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Executive summary

Overview of Multi-Level and/or Multi-Disciplinary Optimization
strategies for preliminary aircraft design optimization
Overview of Methods for Multi-Level and/or Multi-Disciplinary Optimization

Material

Left: Levels that can be identified within the design optimization of aircraft
structures, hence multi-level optimization. Right: Disciplines that can be

identified within the design optimization of an aircraft, hence multi-disciplinary

optimization.

Problem area

To reduce aircraft development
costs, reduce lead times and to
establish a more competitive supply
chain, acronautical companies need
to incorporate at an early stage in
the design process the influence of
various disciplines and structural
details on the overall design
performance. The challenge is to
find a uniform approach based on
sound mathematical principles.

Approach and Results

Main stream approaches within the
field of multi-level and multi-
disciplinary optimization were
identified. A novel method was
constructed to classify the main
stream approaches according to four

uniform steps. These steps are
physical coupling, optimization
problem coupling, coordination of
individual but coupled optimization
problems and solution sequence.
Based on these uniform steps
similarities between approaches are
revealed and possibilities for
combining different approaches are
given. Finally, a discussion is
presented on the applicability of the
approaches developed in the
literature and directions for further
research are given.

Conclusions

It is concluded that multi-level
optimization and multi-disciplinary
optimization methods are practical
if the amount of data that is
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exchanged between individual but
coupled optimization problems
remains several orders of magnitude
smaller then the amount of data
processed within these individual
optimization problems and if the
analysis models are weakly
coupled.

Applicability

The results from this study are used
by NLR to develop a novel
approach of building blocks to
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Summary

This paper presents a study on multi-level and multi-disciplinary design optimization methods.
The methodologies that were distinguished within the open literature are organized according to
four general steps that were distinguished in the development of multi-level and/or multi-
disciplinary optimization approaches. These four steps are: treatment of physical coupling;
optimization problem coupling; coordinating individual but coupled optimization problems; and
numerical solution sequence. Multi-level and/or multi-disciplinary approaches that were
distinguished within this study are classified according to these four steps. In addition,
possibilities for combining different approaches are presented and directions for further research
are given.

The paper can be used as a quick reference to the main stream approaches in the field and
positioning of the latest developments up till April 2010 within the multi-level and/or multi-
disciplinary optimization research field. In addition, the results from this study can be used to
tailor-fit methodologies to problems encountered in the aerospace industry. Finally, the results

from this study lay the foundation for developing new design methodologies.
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Overview of Methods for Multi-Level and/or
Multi-Disciplinary Optimization

A.J. de Wit*and F. van Keulen'

Multi-level optimization and multi-disciplinary optimization are areas of research that
are concerned with developing efficient analysis and optimization techniques for complex
systems that are made up of coupled elements (components). Within the field of multi-
level optimization and multi-disciplinary optimization a large number of techniques have
been developed for efficient analysis and optimization of complex systems. This paper
presents an unified overview of main stream approaches that were found in the literature.
Four general steps are distinguished in both multi-level optimization and multi-disciplinary
optimization: physical coupling, optimization problem coupling, coordination and solution
sequence. Via these four steps approaches are classified and possibilities for combining as-
pects of different methods are given. Finally, advantages and disadvantages of approaches
applied to engineering problems are discussed and directions for further research are given.
Keywords: multi-level, multi-disciplinary, optimization, decomposition, coordination, overview

I. Introduction

Complex systems, such as those encountered in aerospace engineering, can typically be considered a hierarchy
of individual coupled elements. This hierarchy is reflected in the analysis techniques that are used to analyze
the physical characteristics of the system. Consequently, a hierarchy of coupled models is to be used,
accounting for different physical scales, components and/or disciplines. The total structural performance
of such complex systems is a combination of responses evaluated at each level within the hierarchy. The
design of complex systems with an embedded hierarchy via classical optimization approaches still involves
adjusting a few parameters, often with respect to local objectives, not taking into account the influence such
changes have on the overall design. Likewise, system-wide design objectives are not translated into element
performance objectives and/or restrictions.

The field of multi-level optimization and multi-disciplinary optimization is concerned with developing
efficient analysis and optimization techniques for complex systems that are made up of coupled elements
(components). Multi-level optimization and multi-disciplinary optimization methods rely on a decomposition
of the optimization problem into individual optimization problems that are coupled. Thus, it is attempted
to incorporate design variables, objectives and constraints originating from different levels and/or disciplines
into the design.

Over the last forty years a large number of multi-level optimization (e.g. Sobieszczanski-Sobieski et
al. (1987),7® Alexandrov and Dennis (1994),' Kim et al. (2003),*! amongst others) and multi-disciplinary
optimization (e.g. Braun and Kroo (1997),22 Rodriguez et al. (2000),5" Sobieszczanski-Sobieski et al.
(2000),7:72 amongst others) techniques have been developed. In this work a unified overview of main
stream methods that were initially developed for either multi-level systems or multi-disciplinary systems is
presented. This work focusses on the general steps of methods that belong to either the field of multi-level
optimization or the field of multi-disciplinary optimization. Therefore, in this work no distinction is made
between the two.

Previous literature overviews of either multi-level optimization or multi-disciplinary optimization dis-
tinguished between approaches on the basis of: single-level optimization versus multi-level optimization,3

*Collaborative Engineering Systems, National Aerospace Laboratory - NLR, Anthony Fokkerweg 2, 1059 CM Amsterdam,
The Netherlands, e-mail: adewit@nlr.nl

TDepartment of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands, e-mail: avankeulen@tudelft.nl
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positioning of computational costs and organization of the individual elements,” positioning of consistency
constraints,? problem structure,®? amongst others.2!»24,27,30,44-16,57,65,85 Ty this gverview we focus on four
generic steps: physical coupling, optimization problem coupling, coordination approach and solution se-
quence. These four generic steps enable us to classify each individual approach and show possibilities for
combining aspects of different methods.

In this work a unified approach towards the multi-level and/or multi-disciplinary optimization of complex
structures is presented. A unifying notation is introduced that treats all elements within the hierarchy equal.
Two different decomposition approaches are identified and via an illustrative coupling circle a distinction
between hierarchic and non-hierarchic decomposition is shown. Furthermore, via a problem matrix coupling
within the optimization problem is made visible and four different optimization problems with embedded
coupling are identified. Coordination techniques are introduced as part of the decision making process for
which three different scenarios are presented. Numerical solution strategies are presented that depend on
the coordination method chosen. A classification of multi-level and multi-disciplinary optimization methods
is presented parallel to the steps taken to decompose and coordinate the optimization problem. Finally,
advantages and disadvantages of approaches applied to engineering problems are discussed and directions
for further research are given.

This extended abstract can be read as follows. In Section II a consistent notation is introduced that is
used to identify general aspects of the multi-level and multi-disciplinary methods developed in the literature.
Section III develops a generalized approach towards the decomposition of coupled elements. Coordination of
the individual element solutions is discussed in Section IV. In addition, this section presents a classification
of methods for multi-level and/or multi-disciplinary optimization methods found in the literature. Algorithm
solution steps are discussed in Section V. Section VI discusses some advantages and disadvantages of methods
applied to engineering problems. In Section VII conclusions are presented.

II. Unified Notation

A multi-level problem typically has a hierarchical structure of individual elements as is illustrated in Figure
1(a). The top-level is denoted Level-0. At this level, the top-element or global design variables are distin-
guished, which are denoted °x. One level lower, i.e. at Level-1, the “children” of Level-0 (“parent”) can be
found. The elements at Level-1 are numbered in the left upper corner, i.e. ~x. At the second level, Level-2,
the children of the Level-1 elements are found. They have two numbers in the upper-left corner, i.e. " x.
The first reflects the parent in the hierarchy and the second their place among the children of the parent
element. In a similar fashion, more levels can be added to the hierarchy. Consequently, at every level the
relative position can easily be seen from the superscript in front of a (design) variable. Similarly, the physical
responses corresponding to the elements are identified. This is illustrated in Figure 1(b).

Level-0 0x Oy

Level-l | x 2x 3% Iy 2y 3y
Level2 | Llx 12y 214 2.2y Lip 12, 2,1, 2,2,
(a) (b)

Figure 1. Multi-level notation for a three-level hierarchy. (a) The design variables corresponding to the individual
elements are illustrated. (b) The physical responses corresponding to each of the elements.

Although for each element a set of physical responses can be identified, these responses are typically
interacting with responses in neighboring elements, i.e. parent, brothers/sisters and children. In other words,
there are couplings which need to be taken into account as is illustrated in Figure 2. For this purpose, the
operators H are introduced. These operators map the response from one element, onto another. In front
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Figure 2. Physical interactions between elements. The operators :'H map the physical responses of an element onto a
neighboring element. This can be a mapping taking place at the same level, though it may also map between different
levels.

0
Level-0 1 9%
1 2
0% 0%
0 0
1.22 1.22
iz
1,1, | —= |2, 2
Level-1 0%,3%2 | = — |(2,1Z
iz

Figure 3. Design variables that are shared among multiple elements. The top left index represents the element to
which the design variable is associated and the bottom index represents the neighboring element(s) that share the
design variable.

of the operator in the top-left corner the origin of the information is indicated, i.e. “H. In the bottom-left
corner, the destination of the information is specified, i.e. . H.

Design variables can be present that are shared among multiple elements. These design variables are
considered separately from the individual design variables x. The shared design variables are written as :'z.
The top-left index () represents the element to which the design variable is assigned and the bottom-left
index () represents the element that shares that design variable. In case the same design variable is shared
among the parent element and two or more child elements a dot (*  z) separates the indices from each of
the child elements. Shared design variables are shown in Figure 3, where a design variable is shared among
three elements distributed over two levels of a hierarchy.

Responses that are mapped from one element onto another element are introduced via the operator H.
Once a response is mapped from one element onto another element it is written as ~h, see Figure 4. This
variable is called a coupling variable and is defined as: ~h = “H(~'r). This coupling variable can be used
in one element as a desirable property of neighboring elements. Hence, instead of mapping the physical
responses coming from a neighboring element onto the current element: ~H(-r) = ~h, the value of the
coupling variable (-h) could be chosen. The corresponding physical responses ('r) are determined by the
neighboring element.

Consistency constraints are introduced in order to temporarily decouple the elements from their surround-
ings, such that each of them is solved without interacting with other elements. These consistency constraints
are mathematically defined as: ¢ = "H('r) = hand jc. =tz —7]z (i # j). A consistency constraint that is
assigned to an element enables the element to change r and/or z-z or when applicable ~h and/or Z z without
communicating directly to the element to which it is coupled. These consistency constraints are written c
and "¢, where the upper left subscript ¢, ¢, indicates the origin of the mapped responses and/or shared
design variables and the lower left subscript _c, ..c, indicates the destination, see Figure 4. This notation
is in accordance with the notation for coupling (hence operators H) or shared design variables (z) between
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two individual elements. Decoupled hierarchical elements depend on consistency constraints, therefore the
consistency constraints are added to the optimization functions inside the hierarchical elements.

Level-0 Ov (0X79Z76h70r7 ZIC..)

Level-1

Level-2 1,1‘,(1,1,(,1,121.1.<1h11.1r1::c__> 12y (125,125 5 o0, L2r, e )

1.2
1.1€..

Figure 4. Functions used in the optimization formulation of the hierarchy. These functions typically depend on design
variables, the constraints and the physical responses of the corresponding element.

The final step in setting up an optimization problem is to formulate objective and constraint functions
(v) that can be minimized (maximized) by the optimizer. These functions depend on local design variables
(x), local responses (~'r) and consistency conditions (:'c) as well as the coupling ('h and ~z) between two
individual elements. These design functions are illustrated in Figure 4.

III. Decomposition

Decomposition involves identifying (weak) links between elements that are coupled, allowing the elements to
represent individual, though coupled, optimization problems. The origin of this coupling can be physically
oriented or can be prompted by the nature of the design optimization problem at hand. Generic properties
of physical coupling between elements is captured via an illustrative coupling circle (Section III.A) and the
coupling within the optimization problem is shown via a problem matrix (Section III.B).

ITI.A. Physical coupling

Physical coupling between two elements is shown in Figure 5(a). A top element (Level-0) produces a physical
response ’r which is mapped into information {h that is necessary to compute the physical responses at the
bottom (Level-1) element. The bottom element computes a physical response which is mapped back to the
top element.

Decoupling is accomplished via consistency constraints. There are two formulations that are used fre-
quently in order to maintain consistency between two coupled elements. These formulations are shown in
Figure 5(b) and Figure 5(c) and can mathematically be expressed as:

1. strong (equality) constraints/conditions:
fo = (%) —th =0,
le=tH(r) - th =0.

2. weak (relaxation), e.g. using Lagrange multipliers:
IAT0e = AT (YH(°r) - §h),
6A"Ge = AT (§H('r) — h).
Other common relaxation formulations involve penalty functions®® or an augmented Lagrangian'® function.
In contrast to strong (equality) constraints/conditions, the weak (relaxed) constraints are not explicitly set
equal to zero. The latter are equal to zero if the additional parameters to relax the consistency can be
determined exactly. In other cases this inconsistency approaches zero.
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Or(Ux,(l)h) 0,
(o) - \ fe e (05) - R
AN AN
1r (1x,9n)
(2) (b) (c)

Figure 5. (a) Physical response 1nteract10n between two elements. The responses ’r computed at the parent element
are transformed by the operator 7 YH into information 0h influencing the responses of the child element 'r. Likewise,

the responses from the child element are transformed by the operator OH into information 0h influencing the responses
of the parent element. (b) Consistency between the coupled elements is maintained through interface compatibility
or equilibrium. (c) Consistency is relaxed using Lagrange multipliers. Typically, these multipliers are controlled, such
that the inconsistencies vanish at compatibility or equilibrium of the interface.

Relaxation of consistency constraints involves adding parameters that require an additional solution
process to determine their values. This solution process is part of coordinating the decomposed optimization
problems and is discussed in Section IV.

Each decomposition formulation can be subdivided into:

1. hierarchic decomposition, which is subdivided into top-down or/and bottom-up formulations.
2. non-hierarchic decomposition, which treats all elements equal.

Hierarchic decomposition is the result of identifying elements in the hierarchy that dictate the output from
other elements. This is shown in Figure 6(a) in case of a top-down decomposition with equality consistency
constraints. In this figure, the top Level-0 element prescribes the necessary output from the Level-1 element.
Consistency constraints are assigned to the bottom element constraining the right part of the coupling circle.
A similar but opposite approach is possible, where the Level-1 element prescribes the necessary output of
the Level-0 element. The latter approach is shown in Figure 6(b) and is called a bottom-up decomposition
constraining the left part of the coupling circle.

Or (O, §n) 9c = (97¢(Or) — ) Or (Ox, §n) .
Oy (Ox. (1]11) v Do, (1) = vox<bﬂ3‘\+ o
o 0 Vo, @GP0, Q1)
Do, 1) =vo QH) +... i
T1n P0G

é”)—((lr) =3n Dy ) =1, G+
Dy Q) = v, Q1)+ ... V?h(%H)Dle)H)
véh@mnlx(ém A
L (1, On) .
1 1 0 T 1 0
b = (47 (1) — n) r (T in) e (tx1n)
(2) (b) (c)

Figure 6. (a) Top-down decomposition via consistency constraints formulated as an equality. The Level-0 element
prescribes the necessary responses for the Level-1 element via the equality consistency constraints. (b) Bottom-up
decomposition via consistency constraints formulated as an equality. The Level-1 element prescribes the necessary
responses for the Level-0 element via the equality consistency constraints. (c) Non-hierarchic decomposition, none of
the elements prescribes the output of a neighboring element. Equality consistency constraints are assumed ('c = 0)
and the interaction is approximated via sensitivity calculations (Global Sensitivity Equations).

Non-hierarchic decomposition involves elements that do not prescribe output from each other. Instead,
output is estimated and after element solutions are found information is exchanged among the elements to
update the input parameters via a coordination method.

A choice between hierarchic top-down, hierarchic bottom-up or non-hierarchic decomposition has conse-
quences for the convergence of the overall optimization process. Unfortunately, in many design studies this
information flow is dictated for historical reasons and cannot be arbitrarily chosen. However, in some cases

it is possible to obtain automated decomposition of the design problem, see Allison et al.?>'°
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Figure 7. Summary of the decomposition process. Two choices are available for decomposing coupled problems. These
are equality based decomposition and relaxation based decomposition. Furthermore, these approaches are subdivided
in hierarchic top-down or bottom-up formulations and non-hierarchic formulations.

In case decomposition is accomplished via equality constraints the non-hierarchic decomposition is shown
in Figure 6(c). Additional information is required to take into account changes in the interaction. This is
accomplished via derivation of the Global Sensitivity Equations.6%%6 The Global Sensitivity Equations for
the two coupled elements considered are found via applying the chain rule:

Doy (YH) = Vox (TH) + Vin(YH)Dox (5H)
Dix(YH) = Vix(YH) + Vin (TH)D1x (GH) ()
D(’X((l)H) = vOx((l)’H) + v?h((l)H)Dux(gH)
Dlx((l)H) = x(OH) + v”h((l)H)DIX((l)H)
where V.. = g—z”l +. + and the total derivatives are defined as Dy,.. [(fhl , ddT';]T
The necessary sensmVlty “information is the solution to the system of equations:
I —Vin(H) | | Dox(YH) Du(YH) | _
_v?h((l)H) I D”x((l)H) Dlx((l)H)

Vox (VH) 0
[ 01 Vix(§H) } @)

An additional technique is required to monitor consistency between the individual elements after each indi-
vidual element is evaluated.

Figure 7 presents an overview of the two-decomposition techniques for coupled elements: equality based
decomposition; and relaxation based decomposition. Relaxation based decomposition is accomplished via
relaxation of the consistency constraints. There are three typical approaches that relax these constraints,
e.g. Lagrangian relaxation, Penalty function relaxation and Augmented Lagrangian relaxation. Both de-
composition techniques can be subdivided into hierarchic and non-hierarchic formulations.

Up to this point, the discussion has focused on physical coupling between elements of a hierarchy. This
coupling is embedded in the optimization problem and can be made visible via, e.g., the problem matrix.
This problem matrix is discussed in the next section.
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ITII.B. Problem matrix

The decomposition process of optimization problems involves identifying relationships between the design
variables, physical responses and objectives/constraints that permit us to separate them into individual
elements that are connected. These optimization problems for which no elements have been identified yet
are defined as:

min oy (x,r(x))
s.t. vge(x,r(x)) <0 (3)
vi(x,r(x)) =0

where vy(...) is the objective function, v,(...) are inequality constraints and vy (. ..) are equality constraints.
The relationship between variables (x), responses (r) and functions (vs, v, and vy,) is illustrated, amongst
others by ngr‘cgelemy,15 with the problem matriz (also known as Functional Dependence Table®d).

X,r

—N—
vy objective
0
v .
g } constraints
0
Vh

min  %v;(°x,°r)
Ox

st. %vy(°x,%r) <0

vi(°x,%r) =0

Figure 8. Problem matrix, illustrating the relationship between variables and functions. A dark colored block indicates
that the functions (horizontally) depend on the design variables and responses (vertically).

A single individual element depends on local design variables and local physical responses. Such an
element is illustrated in Figure 8, where the dependence of r on the design variables x is dropped for brevity
of notations. Above the thick black line the objective function vy is written and the block of variables
x and responses ’r that this objective function depends on is dark. Likewise, the design constraints “v,
(inequality) and %vj, (equality) are listed below the thick black line and the block of variables and responses
corresponding to these functions is colored dark.

For a problem consisting of many elements, the simplest case is when there are only uncoupled problems.
The problem matrix resembles that of Figure 9. A hierarchy of three individual elements is shown that
are uncoupled. The dependencies of optimization functions (horizontal) on design variables and physical
responses (vertical) form a diagonal pattern in the problem matrix. This is called a block diagonal problem
matrix. The constraints are completely separable and the objective function is additively separable, meaning
that the objective function consists of a summation of element objectives that are uncoupled. Combined
these element objectives form the entire objective function. The element objectives are minimized separately.
Uncoupled problems can be solved independently and therefore there is no coordination (see Section IV
necessary.

In order to make the problem more manageable, one searches for interaction (or coupling) between groups
of variables and/or responses such that individual elements are formed or identified. These interactions are
subdivided into:

43

1. non existing, hence elements that are formed or identified are uncoupled.

2. weak, if the number of coupling variables is substantially less than the total number of variables
associated with each of the individual elements and none of the coupling variables that are identified
has a significant impact on the solution of the individual element.

3. strong, if most of the coupling variables are shared among the elements and a diagonal on the problem
matrix cannot be identified.

In real life problems, uncoupled elements do not exist. But often a distinction between weak and strong
dependencies of the elements can be made. In Figure 10 such a distinction is illustrated. The light gray
blocks indicate weak dependencies and the dark gray blocks strong dependencies.
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xr ‘x'r “x°r “xj°r ) 3.
min vy = > 'vs('x,'r)
vf x 0
Oy, Oy, st vy =%, (%%, r)
9 0y, — Oy (Og O
1V 1V Vp = Vh( X? r)
gs Vh 1y, 1 1y 1
oy vy ='vy('x,'r)
Vg,"Vh
3¢, 3
Vg,"Vh 3

3 3¢ 3
vy, = 9vp(°x, °r)
Figure 9. Block diagonal matrix, showing the relationships between variables and fully uncoupled functions. In this case
there is no need for coordinating the solution process to reach the optimum of the multi-level optimization problem.

X, T

vf

- strong dependency
Vg, Vi | | I:I weak dependency

Figure 10. Problem matrix, illustrating the weak (off-diagonal) and strong (main-diagonal) dependencies between
individual elements. The objective is a function of all the design variables and depends on all the elements. However,
the constraints can be organized in strong and weak dependencies associated with each individual element.

Preferably one has a Block Diagonal problem matrix such as illustrated in Figure 9 since the individual
elements are then uncoupled in the constraints and additively separable in the objective function. However,
more frequently encountered problems involve coupling. In that case, the subproblems are connected through
design ;-z and/or coupling variables ;h Shared design variables éz are design variables that are present in
multiple hierarchical elements. Coupling variables ;h represent the mapped physical responses (;’H(lr)) from
one element onto a neighboring element to which it is coupled. An example of a problem consisting of shared
design variables and coupled responses is the minimization of an additively separable objective function
subjected to constraints:

. 3 . . . . . .
m)in %95 (%2,%%, °r (?z, 0%, ah)) + Z’vf (6z,lx, y ((l)z, zx,?h))

=1
s.t. Ov,(%z,%%,%2(%2,%%,ih)) < 0
vy(bz, %, 'r(jz,'x,%h)) < 0 i=1,...,3
Ovi(92,%%, %r(9z, °x, ih)) 0
v (82, 'x, 'r(§z, 'x, h)) 0
where 0%, Or top-element level variables
ix,r element level variables (4)
~h coupling variables
z shared design variables
x = [Ox,?z, X, f)z]
{H(°r) =?h
iH('r) = ih
2=z

Notice that global variables °x and °r related to the Level-0 problem, local variables x and ’r, which are
related to Level-1, coupling variables ~-h connecting the two levels via physical coupling and shared design
variables that are shared among individual elements (;z = Jz) are distinguishable. The current example
involves four individual elements that are coupled and divided over two levels. The problem matrix that
illustrates the relations between the variables of Equation 4 is called an Angular problem matrix. This
problem matrix is illustrated in Figure 11 for the problem of Equation 4.

Equation 4 represents an optimization problem where coupling is present. No decomposition technique
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0l ih 0y 00 O 1o 1001, 2,22, 3,3 3
Jhoh™xr Yz "x'r 5z “x,°r §z °X,°r {jz
vf
OVg,OVh o top-element constraints
1y 1
Vg7 Vi
2Vg72Vh . : : : element constraints
3y 3
Vg, Vi
——
coupling variables shared design variables 1=1,2,3

Figure 11. Angular problem matrix, coordination between levels is necessary due to the coupling variables ?h and z,h.

Each element receives a copy of the variable f,h or ?h and coordination is necessary to introduce these copies into the
other element.

Oy (9, h) Or (°, jh)

Il
~o
=

7

0
K ‘ r (*x,%h)

r (*x,%h) ic=iH ('r) —ih=0
() (b)

Figure 12. (a) Physical response interaction between a single Level-0 element and the it" element present at Level-1,
where i = 1,...,n n being the amount of elements present at Level-1. The responses °r computed at the parent element
are transformed by the operator ?H into information that influences the responses of the child element ‘r. Likewise,

0% (°r) = %h 0% (Or)

the responses from the child element are transformed by the operator 67—1 into information that influences the responses
at the parent element. (b) The Level-0 element prescribes the necessary responses for the Level-1 element by means
of equality consistency constraints. This is called top-down decomposition.

is introduced yet, however a hierarchy within the problem is made visible via the multi-level notation. To
show how decomposition enters the optimization problem formulation a hierarchic top-down decomposition
is applied. The coupling circle shown in Figure 12(a) shows the physical coupling that is present between the
two levels. The physical coupling is decomposed and consistency is maintained between Level-0 and Level-1
elements through consistency constraints, e.g., top-down hierarchic decomposition shown in Figure 12(b).

Due to the top-down hierarchic decomposition, Level-0 does no longer receive the coupling variables jh
from Level-1. Instead, values for h are estimated and used during Level-0 computations. Since the responses
from Level-0 depend on these estimated values (§h), the optimum of Level-0 can shift for different estimated
values (jh). Determining an (optimal) value for the coupling variable vector Jh is accomplished via adding
the coupling variable vector to the optimization problem in the form of design variables. The physical
responses H (°r) = Yh that are mapped from Level-0 to Level-1 are not added as design variables. These
variables (Yh) are accounted for in the analysis of the Level-1 element because they are directly mapped
(top-down hierarchic decomposition).
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Equation 4 is now modified and is mathematically expressed as:
Hlllil Qv (hh, 92, %%, °r (%2, °x, {h)) + Zlvf (hz,'x,r (2, °x, h))
%50
s.t. Ovgy(h, Yz, 9%, °r (Y2, °x, {h)) g 0
ivy(iz, %, 'r(jz,'x,%h)) < 0 i=1,...,3
Ovi(8h, 9z, %%, Or(9z, Ox, 1 h)) 0
ivi(bz, %, r(4z, 'x, 'h)) 0
where 0%, Or top-element level variables
ix,r element level variables (5)
“h coupling variables
"z shared design variables
x = ['x, Yz, x,oz}
OH(O ) h
oc=oH('r) - oh =
Ve, = 92—z = 0

Notice that additional design variables ({h) are introduced and consistency constraints (jc) are present that
take into account the coupling between Level-1 and Level-0. Furthermore, consistency constraints are present
that relate Yz to jz. Finally, lower (}h) and upper (jh) bounds on the coupling variables {h are added that
correspond to physically significant output of Level-1 that is now constrained via the consistency constraints.

The optimization problem presented in Equation 4 is an example of optimization problems with embedded
hierarchy. In general, four typical patterns can be distinguished in the problem matrix of optimization
problems with embedded hierarchy. These four characteristic coupling patterns are shown in Figure 13. For
brevity of Figure 13 shared design variables z are not explicitly shown, however these enter the problem
matrix similar to the coupling variables. A dark colored block indicates that the functions (horizontally)
depend on the design variables and responses (vertically). A light colored block indicates a weak dependence
and a white colored block indicates dependence is absent.

In Figure 13, pattern (a) illustrates a problem matrix where the objective function only depends on
the top-level element. Pattern (b) illustrates the case where a small number of coupling variables couples
the objective and constraint functions of all the levels. Pattern (c¢) illustrates a problem where the design
variables and/or physical responses are shared over multiple levels. Pattern (d) illustrates a problem where
the objective function and the constraints depend on all the design variables and physical responses of all
the elements.

Multi-level or multi-disciplinary optimization methods are defined for optimization problems that belong
to one of these four problem matrices. These multi-level or multi-disciplinary optimization methods coor-
dinate data from the individual elements such that the optimal solution to the entire hierarchy is found.
Research into finding optimal problem decompositions to reduce coordination has been conducted by, e.g.
Bloebaum (1995),'9 Altus et al.(1996),'1 Chen and Li (2005)2% and Allison et al.(2009).° Coordination of
individual elements is discussed in the next section.

IV. Coordination

Solutions of decomposed elements require coordination, such that the individual solutions combined lead to
the solution for the entire hierarchy. Coordination of interaction between elements involves decision making.
Consider two individual element optimizations transferring data, see Figure 14(a). The origin of this data
can be, e.g., physical responses (r) such as shown in Figure 14(a) or shared design variables (z). This data
cannot be arbitrarily send from one element to the neighboring element. Therefore, decisions on which data
to send and in what order are necessary.

There are three types of decisions that can be distinguished:%3

1. separable decisions;

2. inseparable decisions;
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Figure 13. Four typical patterns can be distinguished in the problem matrix. A dark colored block indicates that the
functions (horizontally) depend on the design variables and responses (vertically). A light colored block indicates a weak
dependence and a white colored block indicates dependence is absent. (a) A hierarchy where the objective function
depends on the top-level design variables "x and physical responses °r and on the coupling variables f)h. The lower level
elements do not have an individual objective function. (b) A hierarchy where the objective function and constraint
functions share a small number of coupling variables. Level-0 as well as elements present at Level-1 contribute to the
minimization of the additively separable objective function v¢. (c) A hierarchy where the design variables and physical
responses of different elements contribute to the constraint functions of neighboring elements. Some of the elements in
lower levels depend on physical responses and/or design variables from neighboring elements. (d) No clear hierarchy
can be distinguished. The objective function as well as the constraint functions depend on the physical responses
and design variables from all the elements. Either Global Sensitivity Equations (GSE)66 are required to separate the
elements or relaxation of the consistency constraints between the elements is necessary.

3. inseparable and coupled decisions.

The first type of decisions, the separable decisions are shown in Figure 14(b). These type of decisions
occur in a multi-level hierarchy where the update of information of one element does not depend on the
data that is send to neighboring elements. This is typically the case for elements on the same level that are
not coupled to each other. Hence, after solving the parent element (Level-0), the updates of child elements
(Level-1) are independent from one another.

The second type of decisions are inseparable decisions shown in Figure 14(c). The output of one element
is send to the input of the neighboring element. These decisions are done sequentially and are the result of
top-down or bottom-up decomposition schemes. No operations are performed inside the coordinator block
and no changes are made to the Level-0 optimization problem after it has finished. This type of coordination
fails in cases where the Level-0 element prescribes physical responses (i.e. §h) or shared design variable
vectors (i.e. 9z = }z) that the Level-1 element is unable to meet. Either due to restrictions on design
variables (i.e. lower bounds x, z and/or upper bounds X, Z) and/or physical restrictions on the Level-1
element. Therefore, the Level-0 optimization problem requires additional information via, e.g., Optimum
Sensitivity Analysis*® 5% 73 or a copy of the relaxed consistency function.*!

The third type of decisions are the inseparable and coupled decisions shown in Figure 14(d). The output
of one element is the input of the neighboring element and wice versa. These decisions are done sequentially
via iterating or done concurrently through optimization.

To illustrate how inseparable decisions are tackled via coordination of a multi-level hierarchic optimization
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Figure 14. (a) Information exchange between two individual coupled optimization problems. Coordination of the data
that is send between the two elements is necessary. (b) Separable decisions, the optimization problems are not coupled.
Hence, the data for the first element at Level-1 does not change the outcome of the neighboring second element at
Level-1. (c) Inseparable decisions, the optimization problems are coupled and data is send from one element to the
neighboring element. (d) Inseparable coupled decisions require iteration. The solution of both elements depends on
the solution of the neighboring element.

problem the following all-in-one optimization problem is considered:
min vy = %y (°%,%2,%r (°x, 0z, §h)) + ‘vf ("%, )z, 't (%, 2, h))

X,
ng (x, %z, °r (°x, 9 ,6h)) <0

Yo = vy ('x, bz, r( ,Oz )) <0
B R O A TR I )
h (1 ,Oz r( 70z Oh)) =0
x<x<X ; z<z<"7;
where IH(r) =%h;  {H(r) ={h; ?Z = 2.

Hence, coupling is present between the physical responses (°r,ir) and coupling is present due to shared
design variables (9z,{z). The notation is applied according to the hierarchy that is identified within the
optimization problem.

Equation 6 is distributed over two levels. A single optimization problem is located at the top-level
(Level-0) which is coupled to the individual optimization problems located one level lower (Level-1). This
is accomplished via a top-down hierarchic decomposition (Figure 12), hence additional consistency con-
straints are introduced to Equation 6. The hierarchical top-down decomposed problem is split into a Level-0
optimization problem that is mathematically expressed as:

Cmin vy (5h,°x, 0.0 (°x, %2, 5h)

x,;z,6h

s.t. ng (Ox Ug, ¢ r( h, %%, z )) <0
Ovy, (%%, %2, °r (§h, Ox, z,oh)):O (M)
Ox <% <% ; 9%2<%<%Z ; {h<ih<ih

where  9H(°r) = Jh.

The physical responses (°r) are mapped directly onto the Level-1 optimization problems as well as the
shared design variables (9z). Furthermore, coupling variables jh are chosen as design variables for the Level-
0 optimization problem. Hence, the two levels are decoupled via the consistency constraints on the physical
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coupling that are assigned to Level-1 and via consistency constraints on the shared design variables that are
assigned to Level-1.
The Level-1 optimization problems are mathematically expressed as:
min vy (ix,ir (ix,éz,éh))
ix Uz
st. vy ( 7Oz Op ( x,\z, Oh))
Vi, ( x, 1z, r( ,Oz,oh))

I /\

| I
—
0
L

tvi, (he (ir)) = §H('r) — h:O
ee, (P (52) =2~ b2 =0
X<XSX ; jz<(2<{Z

Consistency is maintained via the consistency equations (c,c,).

The above problem formulation (Equations 7 and 8) has the problem that, if values of ¢ (°r), {h and Yz
are determined within the Level-0 problem that do not correspond to feasible solutions within the Level-1
optimization problems, there is no answer to the multi-level optimization problem. Various researchers (e.g.
Vanderplaats et al.®* and Kirsch*?) reported this problem. A solution to this problem depends on the
decomposition formulation chosen and is discussed in the next two sections.

IV.A. Equality-based coordination

To overcome the problem that leads to infeasible elements within the hierarchy, two separate approaches
exist depending on the decomposition formulation chosen. In case strong (equality) consistency constraints
are formulated the solution is to add additional information on the Level-1 optimization problems to the
Level-0 optimization problem.

The Level-0 optimization problem in Equation 7 is modified and is mathematically expressed as:

min vf (Oh X, Z OI'( X7?za6h>)
0%,92, h
s.t. ( h, %x, z r( 70h)

Ov ) <

0 ( h OX OZ OI‘ (() )) (9)
Ove = f (0z76h, r( Bh)) 0
0 3z§ <!z ; {h<ih<jh,
0

= — — )

where

Hence, additional functions (v,) are present that take into account the behavior of neighboring elements.
No changes are made to the Level-1 problem formulation. Therefore, a mathematical expression of Level-1
problems is equal to the expression presented in Equation 8.

In summary, the problem description of an element that is part of a hierarchy decomposed via equality
consistency equations is written as:

min vy (Gh,ox,z,or (Ghox,0z)

“X,0z,0h

s-t. “vo(:h,x, vz, or(0h, %, 02)) <0
“va(h,ox, iz or(th, ox, z)) = 0
“v.e(ie(r, h)) =0 (10)
Ve (ie:(z,2) =0
“Vo(:h,12,71) <0
x<x<X ; z<2<7Z ; ~h< h<-h

The consistency constraints (v.) take into account the consistency with: higher elements in the hierarchy
(top-down decomposition); lower elements in the hierarchy (bottom-up decomposition); and/or neighboring
elements (non-hierarchic decomposition). Likewise, the constraints that approximate neighboring elements
(vq) take into account the behavior of elements: located lower in the hierarchy (top-down decomposition);
located higher in the hierarchy (bottom-up decomposition); and/or neighboring elements (non-hierarchic
decomposition).
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Approximations are constructed via a two step process. First, the type of information that is required
from neighboring elements is chosen. Second, a means of constructing the function that approximates the
data from the neighboring element is formulated.

Data from neighboring elements that is approximated in the current element consists of:

e the value of objective function and/or constraint functions that are assigned to neighboring elements.
This data informs the current element whether an increas/decrease of the objective function in neigh-
boring elements or constraint violations in neighboring elements are to be expected due to changes in
the current element.

e a measure of constraint margin that informs the current element how much ”design space” is left in the
neighboring elements before the neighboring elements become infeasible due to changes in the current
element.

e the physical coupling that is mapped from a neighboring element onto the current element.

e the value of objective function and/or constraint functions that are shared with neighboring elements.
This data accounts for constraints that are shared and are satisfied in neighboring elements. Therefore,
in the current element they can be neglected and vice versa.

The behavior of a neighboring element is modeled via a function (v,) that depends on coupling data from
the current element. To construct an approximation to the neighboring element(s) various approaches exist:

e linearization requires sensitivities, e.g., via optimum sensitivity derivatives,'4 global sensitivity equa-
tions,%6 amongst others.

e response surface approximations.36 72,86

Linearization may consist of linearizing constraints'® in Level-1 with respect to the interaction between
elements, hence “H(-r), “h and ~z. In addition, these linearized constraints are added to the Level-
0 optimization problem.®* In case non-hierarchic decomposition is applied the so-called Global Sensitivity
Equations®2:96:67 are evaluated to obtain the necessary sensitivity information for the shared constraints.5% 7

Linearization of coupled optimization functions may require a small step size to update the coupling data
between elements.®! Increasing accuracy of the linearized coupling is accomplished via adding higher order
information to the linearization.?®® Another approach that is used to approximate behavior of neighboring
elements is via response surfaces for individual elements.0>71,72

Constraint margin approaches create design freedom via the Level-1 optimization problems such that
the Level-0 optimization problem can search within a design space that is feasible. Sobieszczanski-Sobieski
et al.(1985,1987)7 76 applied a technique that captures multiple constraints into a single function.!2 6869
This single function is added to the objective function of a Level-1 element. The objective of the Level-
1 optimization problem is to push the Level-1 design points as far as possible into the feasible domain.
Haftka and Watson (2005)36:37:50:59 developed a similar strategy where slack variables were introduced to
the constraints of neighboring elements that directed the constraints as far away as possible from values
where the constraints become critical. In addition, Haftka and Watson provide a mathematical justification
of the method.

IV.B. Relaxation-based coordination

Relaxation based approaches overcome the problem of infeasible elements via a copy of the relaxed consistency
constraints. To demonstrate the procedure Equations 7 and 8 are repeated. However, the consistency
constraints are now relaxed via, e.g., Lagrangian relaxation. No changes to the Level-0 optimization problem
are made.

The Level-0 optimization problem is mathematically expressed as:

Oxr,r?lizl,lg‘)h Qg (41, %, 92, (°x, V2, {h))

s.t. ng (f)h7 Ox, (z-)z7 Op (Ox, ?z,éh)) <0
Oy (%)h7 Ox, ?z, Oy (Ox7 ,(i)z, Zbh)) =0 (11)
Ix<% <% ; J2<92<0z ; {h<{h<{h

where  9H(°r) =%h
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The Level-1 optimization problem is modified and is mathematically expressed as:
min fog (%, "1 (%%, 02,0h) ) + 32 g (e (1)) + 2 e, (Fe- (62))
ix,02 *
s.t. ivg (ix,az,ir (ix,éz,éh)) <0
v, (%, bz, 't (%, {z,5h)) =0 (12)
Xx<'x<'X O (2<(z2 <%
where ’ivéc (he (r)) = AT (M (r) — §h),
ivgcz (Yc. (hz)) = AT (9z — }z)

In Equation 12 the consistency constraints (c and c,) are relaxed.

The problem formulation in Equations 11 and 12 suffers from the same problem as mentioned in the
introduction of Section IV. Hence, infeasible Level-1 elements can be present due to coupling data sent
from the Level-0 element to the Level-1 elements. Therefore, additional information about the Level-1
optimization is added to the Level-0 optimization via a copy of the relaxed consistency constraints.

The modified Level-0 optimization problem is mathematically expressed as:

min Qv (f)h7 Ox, 9z, Or (Ox, ?z,%h)) + Zovac (éc (6h)) + ZOU?CZ (?cz (?z))

0x,%z, h

s.t. ng (6h, Ox,?z,or (Ox,?z,ﬁ,h)) <0
Ovp, (éh, 0%, ?z, Oy (Ox7 ?z, 6h)) =0
OH(r) =% ; Yz=1iz (13)
Ix<Ux<"%  la<la<l7 ; (h<ph<ih

where Ovéc (60 (%)h)) =iAT(§

The copied relaxed consistency constraints are added to the objective function value. The Level-1 optimiza-
tion problem remains the same, i.e., as in Equation 12. The Lagrange multipliers are kept constant during
the individual element optimizations. These Lagrange multipliers are only updated via decisions made via
the coordinator. Furthermore, in Equations 13 and 12 the Lagrange multipliers are equal. Depending on
the coordinator these parameters can be different.

In summary, an element optimization problem that is coupled to neighboring elements and for which this
coupling is relaxed is mathematically expressed as:

Cmin oy (Chyex iz or (hy ox, nz)) 30 e (e(or th)) 30w, (e (12, 02))

st ug(hex, oz or(oh,x, 7)) <0
on(Chy %, 0z, e (th, X, 02)) = 0 (14)
x<'x<'X ; z2<72<Z ; th< h<:h

where  “v.c(:e( T, h)) = f(:c( T, h));

The relaxed consistency constraints that are added to the objective function (v.) take into account the
consistency with: higher elements in the hierarchy (top-down decomposition); lower elements in the hierarchy
(bottom-up decomposition); and/or neighboring elements (non-hierarchic decomposition).

Relaxation of the consistency constraints is accomplished via:

1. Penalty functions, e.g., the quadratic norm of the inconsistency,?? 52 quadratic norm of the inconsis-
tency multiplied by a weight parameter! and additional slack variables,?® inexact and exact penalty
functions,?" 32 amongst others.

2. Lagrangian relaxation, e.g., Lassiter et al. (2005)*” and Kim et al. (2006).40

3. Augmented Lagrangian relaxation, e.g., Rodriguez et al. (2000),57 Blouin et al. (2005)?° and Tosserams
et al. (2006-2010).7783
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Evaluating the relaxation parameters can become a costly process, because the computations require in-
formation of all the individual optimization problems. The work of Tosserams et al.”"3% amongst others
compares numerical performance of different relaxation approaches. A comparison between equality based
approaches and relaxation based approaches is presented in de Wit.26

Coordination of elements where consistency is relaxed involves evaluating new relaxation parameters and
updating of data related to the coupling between elements. The relaxation parameters are evaluated and
updated either via direct computation or they are approximated. Likewise, exchange of data related to
the coupling between elements is computed directly or approximated. Common approaches to deal with
approximating relaxation parameters and coupling data are:

1. a weight update method.?>

2. a linearization method.38

3. diagonal quadratic scaling.35 48

In Figure 15 an overview of the main stream approaches to coordination of optimization problems with
embedded hierarchy is presented. A distinction is made between coordination that is applied to elements that
are decomposed via equality consistency constraints (left) and coordination that is applied to elements that
are decomposed via relaxed consistency constraints (right). Furthermore, a distinction between hierarchic
and non-hierarchic coordination is given.

V. Solution sequence

Final step in applying a multi-level and /or multi-disciplinary optimization approach is to choose a solution
method. Figure 16 shows the main components of a flowchart for multi-level and/or multi-disciplinary
optimization. In literature a number of papers discuss steps to generalize these main components into a
single (software) framework.?> 578293451 Tpitjal step is setting up the multi-level optimization problem.
This is accomplished automated® 19 or manually via the steps discussed in the previous sections. Depending
on the type of multi-level optimization approach chosen, additional information is required from neighboring
elements. The most inner loop indicated via number 1 in Figure 16 represents the construction of e.g.
optimum sensitivities. These are required to solve individual optimization problems located e.g. higher
(using a top-down hierarchic decomposition) in the multi-level hierarchy.

Once a hierarchy of individual coupled optimization problems has been defined these individual opti-
mization problems can be solved separately. After an individual optimization problem is solved, coupling
parameters (h,-z) are stored separately for usage by neighboring elements to which the current element is
coupled. Individual elements can be solved sequentially?® (Gauss-Seidel'®), in parallel?® (Jacobi'®) or via a
combination.” Choices mainly depend on the decomposition and coordination approach chosen or available
infrastructure.

After the entire hierarchy is solved once, convergence of the individual objective functions is measured
corresponding to loop 2 (or inner-loop®?) in Figure 16. Via an error tolerance ¢, the reduction in objective
function value is determined. Depending on the outcome, control is given to the coordinator that is either
equality based or relaxation based. Here decisions are taken to re-evaluate the hierarchy and/or to update
approximations. In addition, a second convergence criterium can be evaluated via loop 3 (outer-loop®?)
measuring the size (or rate of decrease) of inconsistency .. Depending on the outcome, e.g. relaxation
parameters are updated.”

VI. Challenges for multi-level optimization

Multi-level optimization and multi-disciplinary design optimization methods are practical when the
amount of data that is exchanged between individual elements remains small and models are weakly cou-
pled. Weak coupling in the sense that large errors in the solution of a neighboring element do not occur
when mapping the data from one element onto a neighboring element. Furthermore, for equality-based and
relaxation-based methods we observed”> 2729 that:

e Equality-based methods require that for each parameter that is send from one element to a neighboring
element either sensitivity information is required or a response surface is constructed. Constructing
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Figure 15. Overview of coordination approaches classified into two main stream approaches. The first (left): meth-
ods that coordinate individual elements where the decomposition is based on equality consistency constraints. The
second (right): methods that coordinate individual elements where the decomposition is based on relaxed consistency
constraints. Each main stream approach is subdivided into three classifications. The equality-based coordination into:
linearization, approximation and non-hierarchic linearization methods. The relaxation-based coordination into: relax-
ation, approximation and non-hierarchic relaxation. Each bi-level optimization method discussed in this work falls into
one of these categories.

accurate sensitivity information is not straightforward and can become a numerically expensive proce-
dure on its own. Fitting a response surface through elements that output more then ten parameters
to a single neighboring element (a small number if a detailed local finite element model communicates
physical responses and/or shared design variables with a global finite element model) is challenging.

e Relaxation-based methods are known to exhibit poor numerical convergence characteristics. The lin-
ear convergence rate of these methods and the fact that intermediate designs during the multi-level
optimization cannot be used makes these methods challenging to use in a competitive environment.

Techniques that seem promising with respect to convergence characteristics are developed by DeMiguel
and Nogales (2008).22 The authors propose the use of Schur-Interior Point methods to coordinate the individ-
ual optimization problems. These methods exhibit super linear or even quadratic convergence characteristics
as opposed to bi-level coordination methods that were discussed in this work. Similarly, Alexandrov et al.!”3
proposes the use of Null-space methods'” 33 to coordinate the individual optimization problems. In addition,
other approaches based on approximating search directions have been document in the literature.2> A draw-
back of such methods is that the same optimization technique should be used in each individual element.
In this work each individual optimization problem from a hierarchy can be solved by different optimization
techniques.
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Figure 16. Flowchart showing the main components of a multi-level optimization process.

18 of 22



NLR-TP-2010-359 @‘3

VII. Conclusion

This paper identified four generic steps from which multi-level optimization methods are constructed.
Physical coupling was illustrated via a coupling circle that shows the difference between top-down, bottom-
up and non-hierarchic decomposition. Furthermore, two distinct decomposition approaches were defined:
strong (equality) consistency constraint formulations and weak (relaxed) consistency constraint formulations.
How this coupling enters the optimization problem was shown via a problem matrix for which four distinct
patterns can be identified. These patterns identify problem structure of optimization problems encountered
in engineering. Coordination was introduced according to the decision making process. Decisions on which
element of the hierarchy to solve first have an impact on algorithm accuracy and performance. Multi-level
optimization and multi-disciplinary optimization techniques defined in the literature were shown as examples
of equality-based or relaxation-based coordination approaches. Via a flowchart the solution process of multi-
level and multi-disciplinary optimization approaches was presented. Finally, based on previous studies and
results found in the literature we concluded that multi-level optimization and multi-disciplinary design
optimization methods are practical when the amount of data that is exchanged between individual elements
remains small and models are weakly coupled.
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