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Problem area 
The evaluation of the failure 
probability is a basic problem in 
structural reliability analyses. The 
failure probability can be 
formulated in terms of an integral 
equation that represents the volume 
of the joint probability density 
function located in the failure 
domain. In the past decades many 
methods have been presented to 
solve this integral equation, such as 
sampling methods based on Monte-
Carlo simulation and directional 
simulation and methods based on an 
analytical solution of the integral 
equation: first- and second-order 
reliability method. 
 
Description of work 
In this paper an adaptive radial-
based importance sampling 
(ARBIS) method is presented to 
solve the integral equation. The 

radial-based importance sampling 
(RBIS) method, excluding a β-
sphere from the sampling domain, 
is extended with an efficient 
adaptive scheme to determine the 
optimal radius β of the sphere. The 
adaptive scheme is based on 
directional simulation. 
 
Results and conclusions 
Several numerical examples 
demonstrate the efficiency, 
accuracy and robustness of the 
scheme.  
 
Applicability 
The ARBIS method can be applied 
as a black-box and is of particular 
interest in applications with a low 
probability of failure, for example 
in structural reliability, in 
combination with a small number of 
stochastic variables. 
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Adaptive Radial-Based Importance Sampling method for 
structural reliability 

 
Frank Grooteman * 

 
National Aerospace Laboratory NLR, Anthony Fokkerweg 2 1059 CM Amsterdam, The Netherlands 

 

Abstract 
In this paper an adaptive radial-based importance sampling (ARBIS) method is presented. The radial-based 
importance sampling (RBIS) method, excluding a β-sphere from the sampling domain, is extended with an 
efficient adaptive scheme to determine the optimal radius β of the sphere. The adaptive scheme is based on 
directional simulation. The underlying basic methods are presented briefly. Several numerical examples 
demonstrate the efficiency, accuracy and robustness of the scheme. As such, the ARBIS method can be 
applied as a black-box and is of particular interest in applications with a low probability of failure, for 
example in structural reliability, in combination with a small number of stochastic variables. 

 
Keywords: Importance Sampling; Monte-Carlo Simulation; Structural reliability; Failure probability; 
Adaptive 
 

 
1 Introduction 

The evaluation of the failure probability is a basic problem in structural reliability analyses. The failure 
probability can be formulated as: 

( ){ } ∫
≤

=≤=
0)(

)(0
xG

f xdxfxGPp  
(1)

where x represents the vector of stochastic variables of the reliability problem and f(x) the joint probability 
density function in X-space. G(x) is the failure or limit-state function, defining a safe state when G > 0 and a 
failure state when G < 0. The hyper-surface separating the safe from the failure domain G = 0 is called the 
limit-state. The integral represents the volume of the joint probability density function located in the failure 
domain. 

In the past decades many methods have been presented to solve this integral equation, such as sampling 
methods based on Monte-Carlo simulation (MCS) and directional simulation (DS) [1-2] and methods based 
on an analytical solution of the integral equation: first-order reliability method (FORM) and second-order 
reliability method (SORM) [3].  

                                                      
* Tel.: +31-527-24-8727; fax.: +31-527-24-8210. 
E-mail address: grooten@nlr.nl (Frank Grooteman). 
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FORM and SORM approximate the limit-state with, respectively, a first-order or an incomplete second-order 
function. Furthermore, the underlying solution method requires the solution of an optimization problem to 
find the smallest distance to the limit-state. FORM, and to a lesser extent SORM, are often very efficient. 
However, neither method is robust in the case of a complex limit-state, such as a highly non-linear failure 
function, multiple failure points or a combination of failure functions (serial and parallel systems). An 
example of a series system having multiple design points is given in Fig. 1. In general, the accuracy of the 
solution is unknown, because either narrow confidence bounds cannot be obtained or they require an extra 
computational effort (e.g. importance sampling). 

On the other hand, MCS and DS are very inefficient compared with FORM and SORM, especially for small 
probability values. Nevertheless, convergence to the exact solution is guaranteed for an increasing number of 
simulations, and confidence bounds on the solution are available in the case of a finite number of 
simulations. Furthermore, these methods are very robust in the sense that they can handle complex limit-
states.  

Various methods have been presented to improve the efficiency of the two basic sample methods (MCS and 
DS): for example [4-8], referred to as importance sampling techniques. The basic idea is to concentrate 
sampling near the most important part(s) of the limit-state(s), that is points on G(x) = 0 located closest to the 
origin in U-space. A widely applied approach is to shift the sampling centre from the origin to the design 
point. Often a FORM analysis, having the mentioned disadvantage, is applied first to obtain knowledge 
about the design point. An alternative strategy is to gather knowledge about the failure domain and thus 
limit-state(s) during sampling and use this knowledge to guide the sample domain towards the most 
important regions. This is called an adaptive method, e.g. [9].  

An importance sampling method originally proposed by Harbitz [6], referred to as the radial-based 
importance sampling (RBIS) method, is to exclude an n-dimensional sphere called “β-sphere” from the safe 
part of the sampling domain. The remaining sampling domain is restricted to values outside the sphere 
located in the tail part of the joint probability density function. In principle no knowledge about the location 
of the design point(s) is required. The method converges to the exact solution provided the sphere is located 
in the safe domain, which can be easily checked during sampling. However, the optimal choice is a sphere 
that touches the limit-state, maximising the excluded region. Hence the optimal sphere radius β is the 
smallest distance to the limit-state given by the most probable (design) point (MPP).  

In this paper a very efficient, accurate and robust adaptive scheme is presented to determine the optimal 
sphere radius. Because of these characteristics, the resulting method can be applied as a black-box and is for 
most structural reliability applications much more efficient than crude Monte-Carlo method. 
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2 Adaptive Radial-Based Importance Sampling (ARBIS) 
A set of dependent non-normal stochastic variables x can always be transformed to a set of independent 
standard normal variables u, called the U-space, by applying appropriate transformations, [10-12]. The 
remainder of the paper is therefore restricted to the U-space. Before presenting the adaptive scheme the 
original idea of Harbitz [6] is briefly presented. 

 

2.1 Radial-based Importance Sampling (RBIS) 

The method of Harbitz [6] is based on a simple but effective importance sampling method, excluding a β-
sphere from the sample domain, Fig. 1. The sphere has to be located inside the safe domain. The optimal 
radius β is equal to the distance to the Most Probable Point, which is the point on the failure surface (limit-
state) that is closest to the origin. 

The probability content of the excluded sphere is given by:  

{ } { } ( )2222 βχββ nUPUPp =≤=≤=  (2)

where χn
2 is the chi-square distribution function with n degrees of freedom equal to the number of stochastic 

variables. 

The probability integral of Eq. (1) can be rewritten in terms of a conditional probability, yielding:  

{ } { }ββ >>≤= UPUGPp f 0  (3)

The first term can easily be obtained by Monte-Carlo sampling outside the sphere. The second term is given 
by Eq. (2), thus yielding: 

( )( )221 βχn
sim

fail
f N

N
p −=  (4)

In a crude MCS most sampling points would be located inside the sphere. Disregarding this part of the 
domain can save a huge amount of samples. Therefore, this method can be much more efficient than MCS, 
especially for small probabilities of failure occurring in structural reliability analyses. The method has 
similar characteristics as MCS, such as convergence to the exact solution (accuracy) and the capability to 
handle complex limit-state(s) (robustness). 
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Fig. 1. Optimal Radial Based Importance Sampling, problem 12 in section 3. 

 
2.2 Adaptive scheme 

The RBIS method proposed by Harbitz assumes that the MPP or design point is known. At the start of a 
probabilistic analysis, no information about the limit-state is available. The unknown MPP has to be 
determined first. For this a FORM analysis can be used, which is efficient but not robust. The latter makes it 
less suitable for practical applications. An alternative adaptive scheme is presented here that is robust, 

efficient and guarantees an optimal radius β (accurate). The basic steps are depicted in the flow chart below. 

The dashed blocks in the flow chart represent the new adaptive part.  
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An initial value of the radius β  (β0 in Fig. 2) is chosen such that the excluded sphere is located in the failure 
domain, contrary to the safe domain requirement of the previous section. This can be achieved by selecting 
an initial β that results in a low probability p0 of the sample domain outside the sphere. With equation (2) this 
yields: 

( )0
2 1 pn −= −χβ  (5)

The initial value of βopt is set to a very high value representing the unknown MPP. Next, the Monte-Carlo 
method is initialised by selecting a start seed for the random number generator used to generate the sample 
points in U-space. For points outside the sphere (|U| > β) the limit-state function is evaluated (LSFE) and the 
result (failure or safe) is stored. If the sample point is located in the failure domain (dot in Fig. 2), a line-
search (see section 2.3) is performed in this direction to determine the point on the limit-state (see Fig. 2), 

usually requiring two-to-three G-function evaluations. The resulting distance β~opt is a first approximation of 

Initialise MCS 

Start of ARBIS 

Set initial β, βopt 

Stored? 

Sample U 

LSFE 

Line-search 

Set new β 

G < 0 

|U| < βopt 

Store result 

|U| > β 

End of  ARBIS 

Converged? 

Add failure 
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the distance to the MPP and is used to determine a new radius β (β1 in Fig. 2) of the sphere. This new radius 

is selected somewhat smaller than β~opt according to: 

( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−=

−

step
n

optn

p
p

p

02

22
0

1

~1

χβ

βχ

 
(6)

in which 1-pstep multiplied by 100 denotes the percentage of samples located in the sample domain between 

the spheres β and β~opt, indicated by the dashed circles in Fig. 2. Only a new failure point located in this part 
of the domain triggers a new line-search, ensuring that a limited number (two-to-seven) of line-searches are 
performed to converge to the MPP. This is important, because all the points evaluated in a line-search cannot 
be added to the Monte-Carlo set and are therefore extra points reducing efficiency. After the line-search, the 
Monte-Carlo simulation is restarted using the same seed for the random number generator. In this way, the 
same set of sample points is regenerated and the information stored for points evaluated in a previous Monte-
Carlo cycle is re-used. 

The value of pstep should be selected close to 1, minimising the sample domain between β and β~opt. This 
prevents unnecessary sampling after the MPP has been located, since all samples in this domain are 
redundant. However, a value of pstep close to 1 can result in locking of the adaptive part of the algorithm, 
thereby producing erroneous results. In that case, no sample point is obtained in the failure region between 
both spheres before convergence (see section 4) has been reached. A value of pstep = 0.8 has proven to be a 
good choice. 

The adaptive approach is robust and always converges to the MPP for any initial β-value, even if the initially 
selected β value is too small, i.e. in the safe domain away from the MPP. If the sphere is far from the MPP, 
this can result in a large number of simulations before the first failure point is found, because most sample 
points are located close to the sphere. This reduces the efficiency of the algorithm, because all sample points 
with a radius less than the final βopt are not part of the final sample set. The efficiency is then vastly 
improved by performing a first line-search in a direction with negative G-gradient, i.e. the sample point has a 
lower G-value than the origin, instead of postponing the line-search until a failure point has been found.  

A small initial p0, which results in an initial sphere located far in the failure domain, is the best choice. In 
general, this quickly results in a first failure point. In structural reliability the probability of failure is usually 
small (< 10-5). Selection of an initial p0 of 10-6, denoting the probability content outside the sphere including 
the part in the safe domain, generally suffices. 
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Fig. 2. Adaptive scheme to determine the MPP. β0 initial radius, β~opt first estimate of MPP and β1 new radius. 
 

 
Fig. 3. Line-search procedure. 

 
2.3 Line-search scheme 
If a failure point (Fig. 2) is found with a distance to the origin that is less than the current minimum distance 

β~opt, a line-search is performed in that direction to locate the point on the limit-state that is an improved 

estimate of the MPP. The procedure is one-dimensional and schematically depicted in Fig. 3. The LSF-value 
at the origin is determine once at the start of ARBIS (point 0 in Fig. 3) and is used as a scaling value as well. 
A linear function is fitted through this point and the known failure point (point 1), thereby determining a first 
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estimate of the limit-state point (point 2). Next, the G-function value is determined in this point and a 
quadratic fit is made resulting in an improved estimate. This procedure is repeated until the limit-state point 
is found having an absolute error tolerance of 0.01. A higher accuracy is unnecessary, because Eq. (6) 
guarantees that the MPP is always located outside the sphere. Usually the process converges in two-to-three 
iterations. The search is aborted after a maximum of five iterations, to prevent spending an excessive amount 
of analysis time in rare cases. 

 
3 Numerical Examples  

The ARBIS method is here applied to a set of widely used test problems obtained from the 
literature, representing a broad range of possible limit-states that can occur in practice. The 
problems are summarized in Table 1, in which the last column gives the corresponding reference. 
Since these problems are used by various authors, the reference is not necessarily the first one. 
Because of the simple nature of the limit-state functions they can be evaluated many times, making 
a near exact evaluation possible by crude Monte-Carlo. This near exact value is given in column 5 
of Table 1. Column 6 gives the final (optimal) β value. 
The ARBIS method is examined on 

• Efficiency 
This is reflected by the number of G-function evaluations necessary to obtain a converged solution. 
This number is compared with crude Monte-Carlo and RBIS. 
• Robustness 
This reflects how the method performs in the case of a complex limit-state function: noisy failure 
function, highly non-linear failure function, multiple failure points and/or multiple failure functions. 
• Accuracy 
The method always converges to the ‘exact’ solution provided enough samples are taken into 
account. 

Sampling is ended when the maximum relative error in the probability value is below a threshold value. 
Hence an equal accuracy level is obtained with the Monte-Carlo, ARBIS and RBIS method and therefore 
their efficiencies can be compared. The maximum relative error is given by: 

ff pp
rel COVCOVzE ⎟

⎠
⎞

⎜
⎝
⎛ +

Φ== −

2
11

2/max
γ

α  (7)

where γ is the confidence level. For each failure point the current value of the COVPf is checked against a 
threshold value, where COVPf is given by: 

fsim

f
Pf PN

P
COV

−
=

1  (8)

For all problems the threshold coefficient of variation (COV) for the probability of failure pf was set to 0.1. 
This means that with 95 % confidence the relative error in the estimate of the probability of failure pf is less 
than:  
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%2096.1max ≈=
f

f
p

p COVE  (9)

This accuracy is acceptable for most engineering applications. In general, the real error will be less than 10 
%, which is often better than the errors produced in other parts of the analysis (e.g. accuracy of the 
underlying deterministic model and numerical model). Reducing the COV value reduces the error at the 
expense of more simulation.  

The value obtained for the probability of failure with the ARBIS method, given the above accuracy level, is 
presented in column 5 of Table 1 between parentheses. The required number of simulations is presented in 
Table 2, columns 2 to 4, for respectively the Monte-Carlo method, ARBIS and RBIS with optimal radius. 
The fifth column of Table 2 presents the gain in efficiency of ARBIS over the Monte-Carlo method. RBIS 
was applied using the final β-value obtained in ARBIS, which is the optimal radius being close to the MPP. 
The difference in efficiency with ARBIS, presented in column 6, is therefore a measure of the efficiency of 
the adaptive scheme and reflects the number of G-function analyses spent in the subsequent line-searches to 
determine the MPP. These values show that the adaptive scheme is very efficient, because only a small 
number of additional G-function analyses are required compared with the optimal RBIS method. 

 
3.1 Discussion 
The various problems serve to demonstrate the efficiency and robustness of the ARBIS method. In all 
problems the same value for p0 of 10-6 and pstep of 0.8 was used, see section 2.2. As explained in the previous 
section, all results have a similar accuracy level, by selecting a fixed value for the coefficients of variation of 
pf. The relative error in pf was well below the maximum expected error of 20% for all problems.  

Robustness is demonstrated by the noisy limit-state of problem 1, multiple failure points of problem 2, 
highly non-linear limit-states of problems 6 to 8; multiple failure functions of problems 9 to 14, where 
multiple failure points are present in problems 12 and 14 as well.  For all problems the ARBIS method 
proved to be very robust.  

Fig. 4 shows sample plots obtained with ARBIS for the two-dimensional problems, clearly demonstrating the 
approach. The sample points inside the excluded sphere, see for example problems 5, 6 and 12, including the 
point in the origin, are related to the line-search method and are left out of the sample set used to calculate 
the probability value. 

As expected, ARBIS is much more efficient for most problems than MCS. The gain in efficiency is less for 
problems 1 and 3, which have an increased number of variables combined with a high probability of failure 
value. The efficiency strongly depends on the probability value. The probability value is determined by the 
location of the MPP (βopt) and shape of the limit-state. A rough estimate of the minimum number of required 
sample points is given by: 

( )
f

optn

p
zN

222
2/ 1 βχ

γ
α −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>  (10)
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The farther away the location of the MPP, the larger is βopt, reducing the number of simulations. This is 
reflected by the numerator of the above equation. Problem 2 shown in Fig. 4 is an example, demonstrating an 
extreme reduction in samples for small probabilities. On the other hand, for a very narrow shaped limit-state 
the contribution of the failure domain to the whole domain outside the sphere is small, increasing the 
required number of simulations. This is reflected by the denominator of the above equation. Problem 8 
shown in Fig. 4 gives an example of a very narrow limit-state. The probability value for more realistic 
problems is in general less than 10-5. The gain in efficiency is therefore expected to be (much) higher for 
more realistic problems than shown for some of the test problems. 

Because of its robustness, ARBIS can be applied as a black-box and is of particular interest in situations 
where a low probability of failure is expected, such as in structural reliability analyses, consisting of a small 
number of stochastic variables. Like most sampling methods, ARBIS is suitable for application on a parallel 
computer, which is an ongoing trend [13], compensating for its lower efficiency compared with FORM and 
SORM by simultaneous analyses. Because of this, the robustness of the stochastic method becomes of 
increasing importance. 

 
Table 1 
Limit-state function descriptions 

Case Limit-state function Stochastic variables Description Pf  (Pf
ARBIS) βopt Ref.

1 

( )∑
=

+

−−+++=
6

1
6

54321

100sin001.05

522

i
ixx

xxxxxg

 
x1…4: LN(120,12) 
x5: LN(50,15) 
x6: LN(40,12) 

Linear LS with noise 
term 

1.22e-02 
(1.32e-02) 

2.361 [4] 

2 14.14621 −= xxg  x1: N(78064.4, 
11709.7) 
x2: N(0.0104, 0.00156)

Multiple failure  
points 

1.46e-07 
(1.11e-07) 

5.443 [4] 

3 
10

9

1

2015.02 xxg
i

i −+= ∑
=

 x1…10: N(0, 1) Quadratic LS 10 
terms 

5.34e-03 
(5.6e-03) 

2.103 [3] 

4 ( ) ( ) 5.2
2

1.0 212
21 +

+
−−=

xxxxg  x1: N(0, 1) 
x2: N(0, 1) 

Quadratic LS with 
mixed term, convex 
LS 

4.16e-03 
(3.71e-03) 

2.481 [14]

5 ( ) ( ) 3
2

5.0 212
21 +

+
−−−=

xxxxg  x1: N(0, 1) 
x2: N(0, 1) 

Concave LS 1.05e-01 
(1.12e-01) 

1.625 [14]

6 3
1

2
12 06.01.02 xxxg +−−=  x1: N(0, 1) 

x2: N(0, 1) 
Non-linear LS with 
saddle point 

3.47e-02 
(3.58e-02) 

1.996 [3] 

7 ( )
( )421

21

2000463.0

2357.05.2

−+

+−−=

xx

xxg
 x1: N(10, 3) 

x2: N(10, 3) 
Highly non-linear LS 2.86e-03 

(2.60e-03) 
2.431 [15]

8 ( )412 43 xxg +−=  x1: N(0, 1) 
x2: N(0, 1) 

Highly non-linear LS 1.80e-04 
(2.03e-04) 

2.925 [16]
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Case Limit-state function Stochastic variables Description Pf  (Pf
ARBIS) βopt Ref.

9 

( )4321

544

433

322

211

,,,max
250.2
323.2
500.2
677.2

ggggg
xxg
xxg
xxg
xxg

=
−−=
−−=
−−=
−−=

 

x1…5: N(0, 1) Parallel system 2.11e-04 
(1.96e-04) 

2.738 [16]

10 

( )21

32

3211

,min
3

33

gg
xg

xxxg
+−=

+−−−=
 

x1: N(0, 1) 
x2: N(0, 1) 
x3: N(0, 1) 

Series system 2.57e-03 
(2.81e-03) 

2.953 [2] 

11 

( )21

32

3211

,max
3

33

gg
xg

xxxg
+−=

+−−−=
 

x1: N(0, 1) 
x2: N(0, 1) 
x3: N(0, 1) 

Parallel system 1.23e-04 
(1.11e-04) 

3.434 [2] 

12 ( )
( )

( )21

212

4
1

2
121

,min
5.4
2.0

1.0exp2

gg
xxg

x

xxg

−=

+−+−=

 

x1: N(0, 1) 
x2: N(0, 1) 

Series system 
Multiple failure  
points 

3.54e-03 
(4.51e-03) 

2.925 [16]

13 ( )
( )

( )21

212

4
1

2
121

,max
5.4
2.0

1.0exp2

gg
xxg

x

xxg

−=

+−+−=

 

x1: N(0, 1) 
x2: N(0, 1) 

Parallel  system 2.50e-04 
(2.03e-04) 

3.219 [16]

14 ( ) ( )

( ) ( )

( )4321

214

213

212
212

212
211

,,,min
25.3

25.3

3
2

1.0

3
2

1.0

ggggg
xxg

xxg

xxxxg

xxxxg

=
++−=

+−=

+
+

+−=

+
+

−−=

 

x1: N(0, 1) 
x2: N(0, 1) 

Series system 
Multiple failure  
points 

2.18e-03 
(2.72e-03) 

2.925 [14]
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Table 2 
Number of deterministic analyses required by the different stochastic methods 

Case MCS ARBIS RBIS opt Δ(MCS - ARBIS) Δ(ARBIS – RBIS)

1 7655 3520 3498 4157 22 
2 > 109 67 60 > 109 7 
3 17 830 16 674 16 555 1275 119 
4 27 096 1215 1142 25 954 73 
5 942 155 141 801 14 
6 2734 307 281 2453 26 
7 36 835 1914 1900 34 935 14 
8 354 130 4867 4789 349 341 78 
9 361 701 67 427 67 345 294 356 82 

10 37 659 1096 1086 36 573 10 
11 563 723 4484 4472 559 251 12 
12 24 902 216 190 24 712 26 
13 351 660 1930 1907 349 753 23 
14 41 220 465 413 40 807 52 
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problem 2 problem 4 problem 5 

 
problem 6 problem 7 problem 8 

 
problem 12 problem 13 problem 14 

 
 

Fig. 4. Sample plots for the two-dimensional test problems. 
 
4 Conclusion 
Importance sampling methods are more efficient than Monte-Carlo Simulation and Directional Simulation, 
but require information about the location of the limit-state(s), especially the part closest to the origin in U-
space. Gathering this information can be expensive and can fail to locate all the important parts. In this 
paper, the Radial-Based Importance Sampling method has been extended with a very efficient and robust 
adaptive scheme that automatically determines the optimal radius of the excluded sphere. For this reason the 
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method can be applied as a black-box and is of particular interest in applications with a low probability of 
failure, such as structural reliability, in combination with a small number of stochastic variables. 
Furthermore, the method is suitable to be applied on a parallel computer. 
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