for the 45/-45 interface 
and the 60/60 interface distinct differences are found between prediction and test. The 
probability density functions are shown in figure 19. For the 45/-45 different means are found. 
Both criteria underestimate the strength of the interface, the ply interface criterion with 5.6 % 
and the “single ply” criterion with 6.0 %. For the 60/60 interface different variances are found. 
Both criteria overestimate the amount of variance or data scatter. 
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Fig. 18  Probability density functions (prediction and test) for the strength of 45/90 interface 
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(a)  Probability density functions for the strength of 45/-45 interface 

 

 
(b)  Probability density functions for the strength of 60/60 interface 

 
Fig. 19  Test results compared to strength predictions using the procedure of paragraph 3.3.1 
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4 Conclusions and recommendations 

The test results on thin ILS coupons showed distinct differences for the strength of different 
interfaces. This was confirmed by statistical analysis of these test results. Not all differences in 
strength could be explained by traditional ILS criteria, such as Hashin and Kim&Soni. 
Therefore, a new “ply interface” criterion has been formulated for the Interlaminar Shear 
strength of the interface between two plies: 
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The ILS strength of any arbitrary interface can be calculated based on: 

• The local ply stresses in both plies adjacent to the interface 
• The difference in ply angles between the two plies 
• The two shear strength values S13 and S23 of the 0/0 and 90/90 interface. 

The strength of the 0/0 interface and 90/90 interface can be determined by tests on [0m]S and 
[0n,90]S coupons. The thickness (which) defines the number of plies can be chosen similar to the 
ASTM standard of Ref. 7, but should in any case be large enough to prevent bending failures. 
So, when setting up test programmes in the future, both configurations should be manufactured 
and tested. 
Next to a new failure criterion, a statistical method has been developed to evaluate different 
failure criteria. It is suitable for general application, so any criterion can be checked with this 
particular procedure. The basic assumption of this method is that in order to correctly describe 
the failure behaviour both variance and mean value should be predicted accurately by the 
criterion. This implies that there is a relation between the distributions or data scatter for 
different configurations, which actually exist in reality and is captured correctly by the criterion. 
Application of this procedure to the newly developed ply interface criterion and traditional 
criteria, which consider stresses in one ply only, shows that the new criterion indeed performs 
better, which was already suspected during the NIVR-SRP programme of Ref. 1. This is 
especially the case for the 0/90 and 0/45 interfaces, or more generally for configurations with 
highly dissimilar ply stresses in the two plies adjacent to the interface. Looking at the 
formulation of the new and traditional criterion this is exactly where the largest differences are 
to be expected. 
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(a)  S13 on 0/0 interface    (b)  S23 on 90/902 interface 

Fig. 20  Probability plot including confidence bounds 

 
It is noted here, that the current statistical procedure for evaluation of failure criteria is 
performed with “exact” distributions for S13 and S23. A probability density function is fitted 
through the (limited amount of) test data points. The two fitted curves are used as input in the 
Monte Carlo Simulation to predict the strength distribution of all other configurations. 
However, the distributions for S13 and S23 are based on relatively small sample sizes, so there is 
some uncertainty in the fitted curves. This can be visualised in the probability plots for both test 
configurations. Figure 20 shows that there is still some uncertainty in the fitted curve, which is 
represented by the 95 % confidence bounds. It is hard to visualise this uncertainty in the 
probability density functions as shown in figure 16, but it should be included somehow in the 
Monte Carlo Simulation. Alternatively, more samples could be tested to narrow down the 
confidence bounds in figure 20. Testing more samples usually has more influence on the 
variance than on the mean value, but the amount of data scatter influences the outcome of both 
the F- and T-test. 
Another improvement of the accuracy of the analysis is the application of the Finite Element 
Method (FEM) to determine the ply stresses. Currently, these stresses are based on CPT, see 
paragraph 2.1. In the previously mentioned NIVR-SRP programme of Ref. 1, it was shown that 
CPT is only valid at a certain distance from the load introduction points. Therefore, in the future 
FEM interface elements should be equipped with the ply interface criterion. This is not so 
straightforward, because these elements need information (at least the ply angle) from other 
elements to which they are attached. Further, a damage law should be included in order to 
determine not only initial cracking but also the final failure load, in case there is any difference 
at all. 
As a last remark, it is noted here that further research is necessary towards the influence of other 
stress components (e.g. σ3). This has been the subject of many other research programmes and it 
is generally believed that transverse tensile stresses promote the formation of interlaminar shear 
cracks, while transverse compressive stresses postpone the cracking. 
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Appendix A   The analytical determination of transverse shear  
    stresses 

A.1 The basic equations for Classical Plate Theory 
Force equilibrium 
Consider a plate in the (x,y)-plane and assume that all loads are normal to its surface.  
Figure A-1 shows a plate under lateral loading. If the deflections are small in comparison with 
the thickness of the plate, according to Ref. 4, the following equations can be obtained. 
Equilibrium of forces on the plate gives: 
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Equilibrium of moments on the plate gives: 
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When only forces in the x-direction are considered without gradients the y-direction ( 0=yQ  

and 0=∂∂ y  for all response variables) this reduces to the following two equations: 
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    (a)  Bending and twisting moments 
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    (b)  Vertical shearing forces 
 

 
        Fig. A-1  Plate under lateral loading 
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The forces and moments acting on the plate cause internal stresses. Now consider an element 
with dimensions dx, dy, dz, see figure A-2. According to Ref. 5 the equilibrium of forces gives 
the following equations: 
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 Eq. A-4 

 
Equilibrium of moments, neglecting the higher order terms, results in: 
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 Eq. A-5 

 
When only stress gradients in the y-direction are considered ( 0=∂∂ y  for all response 

variables) and the last three equations are substituted in the first three, this reduces to the 
following three equations: 
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 Eq. A-6 

Notice, that a two-dimensional approach would have resulted in the first and last equation only, 
see figure A-3. However, the second equation shows that, although no stress gradients are 
considered in y-direction, the stress components in y-direction themselves ( xyτ , yzτ  and also 

yσ ) are not necessarily zero as well. 
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Fig. A-2  Stresses acting on an element with dimensions dx, dy, dz 
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Fig. A-3  Stresses acting on an element with dimensions dx, dz. 
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Force resultants 
Next, the relation between the loads and the stresses can be established. The magnitude of the 
shearing forces can be calculated with: 

∫

∫

−

−

⋅=

⋅=

2

2

2

2

h

h
yzy

h

h
xzx

dzQ

dzQ

τ

τ

 Eq. A-7 

As it was assumed that 0=yQ , the shear stress yzτ  integrated over the entire thickness h has to 

be zero. Notice that it still does not mean that the shear stress yzτ  has to be zero at any location 

through the thickness, only the resultant shear force in the cross-section is zero. 
 
The in-plane loads are calculated with: 
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Only loads in x-direction are considered, or 0== xyy NN . Again, it does not mean that yσ  

and xyτ  are zero at any location through the thickness, only that the resultant in the cross-

section is zero. 
 
The moments are calculated with: 
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Only loads in x-direction are considered, so the resultant moments 0== xyy MM . 
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Kinematics 
When it is assumed that cross-sections in the plate of figure A-1 remain straight under loading, 
the total deformation at any point through the thickness can be subdivided into a component due 
to the deformation of the mid-plane and a component due to bending: 
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Constitutive equations 
Hooke’s law gives the relation between stresses and strain: 
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Actually, this is only valid for a plate in the state of generalised plane stress, which strictly 
spoken is not true in our case. 
 
Eq. A-11 can be rewritten as: 

{ } [ ] { }εσ ⋅= C   Eq. A-12 

In which: 
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Substitution of Eq. A-10 into Eq. A-12 gives the stresses as function of (mid-plane) strains and 
curvature. 
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A.2 Implementation of CPT for isotropic materials 
For isotropic materials the following simplifications can be made: 
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Substitution of Eq. A-10 and Eq. A-13 into Eq. A-12, followed by substitution into Eq. A-8 and 
integration over the entire height gives: 
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Substitution of Eq. A-10 and Eq. A-13 into Eq. A-12, followed by substitution into Eq. A-9 and 
integration over the entire height gives: 
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 Eq. A-15 

 
Back substitution of Eq. A-14 and Eq. A-15 into Eq. A-10 and Eq. A-12 results in the formulas 
for the in-plane strains and stresses: 
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 Eq. A-16 

 
Eq. A-16 clearly shows that for isotropic materials the stress components yσ  and xyτ  are zero 

through the entire thickness, while xσ  varies linearly with the z-coordinate. Notice that strains 

(and curvature) in y-direction are not zero due to the Poisson’s effect. 
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Now, consider a beam under transverse loading. Eq. A-6 gives the relationship between the 
normal stresses in x-direction and the shear stresses through the thickness. Substitution of Eq. 
A-16 into Eq. A-6 gives: 
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With the assumption that no forces are applied along the surface (lateral loading only), Eq. A-3 
remains valid and we find: 
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With the boundary condition that the shear stress at the outer surface is zero (no forces applied 
along the surface), we find: 
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With Eq. A-3 the two other through thickness stress components can be found as well: 
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And applying the proper boundary conditions results in: 
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Concluding, the following equations are found for the through-thickness stresses: 
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A.3 Implementation of CPT for composite materials 
In principle, for the beam consisting of composite materials the same procedure can be followed 
as for the isotropic one. However, the equations become more complex as a layer-wise approach 
has to be followed. In the composite case Eq. A-8 transforms in: 
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Eq. A-9 becomes: 
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  Eq. A-19 

 
The parameter k is the ply number, starting at 1 and ending at ply n. The coordinate 0=z  is 
located in the middle of the laminate, z0 is located at the bottom and zn at the top. 
 
Eq. A-10 remains the same; the total strain still consists of a component due to mid-plane 
deformation and a component due to bending/curvature. However, Eq. A-12 has to be modified, 
because the layer stress depends on the individual layer stiffness and orientation: 
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In which: 
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[C](k) is the stiffness matrix of the kth ply in its local ply coordinate frame (along the fibres). 
[T](k) is a transformation matrix, with ϕ being the ply angle with respect to the global material 
coordinate frame. 
 
Substitution of Eq. A-10 in Eq. A-20 and next into Eq. A-18 and Eq. A-19 results in: 
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This can be rewritten to the well-known formula according to Classical Laminate Theory: 
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With: 
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Inversion of the ABD-matrix, here denoted as abd with components aij, bij, and dij, gives the 
strains and curvatures as a function of the in-plane loads and bending loads: 
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As all applied loads in y-direction are assumed zero, this reduces to: 
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Now, the in-plane strains and stresses can be calculated in both the global coordinate system 
and in the local ply coordinate system (at any location through the thickness): 
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  Eq. A-22 

 
The through-thickness stresses can be calculated by combining Eq. A-22, Eq. A-6 and Eq. A-3: 
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With the boundary condition of zero shear stresses at the outer surface, one can deduce: 
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does not exist and should not be executed. 
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Integration of these equations results in: 
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The last formula of Eq. A-23 shows that the normal stress zσ  in the thk  ply depends on the 

stress in the ( )thk 1−  ply at 1−= kzz , which in turn depends on the stress in the ( )thk 2−  ply at 

2−= kzz , and so on. Numerically the implementation is quite easy even for a large number of 

plies. However, for an analytical determination of stresses it is better to rewrite this into: 
 

For 1=k  (First ply in the laminate): 
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For 2=k  (Second ply in the laminate): 
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For 3≥k  ( thk  ply in the laminate): 
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Appendix B  

Consider the three-point bending test on an isotropic beam and on a laminate, see figure B-1. As 
we are only interested in the distribution of stresses, in the determination of stresses the 
following transverse load is assumed: 

21 mmN
h

Qx =  or 21
2

mmN
bh
P

=  

 
The standard test configuration to determine the ILS strength is a laminate consisting of 0o plies 
only. For the shear stresses this results in the same stress distribution as in an isotropic beam, 
i.e. a perfectly parabolic distribution. However, for other lay-ups deviant distributions will be 
found. Two alternative lay-ups are shown in figure B-1, one for a beam with “soft” inner plies 
(e.g. 90o plies moved inward and 0o plies moved outward) and one for a beam with “soft” outer 
plies. The result is a blunter curve with a lower peak stress for the lay-up with “soft” inner plies 
and a more slender curve with a higher peak stress for the lay-up with “soft” outer plies. So for 
ILS test coupons with a lay-up deviant from the standard lay-up with0o plies only, the standard 
formula of reference 3 can no longer be applied to calculate the shear stress. 
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Appendix C   ILS failure stress in local ply directions 
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Fig. C-1  Failure stress in local ply directions for θ/θ interface 
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Fig. C-2  Failure stress in local ply directions for θ/-θ interface 
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Fig. C-3  Failure stress in local ply directions for 0/θ interface 
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Fig. C-4  Failure stress in local ply directions for 45/θ interface 
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Fig. C-5  Failure stress in local ply directions for 90/θ interface 
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