
UNCLASSIFIED 

Executive summary 
 

 
 
 
UNCLASSIFIED 

 

Nationaal Lucht- en Ruimtevaartlaboratorium 

National Aerospace Laboratory NLR 

This report is based on a presentation held at the AIAA Atmospheric Flight Mechanics 
Conference, Portland, Oregon, USA, 8 - 11 August 2011. 

 

 
Report no. 
NLR-TP-2011-230 
 
Author(s) 
S. Taamallah 
 
Report classification 
UNCLASSIFIED 
 
Date 
July 2011 
 
Knowledge area(s) 
Helikoptertechnologie 
     
Descriptor(s) 
Unmanned Aerial Vehicle (UAV) 
Helicopter flight dynamics 
        

Flight Dynamics Modeling For A Small-Scale Flybarless 
Helicopter UAV 
  
 

 
Problem area 
We present a UAV helicopter flight 
dynamics nonlinear model for a 
flybarless articulated Pitch-Lag-
Flap (P-L-F) main rotor with rigid 
Blades. 
 
Description of work 
The model includes the main rotor, 
tail rotors and the fuselage. 
Additionally the paper reviews all 
assumptions made in deriving the 
model, i.e. structural, aerodynamics, 
and dynamical simplifications.  
 
Results and conclusions 
The model has been compared with 
an equivalent FLIGHTLAB 
nonlinear model. Simulation results 
show that the match between this 
model and FLIGHTLAB is very 
good for static (trim) conditions, is 
good to very good for dynamic 
conditions from hover to medium 
speed flight u = 5 m/sec, is fair to 

good for dynamic conditions at high 
speed u = 10 m/sec, and except for 
the yaw channel is also 
good in the VRS. 
 
Applicability 
The model is applicable for high 
bandwidth control specifications, 
for both Clock-Wise (CW) and 
Counter-ClockWise (CCW) main 
rotor rotation, and valid for a range 
of flight conditions including 
autorotation and the Vortex-Ring- 
State (VRS). Hence this model 
could potentially be used to 
simulate and investigate the flight 
dynamics of a flybarless small-scale 
UAV helicopter, including in 
autorotation and VRS conditions. 
Future work will focus on the 
development of linear and nonlinear 
control schemes, based on an 
adapted version of this model, to 
obtain optimal helicopter flight 
trajectories. 



UNCLASSIFIED 

 
 
 
UNCLASSIFIED 

 

Flight Dynamics Modeling For A Small-Scale Flybarless Helicopter UAV 
  

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR 
 
Anthony Fokkerweg 2, 1059 CM Amsterdam, 
P.O. Box 90502, 1006 BM  Amsterdam, The Netherlands 
Telephone +31 20 511 31 13, Fax +31 20 511 32 10, Web site: www.nlr.nl 



Nationaal Lucht- en Ruimtevaartlaboratorium 

National Aerospace Laboratory NLR 

 

  
   

  
NLR-TP-2011-230 

 

Flight Dynamics Modeling For A Small-Scale 
Flybarless Helicopter UAV 
  

S. Taamallah 

 

  
 

 

 

 

 

 

 

 

 

 

 

This report is based on a presentation held at the AIAA Atmospheric Flight Mechanics Conference, Portland, 

Oregon, USA, 8 - 11 August 2011. 

The contents of this report may be cited on condition that full credit is given to NLR and the authors. 

 

Customer National Aerospace Laboratory NLR 

Contract number ---- 

Owner National Aerospace Laboratory NLR 

Division NLR Aerospace Systems and Applications 

Distribution Unlimited 

Classification of title Unclassified 

 July 2011 
Approved by: 

Author 

 
 
 

Reviewer Managing department 



 

 



  
NLR-TP-2011-230 

  
 iii 

Contents 

Nomenclature 1 

I Introduction 1 

I.A Background 2 

I.B Small-Scale Helicopter Dynamics: Review of Previous Work 2 

I.C General-Purpose Helicopter Simulation Codes 2 

I.D Our Research Model 3 

II The Helicopter Main Rotor 4 

III Rigid Body Equations of Motion 5 

III.A Assumptions 5 

III.B Modeling 6 

IV Main Rotor Modeling 6 

IV.A Assumptions 6 

IV.B Modeling 7 

V Tail Rotor Modeling 7 

V.A Assumptions 7 

V.B Modeling 8 

VI Simulation Results 8 

VI.A Trim Results 8 

VI.B Dynamic Results 9 

VII Conclusion 11 

Appendix A Simulation Results 12 

Appendix B Physical Parameters 19 

References 21 



  
NLR-TP-2011-230 

  
 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank. 

 



  
NLR-TP-2011-230 

  
 1 

Flight Dynamics Modeling For A Small-Scale

Flybarless Helicopter UAV

Skander Taamallah∗†

National Aerospace Laboratory (NLR), 1059CM Amsterdam, The Netherlands

We present a UAV helicopter flight dynamics nonlinear model for a flybarless articu-
lated Pitch-Lag-Flap (P-L-F) main rotor with rigid blades, applicable for high bandwidth
control specifications, for both ClockWise (CW) and Counter-ClockWise (CCW) main
rotor rotation, and valid for a range of flight conditions including autorotation and the
Vortex-Ring-State (VRS). The model includes the main rotor, tail rotor, and the fuselage.
Additionally, the paper reviews all assumptions made in deriving the model, i.e. structural,
aerodynamics, and dynamical simplifications. Simulation results show that the match be-
tween this model and an equivalent nonlinear FLIGHTLABR© model is very good for static
(trim) conditions, is good for dynamic conditions from hover to medium speed flight, and
is fair to good for dynamic conditions at high speed. Hence, this model could potentially
be used to simulate and investigate the flight dynamics of a flybarless UAV helicopter,
including in autorotation and VRS conditions.

Nomenclature

φ Bank angle (roll angle)
θ Inclination angle (pitch angle, or elevation)
ψ Azimuth angle (yaw angle, heading)
Vk,G Kinematic velocity of the vehicle center of mass
ub

k = u x component of Vk,G on body frame Fb

vb
k = v y component of Vk,G on body frame Fb

wb
k = w z component of Vk,G on body frame Fb (positive down)

pb
k = p Roll velocity (roll rate) of the vehicle relative to the earth
qb
k = q Pitch velocity (pitch rate) of the vehicle relative to the earth
rb
k = r Yaw velocity (yaw rate) of the vehicle relative to the earth

I. Introduction

In the past twenty years, scientific progress related to sensors technology and computational hardware
has allowed for sustained research in the field of robotics. In particular when considering flying robots, the
availability of increasingly reliable, high performance, and miniaturized sensors, combined with advances in
computing power on miniaturized hardware, has yielded impressive developments in the area of Unmanned
Aerial Vehicles (UAVs)a. These unmanned vehicles have been developed for both civilian and military
missionsb, with their raison d’être stemming from the need for (real-time) informationc. Further, UAV

∗R&D Engineer, Avionics Systems Department, National Aerospace Laboratory (NLR), 1059CM Amsterdam, The Nether-
lands.

†Ph.D. Student, Delft Center for Systems and Control (DCSC), Faculty of Mechanical, Maritime and Materials Engineering,
Delft University of Technology, 2628CD Delft, The Netherlands.

aAlthough industry and the regulators have now adopted Unmanned Aerial System (UAS) as the preferred term for Un-
manned Aircraft, as UAS encompasses all aspects of deploying these vehicles and not just the platform itself.

bUAVs have typically been associated with the so-called DDD tasks:1 Dull e.g. long duration, Dirty e.g. sampling for
hazardous materials, and Dangerous e.g. extreme exposure to hostile action.

cSpanning a broad spectrum, i.e. visual, electromagnetic, physical, nuclear, biological, chemical, or meteorological informa-
tion.
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deployment and recovery from unprepared or confined sites may often be necessary, such as when operating
from or above urban and natural canyons, forests, or naval ships. Hence, for those situations a helicopter
UAV, capable of flying in and out of such restricted areas, would represent a particularly attractive solution.

I.A. Background

A helicopter is a complex system, and understanding helicopter flight has been a continuous endeavor. Cer-
tainly helicopter nonlinear flight dynamics modeling has seen considerable development over the past forty
years. We refer here to some of the foundational contributionsd of the 1970s in Ref. 2–5, of the 1980s in
Ref. 6–16, of the 1990s in Ref. 17–23, and for the last decade in Ref. 24–27. For a single main rotor, and briefly
summarized, helicopter flight dynamics includes the rigid-body responses combined with higher-frequency
modes.28 These higher-frequency modes are generated by the main rotor system and its interaction with the
fuselage and other vehicle components. For flight mechanics and control development purposes, the three
most important aspects of these higher order rotor dynamics are blade flapping which allows the blade to
move in a plane containing the blade and the shaft, blade lead-lag which allows the blade to move in the
plane of rotation, and rotor inflow which is the flow field induced by the rotor at the rotor disk. On these
subjects, an extensive discussion covering the various levels of required model complexity may be found in
Ref. 15, 22, 29.

In Ref. 15 a general definition of helicopter model sophistication was formulated, to conveniently describe
helicopter model complexity. This definition, slightly adapted here for R/C helicopters, is given hereunder

• Dynamics. The level of detail in representing the dynamics of the helicopter. This factor determines
the validity of the model in terms of the frequency range of applicability, and in the sequel is divided into
two sub-categories: (i) low/medium model bandwidths are such that the blade flap/lag dynamics and
inflow dynamics are either omitted or elementary modeled, and (ii) high model bandwidths referring
to models which do account, in a relatively detailed way, for (most of) those effects.30, 31

• Validity. The level of sophistication in calculating the helicopter forces, moments, and inflow. This fac-
tor determines the domain of validity in the flight envelope and is also divided into two sub-categories:
(i) conventional flight as in hover and low speed maneuvers, and (ii) aerobatic/aggressive maneuvers
including steep descent flight conditions.

I.B. Small-Scale Helicopter Dynamics: Review of Previous Work

In the past fifteen to twenty years, there has been considerable worldwide activity in researche related to
automatic flight of small-scale helicopter UAVs. For example, for low to medium bandwidth systems, the
usual robustness-performance trade-off has undeniably allowed for quick and successful demonstration (or
simulation) of automatic helicopter flight for hover and low speed conditions, see Ref. 32–42. Further, for high
bandwidth system specifications, at still conventional flight conditions, model-based automatic flight results
can be found in Ref. 43–56, and non-modelf-based examples have been documented in Ref. 57–60, while
vision based systems have been reported in Ref. 61–66. Additionally, high bandwidth system specifications
for aggressive/aerobatic flight conditions have also been successfully demonstrated, with the model-based
approaches described in Ref. 67–69, and non-model-based ones given in Ref. 70–72. This said, and to the
best of our knowledge, none of the previously mentioned high bandwidth model-based approaches are valid
for high sink rates or steep descent flight conditions, such as the VRS or autorotation.73

I.C. General-Purpose Helicopter Simulation Codes

Several general-purpose helicopter simulation codes exist, often based on a multi-body dynamics approach.
These codes have been extensively used, by industry and academia worldwide, such as GenHel,7 CAMRAD,74

dWithout considering aspects related to Inverse Simulation, Higher Harmonic Control (HHC) or Individual Blade Control
(IBC).

eIn the sequel, due to time and space constraints, we only review contributions in the field of helicopter UAV modeling for
control synthesis, excluding thus system identification, navigation, and control aspects.

fWe refer here to models which are generally not derived from first principles, such as in the areas of machine learning,
evolutionary, and genetic algorithms.
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FLIGHTLAB,26 and HOST24 to name a few. These simulation codes, with a proven track record stretching
back two or three decades, are indeed very reliable and highly accurate. They represent excellent tools for
among others helicopter flight simulation purposes, operational analysis, crew training, flying qualities in-
vestigations, auto-pilot design, load prediction, and vibrations analysis. For all that, these simulation codes
have some disadvantages. First, these codes may be seen as third-party black-box models, since often one
does not have complete access to their detailed analytical expressions, or corresponding software algorithms
and implementations. Second, even when analytical expressions may be available, the multi-body model
structure adds a huge amount of detail, resulting in very high order dynamical systems, effectively inhibiting
any further manipulation of the analytical expressions. Third, for the calculation of blade and main rotor
forces, the integration of the elemental lift and drag forces is often not solvable analytically, due to the
complex nature of the expressions, but rather through numerical algorithms, which in turn precludes any
use of closed-form expressions based models. Hence, all these reasons restrict the range of control techniques
that could be used, when the end goal is to design a helicopter auto-pilot. Here we did not mention the use
of lookup tables as a potential issue. Typically, tabular data provide a representation of vehicle propulsion,
aerodynamic, or mass properties. Often these lookup tables are obtained as the result of experimental tests.
Sometimes, this tabular data formulation is necessary simply because there was not enough knowledge to
permit an analytical representation of the laws of physics. Nonetheless, these tables may be approximated
by closed form expressions, through careful selection of either high-order polynomial expansions,75 or (cubic)
B-Splines.76

Now either white-boxg or black-box models can be used for auto-pilot design, through judicious model
linearizations, provided linear control techniques are employed. For example, these latter include classical
methods,77, 78 optimal methods,79–82 robust methods,83, 84 or receding horizon methods85–87 methods, that
all may be applied in a gain scheduling88 or (quasi-) Linear-Parameter-Varying (LPV) framework.89 On
the other hand, black-box models cannot be used for auto-pilot design when nonlinear control techniques,
that explicitly require closed-form modeling, are sought. Hence, the availability of our model and its corre-
sponding analytical expressions, will allow us to research and evaluate several nonlinear control techniques.
Notably, control methods that include (i) feedback linearization,90, 91 (ii) Lyapunov based methods such as
sliding mode control,92–94 or backstepping,95, 96 (iii) differential flatness,97–100 (iv) State-Dependent Riccati
Equation (SDRE),101–105 or (v) the θ − D approach106 may all be investigated in the future, through the
use of a modified version of our helicopter nonlinear model.

I.D. Our Research Model

The purpose of our work is to present a small-scale helicopter UAV flight dynamics model for a flybarless, i.e.
without a Bell-Hiller stabilizing bar, articulated Pitch-Lag-Flap (P-L-F) main rotor with rigid blades, appli-
cable for high bandwidth control specifications, for both ClockWise (CW) and Counter-ClockWise (CCW)
main rotor rotation, and valid for a range of flight conditions including the Vortex-Ring-State (VRS). Now
due to space constraints, we present here the model from a common qualitative approach. The complete
helicopter analytical expressions can be found in Ref. 107–109.

The nonlinear dynamic model includes the twelve-states rigid body equations of motion, the four-
states/blade flap/lag angles and flap/lag rotational velocities, the three-states dynamic inflow, and the
single-state main rotor Revolutions Per Minute (RPM). Thus, for a two-bladed helicopter main rotor, the
full model includes twenty-four-states, while for a three-bladed helicopter main rotor, the full model includes
twenty-eight-states. Besides, the model accommodates for an off-axis response correction factor, for flight
in the VRS, and for deterministich wind linear velocity inputs. Static ground effect has been accounted
for by a correction factor applied to the non-dimensional total velocity at the rotor disk center. Further,
computation of main rotor forces is done numerically through Gaussian quadrature integration, using a low
order Legendre polynomial scheme. Additionally, the fuselage model is based upon aerodynamic lift and drag
coefficients, which are tabulated as a function of airflow angle of attack and sideslip angles. These lookup
tables are derived from a scaled-down full-size helicopter fuselage aerodynamic model. The horizontal and
vertical tails have currently not been included, but they will be added at a later stage. For the tail rotor, this

gA model where all necessary information is available, e.g. based on available first principles expressions.
hStochastic atmospheric turbulence will be added at a later stage.
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latter has been modeled as a Bailey type rotor. Finally the paper reviews all assumptions made in deriving
the model, i.e. structural, aerodynamics, and dynamical simplifications, which are valid for stability and
control investigations of helicopters up to an advance ratio limiti of about 0.3.5, 110, 111

The remainder of the paper is organized as follows. In Section II, an introduction on helicopter main rotor
(aero)dynamics is presented. In Section III, the rigid body equations of motion are reviewed. In Sections IV
and V, the main and tail rotor models are discussed. In Section VI, simulation results are analyzed. Finally,
conclusions and future directions are presented in Section VII.

II. The Helicopter Main Rotor

Since the early 1950s, it is known that including flapping dynamics in a helicopter flight model could
produce limitations in rate and attitude feedback gains.112 In fact blade flapping motion has three natural
modes, i.e. coning, advancing, and regressing. The regressing flapping mode is the most relevant when con-
sidering the effect of rotor dynamics on handling characteristics, it is the lowest frequency mode of the three,
and it has a tendency to couple into the fuselage modes.111, 113–118 Additionally, for helicopter directional
axis control, blade lead-lag dynamics ought to be considered for control system design.119 In particular it
is well known that blade lead-lag produces increased phase lag at high frequency, in the same frequency
range where flapping effects occur,116 and that control rate gains are primarily limited by lead-lag-body
coupling.116, 120

Regarding the induced rotor flow, this latter contributes to the local blade incidence and dynamic pres-
sure. This induced flow plays a key role in destabilizing the flapping mode; this may for example result in a
large initial overshoot in the vertical acceleration response to an abrupt input in the collective pitch.116, 121

In fact for full-size helicopters, frequencies of inflow dynamics are of the same order of magnitude as those
of rotor blade flapping and lead-lag modes. Hence inflow dynamics can have a significant influence on the
performance of a main rotor system.116, 121 Inflow models can be divided into two categories, static and
dynamic models. For low-bandwidth maneuvering applications, such as trim calculations or flying-qualities
investigations, the dynamic effects of the interaction of the airmass with the airframe and rotor may be
expected to be negligible, therefore static inflow models may be acceptable.122 But for high bandwidth
applications, dynamic interactions between the inflow dynamics and the blade motion must be considered.
Conjointly, dynamic inflow models can be divided into twoj unsteady categories: the Pitt-Peters dynamic
inflow,126–129 and the Peters-He finite-state wake model.130–132 The finite-state wake model is a more com-
prehensive theory than dynamic inflow, not limited in harmonics and allowing to account for non linear radial
inflow distributions, while the dynamic inflow model can be thought of as a special case of the finite-state
wake model, with only three inflow expansion terms.131, 132 The sophisticated finite-state model is attractive
when rotor vibration and aeroelasticity need to be analyzed.133

On the subject of wake distortion which is the primary source of the so-called off-axis response prob-
lem, observed in maneuvering flight at hover and low speed,134, 135 several modeling approaches have been
researched over the years. For the interested reader, we refer here to the aerodynamic interaction between
helicopter rotor and body in Ref. 136, the inclusion of a virtual inertia effect associated with the swirl in
the rotor wake in Ref. 137, the introduction of an aerodynamic phase lag in flapping and dynamic inflow
equations, with the use of system identification techniques in Ref. 138–142, the extended momentum model
approach in Ref. 134, 143, 144, the free wake modeling in Ref. 145–147, the dynamic vortex ring modeling
in Ref. 148–150, the augmented Pitt-Peters dynamic inflow model in Ref. 135,151–155, and the augmented
Peters-He finite state inflow model in Ref. 154–157.

Concerning ground effects, these can be divided into three domains, namely static ground effect, dynamic
ground effect, and the ground vortex. Static ground effect, i.e. when the ground surface is not subject to
movements, can be accounted for by a correction factor applied to the non-dimensional total velocity at the
rotor disk center.158 Dynamic ground effect takes place when for instance a helicopter is hovering above a

iThe flight envelope of small-scale helicopters is well within this limit.
jAlbeit recent advances in computing power and methodology have made it foreseeable to add a third category, namely that

of detailed free-wake models that may be run in real-time for flight dynamics applications.123–125
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heaving, rolling or pitching surface (such as a ship deck), resulting in unsteady aerodynamics effects at the
rotor.159, 160 Additional complications may arise in the eventuality of having a helicopter either (i) hover
above an inclined ground plane or ship deck, in which case not only the magnitude but also the distribution
of rotor induced velocity changes,161, 162 or (ii) partially hover above a building top or a ship deck.163 On
the subject of ground vortex, this phenomenon is produced by the interaction of the rotor downwash, the
ground, and the velocity of translation.164 The earliest identification of the horseshoe ground vortex occurred
in Ref. 165, followed by theoretical investigations in Ref. 166–168, and experimental results in Ref. 169–171.
The consequences of such a ground vortex is that characteristics as trim control requirements, effectiveness of
the tail rotor, and engine performancek may all be markedly changed by the proximity of a ground vortex.170

We conclude this section by briefly addressing the issue of atmospheric disturbances, since the main
rotor is sensitive to these effects. Indeed wind and wind gusts, induced by atmospheric variations, or by
local terrain or man-made structures, will change the aerodynamic conditions at the rotor, hence impact
rotor blade lift and drag.68, 172 Atmospheric disturbances may be added as additive perturbations, and these
come in three different forms, i.e. constant linear wind velocity, stochastic linear turbulence velocity, and
stochastic rotational turbulence velocity. Linear disturbances will affect the vehicle aerodynamic velocity,
while rotational turbulence velocities will affect vehicle body roll, pitch, and yaw rates. A low altitude
turbulence survey with a huge amount of data can be found in Ref. 173, while Ref. 174 presents an early
description of nonstationaryl low altitude atmospheric turbulence. Additionally, two atmospheric models
have extensively been used in the aerospace community. The first one is the von Karman model,175 where
an isotropicm turbulence model was assumed, which was validated by experimental measurements of low
altitude in Ref. 176. The second one is the Dryden atmospheric model.177 The difference between the two
lies basically in a small variation of the high frequency content.178 The Dryden model is most frequently used,
owing to its greater simplicity of implementation, i.e. by passing white noise through linear filters.179 On the
other hand, FLIGHTLAB users will be more familiar with the von Karman spectrum, since this model with
extensions from Ref. 180, 181 generates the additive vertical turbulence velocity. Further, the literature on
transient and steady-state turbulence (gusts) modeling, and corresponding aircraft and helicopter response,
is extensive to say the least. For the interested reader, we refer here to fixed-wing design and response to
gusts in Ref. 182–187, while for the rotary-wing case an excellent tour d’horizon is provided in Ref. 188–190.
Furthermore, the effect of deterministic gusts can be found in Ref. 191–193, analysis of flapping response to
gusts in Ref. 194, coupled flap-torsion dynamics to stochastic vertical turbulence in Ref. 195–197, flap-lag
dynamics to stochastic vertical turbulence in hover in Ref. 198,199, flap-lag dynamics to stochastic horizontal
turbulence in hover in Ref. 200, and in forward flight in Ref. 201, and blade-fixedn atmospheric turbulence
in Ref. 181,202–206.

III. Rigid Body Equations of Motion

III.A. Assumptions

• The vehicle has a longitudinal plane of symmetry, and has constant mass, inertia, and Center of Gravity
(CG) position, hence fuel consumption and/or payload pickup/release are neglected. The vehicle is
also a rigid system, i.e. it does not contain any flexible structures, hence the time derivative of the
inertia matrix is zero. Further variations of helicopter CG locations due to main rotor blades position
are neglected.

• The vehicle height above ground is very small compared to the earth radius, implying a gravitation
independent of height and thus constant. Additionally the center of mass and CG are identical for a
constant gravity field.

• The earth is assumed fixed and flat. There is then no longer a distinction between the directions of

kIn case of engine inlet ingestion of its own exhaust.169
lA stochastic process whose probability distribution changes when shifted in time or space.

mStatistical properties invariant with respect to direction.
nBody-fixed atmospheric turbulence refers to the turbulence experienced by a point fixed on a non-rotating vehicle component

such as the vehicles CG, while blade-fixed atmospheric turbulence refers to the turbulence experienced by a component of a
rotating rotor blade.202 Indeed the atmospheric turbulence velocities seen by non-rotating vehicle components and rotating
blades may be substantially different.
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gravitational force and the force of gravity, hence the external force becomes the force of gravityo.
Gravity is also a function of latitude, for all practical purpose we will consider the medium latitudes
of 52◦.

• Finally, we neglect the effect of buoyancy or Armichedes force, which is negligible with respect to all
other forces.

III.B. Modeling

Classical Newtonian mechanics and the fundamental relationship of kinematics provide us with the standard
twelve-state rigid body equations of motion. The model is detailed in Ref. 107, following notations of Ref. 207.

IV. Main Rotor Modeling

IV.A. Assumptions

Structural Simplifications

• Rotor shaft forward and lateral tilt-angles are zero. The blade has zero twist, constant chord, zero
sweep, constant thickness ratio, and a uniform mass distribution.

• Rigid rotor blade in bending. Neglecting higher modes (harmonics), since higher modes are only
pronounced at high speed.22, 209 Further, blade torsion is neglected since small-scale helicopter blades
are generally relatively stiff.

• Rotor inertia inboard of the flap hinge is assumed small and thus neglected.

Aerodynamics Simplifications

• Vehicle flies at a low altitude, hence neglecting air density and temperature variations. Blade element
theoryp is used to compute rotor lift and drag forces. Radial flow along blade span is ignored. Pitch,
lag, and flap angles are assumed to be small.

• Momentum theoryq is used to compute the uniform inflow component.

• Compressibility effects are disregarded, which is a reasonable assumption considering small-scale heli-
copter flight characteristics. Viscous flow effects are also disregarded, which is a valid assumption for
low angle of attacks and un-separated flow.212, 213

• Aerodynamic interference effects between the main rotor and other helicopter modules, e.g. fuselage
or tail rotor, are neglected.

Dynamical Simplifications

• Dynamic twistr is neglected. Hence blade CG is assumed to be located on the blade section quarter
chord line.

• Unsteady (frequency dependent) effect for time-dependent development of blade lift and pitching mo-
ment, due to changes in local incidence are ignored. For example dynamic stall, due to rapid pitch
changes, is ignored.

• A balanced rotor is assumed. In general most of the inertial terms, contributing to main rotor moments,
vanishs when integrated around 2π azimuth.

oFor further details on the geoid earth and gravity see Ref. 207, 208.
pCalculates the forces on the blade due to its motion through the air. It is assumed that each blade section acts as a 2-D

airfoil to produce aerodynamic forces, with the influence of the wake contained in an induced angle of attack at the blade
section.210

qStates that the total force acting on a control volume is equal to the rate of change of momentum, i.e. mass flow entering
and leaving this control volume.210, 211

rAny offset in blade chordwise CG or aerodynamic center position will result in a coupling of the flap and torsion Degrees
Of Freedom (DOF) in blade elastic modes.22

sThese terms should be retained when evaluating rotor out-of-balance loads.4
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IV.B. Modeling

The model uses the rigid blade coupled flap-lag equations of motion for a Pitch-Lag-Flap (P-L-F) hinges
sequence. This hinge arrangement is indeed much more useful for modeling the rotor dynamics of small-scale
flybarless R/C helicopters. The equations have been obtained through the Lagrangian method,214 and are
reported in Ref. 109. They are valid for a single articulatedt rotor, with hinge springs and viscous dampers.
Further all three hinges are physically separated and the model allows for both CW and CCW rotating main
rotors. Although the flap-lag equations of motion are valid for small flap, lag, and pitch angles, the exact
tangential and perpendicular blade velocity expressions have been retained, hence full coupling between ve-
hicle and blade dynamics is modeled.

For the rotor forces, the procedure consists in integrating the elementary lift and drag forces over the
blade span, then average (integrate) the result over one revolution, and finally multiply by the total number
of blades.107 The integrations are done numerically, through Gaussian quadrature integration, using a fifth
order Legendre polynomial scheme.215, 216 For the rotor moments, they include contributions from four dif-
ferent sources: aerodynamics, inertial loads, flap hinge stiffness, and lag hinge damping.107

Regarding rotor inflow modeling for flight dynamics, we assumed that it was sufficient to consider the
normal component of inflow at the rotor, i.e. the rotor induced downwash.22 For flight dynamics appli-
cations, it was reported in Ref. 133 that the Peters-He model was not remarkably better than the Pitt-
Peters formulation. Since our primary interest is flight dynamics, we have thus chosen to implement the
more straightforward Pitt-Peters model,126, 128 with a correction for flight in the VRS from Ref. 217, and a
pseudo-harmonic term to model thrust fluctuations in the VRS from Ref. 218.

Concerning wake bending during maneuvering flight, which may significantly change the inflow distri-
bution over the rotor resulting in a sign reversal in the off-axis response, we chose to use the extended
momentum constant coefficients model of Ref. 134,143,144 as it is simple to implement.24, 47, 219

For the aspect of ground effect, only a static ground effect has been accounted for, by a correction factor
applied to the non-dimensional total velocity at the rotor disk center.158

Finally for the atmospheric disturbance, currently only deterministic wind linear velocity inputs are
available. Furthermore, for the case of our helicopter UAV and due to its small scale compared to the large-
scale turbulence model, we will assume that the entire rotor disk experiences a spatially uniform turbulence
velocity, identical to that at the rotor center, hence spatial gradients effects will be deemed insignificant.

V. Tail Rotor Modeling

V.A. Assumptions

Structural simplifications

• The blade has zero twist, constant chord, zero sweep, and has constant thickness ratio.

• The blade is rigid, hence torsion is neglected.

Aerodynamics simplifications

• Linear lift with constant lift curve slope, and uniform induced flow over the rotor.

• Aerodynamic interference effects from main rotor are neglected.

• Compressibility, blade stall and viscous flow effects are disregarded.

Dynamical simplifications

• No blade dynamics and simplified inflow dynamics.

• Unsteady effects neglected.

tAlthough this model, with a proper combination of hinge offset and springs about the hinge, could also be used to model
a hingeless rotor.
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V.B. Modeling

The tail rotor is a powerful design solution for torque balance, directional stability and control of single main
rotor helicopters. The theory we apply here is based on the work done by Bailey in Ref. 220. The chosen
model, reported in detail,107 is the standard approach towards tail rotor modeling, as implemented among
others in Ref. 4, 221,222.

VI. Simulation Results

Simulation plots and visual comparisons of our model, implemented in a MATLAB R© environment,223

with an equivalent helicopter FLIGHTLAB26 model are described next, for a R/C flybarless two-bladed main
rotor helicopter UAV, which physical characteristics are documented in Appendix B. For the FLIGHTLAB
model, the following options have been selected.

• Articulated rotor, and blade element model. Quasi-steady airloads, based on the Peters-He three-state
inflow model, with no stall delay effects.

• Bailey tail rotor, and ideal engine.

The model’s simulation plots, presented in the sequel, are based on an adapted version of our baseline
model. Specifically, the static expressions of the Pitt-Peters inflow model have been retained in lieu of the
dynamic ones, since the former ones provide a better match with FLIGHTLAB. This unexpected observed
behavior is a subject of ongoing research.

VI.A. Trim Results

A trim condition is equivalent to an equilibrium point, also called an operating point of a nonlinear system,
which can be thought of as a specific flight condition.52 Further, trim settings are a prerequisite for stabil-
ity analysis, vibration studies, and control systems synthesis. Indeed, any flight vehicle should be able to
maintain equilibrium during steady flight conditions, this means that the resultant forces and moments on
the vehicle are equal to zero.224 For helicopters however, the concept of trim is more complicated than of
fixed-wing aircrafts.225 A helicopter has components that rotate with respect to each other and with respect
to the air mass. Hence, periodic forces and moments enter the dynamic equations, and we cannot simply
eliminate them by averaging.225

Our trim module is structured as a constrained optimization problem. At equilibrium the resultant
forces and moments on the vehicle should be equal to zero, hence the objective of the trim module is to
minimize the three vehicle linear accelerations and the three rotational accelerations. The variables that
the algorithm is allowed to manipulate include the four control inputs, and the vehicle roll and pitch states,
since these latter two influence the projection of the gravity vector on the body frame. Additionally, con-
straints are specified, i.e. by assigning fixed values to the three vehicle linear velocities, the three vehicle
rotational velocities, and by setting to zero the three dynamic inflow linear accelerations. Now regarding the
periodic states, i.e. blade flap and lag positions and velocities, these states are handled by time-marching
the nonlinear helicopter model long enough until the transients have decayed. Finally, the remaining four
states which include the three vehicle Cartesian position and the vehicle heading are left free, since the
position of the helicopter does not influenceu its dynamic behavior or stability. The optimization is fur-
ther based on a Newton iteration scheme, similar to that of Ref. 222, which is simple to implement and
has been widely used.226 The Newton method guarantees quadratic convergence, but only guarantees local
convergence, and is also sensitive to initial starting values. Even with good starting values, the method can
exhibit erratic divergence due to for example numerical corruption.226 Hence over the years, several other
approaches have been researched, for a review of helicopter trim strategies see among others Ref. 22,224–230.

uAlthough strictly speaking this is not true in vertical flight, due to the ground effect when trimming near the ground, and
due to changes in air density when trimming with a non-zero vertical velocity; however for the case of air density variations,
these may be neglected when considering small-scale UAV applications, since the flight altitude is generally within 200-300m
above ground.
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Comparisons of model trim results with FLIGHTLAB are discussed next. In figure 1, figure 4, and
figure 7 the roll and pitch angles are plotted as a function of body linear velocities (u, v, w)v. We see that
the maximum absolute deviations do not exceed 0.4◦, refer also to table 1. In figure 2, figure 5, and figure 8
the main and tail rotors collective inputs are visualized, together with the main rotor power. For the main
and tail rotor collective the match with FLIGHTLAB is good to very good, while the agreement on main
rotor power is only good up until a velocityw around u = 20m/s. Further the top figure of figure 2 also gives
us the minimum power speed, also called the bucket speed, predicted to be around u = [15 − 18] m/s by the
model and FLIGHTLAB respectively. Additionally and as expected, we see from the top figure of figure 5
that it takes more power for vehicle starboard flight (i.e. to the right) than for port-side (i.e. left) flight.
This is due to the fact that the main rotor turns CW which implies that the tail rotor thrust is oriented
towards port-side to counter the main rotor torque. For the longitudinal and lateral cyclic inputs, these are
given in figure 3, figure 6, and figure 9. Overall, as given from table 1, the fit can be considered as being
good to very good.

We conclude this trim section by quickly addressing the issue of steady autorotative flight.73 figure 10
gives the main rotor power as a function of vehicle velocity V , for several flight path angles FP , ranging
between -15◦and -45◦. Now in autorotation the clutchx is disengaged, and if we neglect the power losses due
to the transmission/gearbox and any power losses from the tail rotory, then the zero-torque values as given
by points A and B in figure 10 ought to give us the required vehicle velocity and flight path angle to achieve
a steady autorotative flight, at the nominal main rotor RPM. For the case of our helicopter, we see that
both the model and FLIGHTLAB predict these values to be at V = 10.5 m/s for FP = −45◦ and V = 13.3
m/s for FP = −30◦. Finally figure 11 has been added to visualize the effect of vehicle mass variation on
the autorotative velocity. We first note the paradox, as reported in Ref. 231, that the autorotative rate of
descent increases as the vehicle mass decreases, see points C and D in figure 11. Second, and for the case of
our small-scale helicopter, this effect may be qualified as week, since a 25% variation in vehicle mass results
only in a 4% variation of vehicle autorotative velocity, and hence rate of descent.

Name |∆max| (in ◦)

along u along v along w

Roll 0.35 0.25 0.4

Pitch 0.4 0.25 0.1

MR Collective 0.6 0.6 0.7

TR Collective 0.75 1 0.7

MR Longitudinal Cyclic 0.25 0.6 0.05

MR Lateral Cyclic 0.65 0.25 0.02

Table 1. Maximum absolute deviations in trim between model and FLIGHTLAB

VI.B. Dynamic Results

For the validation of a model dynamic responses, we may consider two approaches. The first one consists
in obtaining a linearized model which describes the small perturbation motion about a trimmed equilibrium
position. The validation is then carried out by comparing the frequency response predicted by the linearized
model and the frequency response obtained from either an equivalent linear FLIGHTLAB model, or from a
linear model identified from flight test data. The second approach consists in comparing the time histories
of the (nonlinear) model and those obtained from again either FLIGHTLAB, or flight test data. In this pa-
per, we only provide visual comparisons of time histories data with FLIGHTLAB for roll/pitch/yaw angles

vWith w positive down.
wThe Bell UH-1H top speed is 60.28m/s, thus based on Froude scaling68 with N = 7.75 the top speed of our R/C helicopter

would then be 60.28/
√

N = 21.65m/s. Hence for our helicopter a speed of u = 20m/s may be considered as a top speed. In
fact we do not intend to operate the vehicle beyond a speed range of [10 - 15] m/s.

xAll helicopters are equipped with an overrunning clutch between the transmission and the engine, so that the rotor does
not have to drive a dead engine during autorotation.

yIn case the tail rotor is still driven by the main rotor even though the clutch is disengaged. Note that this is not the case
for all R/C helicopters.
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(φ, θ, ψ), linear velocities (u, v, w), and rotational velocities (p, q, r). Since a helicopter is also a perfect ex-
ample of a Multiple-Input-Multiple-Output (MIMO) system, table 2 has been provided to better understand
the impact of each input channel on the vehicle response.

Response

Pitch Roll Yaw Climb/Descent

Long stick Prime Due to Negligible Desired

lat in

flapping fwd flight

Lat stick Due to Prime Undesired Descent

long in hover, with

flapping desired in bank

Input fwd flight angle

Axis Rudder Negligible Roll Prime Undesired,

due to (hover) due to

TR thrust power

& sideslip changes

in hover

Collective Due to Due to Power change Prime

transient transient varies

& steady & steady requirement

long lat for TR

flapping flapping thrust

& sideslip

Table 2. Single-rotor helicopter coupling sources (short version, from Ref. 232). Long stands for Longitudinal, Lat for
Lateral

The tests are set to evaluate the open-loop response of this highly unstable model, at a constant main
rotor RPM. First, the rotor is allowed to reach a steady-state condition during a time period of 0.5s. Then,
for the following 3s we simultaneously apply on the four input channels a sinusoid of 1◦ in amplitude, at a
frequency of 2Hzz.

The first test is run from a hover trim condition, see figure 12, where it can be seen that the overall
fit with FLIGHTLAB is good to very good. The second test is carried out to evaluate the medium speed
characteristics at u = 5m/s, see figure 13, where we can see that the match with FLIGHTLAB is good to
very good for (φ, θ, ψ, w, p, q, r), while the fit for (u, v) is good for the first 2s, after which the quality of the
fit starts to decrease. The third trial is run to check the high speed flight at u = 10m/s, see figure 14, where
we can see that the match with FLIGHTLAB is acceptable for q, is good to very good for (φ, ψ, v, p, r), and
the fit for (θ, u, w) is good for the first 2s, after which the quality of the fit starts to decrease. Finally the
fourth test is run to check the response in the VRS region, see figure 15, at a value w = 5m/s corresponding
to approximately one time the induced velocity in hover. Here it can be seen that states (φ, θ, u, v, p, q)
exhibit a good to very good match with FLIGHTLAB, that the fit for w is good for the first 1.5s - 2s, while
the yaw axis (ψ, r) fit deteriorates after 1s.

Regarding the observed discrepancies between our model and FLIGHTLAB, especially those seen at high
speed or on the yaw channel in the VRS, these may very probably be attributed to the following five items:
(i) validity of the flap-lag equations of motion up to about u = 10 − 15m/s, see Ref. 109, (ii) a somewhat
distinct implementation of the Bailey type tail rotor, (iii) a distinct implementation of the induced rotor
flow, i.e. FLIGHTLAB uses the Peters-He finite-state wake model,130–132 while our model applies the static

zCorresponding to the maximum anticipated closed-loop system bandwidth for autonomous flight.

10 of 27

American Institute of Aeronautics and Astronautics



  
NLR-TP-2011-230 

  
 11 

version of the Pitt-Peters model,126, 128 (iv) a distinct implementation of the induced rotor flow in the VRS,
i.e. FLIGHTLAB uses the method presented in Ref. 233, while our model utilizes a slightly adapted version
of Ref. 217, and finally (v) any side-effects due to the model simplifications as presented in Section IV. This
said, we believe that most of the observed differences may primarily be attributed to the first three items,
namely distinct models and hence behavior of the main rotor blade flap-lag, tail rotor inflow, and main rotor
inflow.

VII. Conclusion

We have presented a UAV helicopter flight dynamics nonlinear model for a flybarless articulated Pitch-
Lag-Flap (P-L-F) main rotor, with rigid blades, and applicable for high bandwidth control specifications.
The model allows for both ClockWise and Counter-ClockWise main rotor rotation, and is valid for a range
of flight conditions including autorotation and the Vortex-Ring-State (VRS). Further, this model has been
compared with an equivalent FLIGHTLAB nonlinear model. Simulation results show that the match between
the model and FLIGHTLAB is very good for static (trim) conditions, is good to very good for dynamic
conditions from hover to medium speed flight u = 5m/s, is fair to good for dynamic conditions at high speed
u = 10 m/s, and except for the yaw channel is also good in the VRS. While keeping in mind the model’s
accuracy reduction at high speed, this model could potentially be used to simulate and investigate the flight
dynamics of a flybarless small-scale UAV helicopter, including in autorotation and VRS conditions, as well
as provide a basis for model-based control design. Indeed, future work will focus on the development of
nonlinear and linear control schemes. In particular, we have currently used an adapted version of this model,
based on closed-form expressions, to obtain optimal helicopter flight trajectories, by solving constrained
nonlinear optimal control problems. This topic will be elaborated upon in future publications.
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Appendix A: Simulation Results
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Figure 1. Trim roll and pitch angles as a function of body longitudinal velocity u
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Figure 2. Trim main rotor power and main/tail rotor collective pitch angles as a function of body longitudinal velocity
u
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Figure 3. Trim main rotor longitudinal and lateral cyclic pitch angles as a function of body longitudinal velocity u
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Figure 4. Trim roll and pitch angles as a function of body lateral velocity v
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Figure 5. Trim main rotor power and main/tail rotor collective pitch angles as a function of body lateral velocity v
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Figure 6. Trim main rotor longitudinal and lateral cyclic pitch angles as a function of body lateral velocity v
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Figure 7. Trim roll and pitch angles as a function of body vertical velocity w
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Figure 8. Trim main rotor power and main/tail rotor collective pitch angles as a function of body vertical velocity w
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Figure 9. Trim main rotor longitudinal and lateral cyclic pitch angles as a function of body vertical velocity w
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Figure 10. Trim main rotor power as a function of vehicle velocity V and flight path angle FP
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Figure 11. Trim main rotor power as a function of vehicle velocity V for several vehicle mass, at a flight path angle
FP = −30◦
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Figure 12. Vehicle response to sinusoidal inputs (at hover)
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Figure 13. Vehicle motion: response to sinusoidal inputs (at u = 5 m/s)
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Figure 14. Vehicle response to sinusoidal inputs (at u = 10 m/s)

18 of 27

American Institute of Aeronautics and Astronautics



  
NLR-TP-2011-230 

  
 19 

0 1 2 3
−30

−20

−10

0

10

Time (s) 

φ 
(d

eg
) 

 

 

FLIGHTLAB
Model

0 1 2 3

−5

0

5

Time (s) 

θ 
(d

eg
) 

0 1 2 3
−30

−20

−10

0

10

Time (s) 

ψ
 (

de
g)

 

0 1 2 3
−1

0

1

Time (s) 

u 
(m

/s
) 

0 1 2 3
−1

0

1

Time (s) 

v 
(m

/s
) 

0 1 2 3
2

4

6

Time (s) 

w
 (

m
/s

) 

0 1 2 3
−50

0

50

Time (s) 

p 
(d

eg
/s

) 

0 1 2 3
−50

0

50

Time (s) 

q 
(d

eg
/s

) 

0 1 2 3
−40

−20

0

Time (s) 

r 
(d

eg
/s

) 

Figure 15. Vehicle response to sinusoidal inputs (at w = 5 m/s)

Appendix B: Physical Parameters

Name Parameter Value Unit

Environment

Air density ρ 1.2367 kg/m3

Static temperature T 273.15 + 15 K

Specific heat ratio (air) γ 1.4

Gas constant (air) R 287.05 J/kg.K

Gravity constant g 9.812 m/s2

Vehicle

Total mass mZerof 18.5 kg

Fuselage mass mFus 17.94 kg

Fuselage inertia moment wrt xb A 0.3 kg.m2

Fuselage inertia moment wrt yb B 0.76 kg.m2

Fuselage inertia moment wrt zb C 0.86 kg.m2

Fuselage inertia product wrt xb D 0 kg.m2

Fuselage inertia product wrt yb E 0 kg.m2

Fuselage inertia product wrt zb F 0 kg.m2

X-pos. of fus. CG wrt total CG xH 0 m

Y-pos. of fus. CG wrt total CG yH 0 m

Z-pos. of fus. CG wrt total CG zH 0.015 m

X-pos. of MR hub wrt total CG xH 0 m

Y-pos. of MR hub wrt total CG yH 0 m

Z-pos. of MR hub wrt total CG zH -0.36 m

X-pos. of TR hub wrt total CG xTR -1.150 m

Y-pos. of TR hub wrt total CG yTR 0.040 m

Z-pos. of TR hub wrt total CG zTR -0.070 m

Direction of rotation Γ -1 (CW)

Number of blades Nb 2

Nominal angular velocity ΩMR100%
151.843 rad/s
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Rotor radius from hub Rrot 0.944 m

Swashplate phase angle ψPA 0 rad

Precone angle βP 0 rad

Pitch-flap coupling ratio K(θβ) 0

Pitch-lag coupling ratio K(θζ) 0

Main Spring restraint coef. due to flap KSβ
271.1635 N.m/rad

Rotor Spring damping coef. due to flap KDβ
0 N.m.s/rad

MR Spring restraint coef. due to lag KSζ
0 N.m/rad

Spring damping coef. due to lag KDζ
24.4047 N.m.s/rad

Off-axis roll coef. Kp 0

Off-axis pitch coef. Kq 0

Offset distance eP 0.035 m

Offset distance eL 0.049 m

Offset distance eF 0.010 m

Blade mass Mbl 0.277 kg

Blade twist at tip θwash 0 rad

Blade chord cbl 0.076 m

Hub arm chord chub 0.015 m

Root cutout from flap hinge rc 0.006 m

Y-pos. blade CG wrt flap hinge yGbl
0.8932 m

Tip loss factor B 0.97

Airfoil lift coef. clbl
NACA0012

Airfoil drag coef. cdbl
NACA0012

Airfoil pitching moment coef. cM NACA0012

Lift deficiency factor Kdefic 0.89

Transmission Gearbox transmission ratio GB 4.67

Number of blades NbTR
2

Rotor radius from hub RrotTR
0.18 m

Pitch-flap coupling δ3TR
0 rad

Preset collective pitch bias θbiasT R
0 rad

Tail Partial coning angle wrt thrust β0TR
0 rad/N

Rotor Tail blockage constant bt1 1

TR Transition velocity vbl 0 m/s

Blockage due to vertical fin kbl 1

Correction factor KTRcorr
1/1.270

Blade chord cTR 0.035 m

Tip loss factor BTR 0.92

Airfoil lift curve slope cl(0,T R)
5.73 rad−1

Blade drag coef. cdT R
0.035

MR collective range θ0 [-3,10].π/180 rad

MR lateral cyclic range θ1c [-7,7].π/180 rad

Actuators MR longitudinal cyclic range θ1s [-7,7].π/180 rad

TR collective range θ0TR
[-12,18].π/180 rad

Table 3: Physical Parameters
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