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Summary 

This report discusses the ability of phased arrays to locate forward radiating noise sources on 

rotors and stators of turbofan engines. Phased array techniques are applied to fan rig 

measurements with a circular microphone array in the engine intake duct wall, which is 

normally used for azimuthal mode detection. Beamforming methods are applied with both 

stationary and rotating focus. The contributions of tonal noise and broadband noise are 

considered separately. The free-field Green’s function is used for the definition of the steering 

vectors. Special attention is paid to the properties of an unknown source of fan noise.  
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Nomenclature 

Symbols 

A  source power 

a  source amplitude 

B  number of rotor blades 

C  cross-spectral matrix  

nmC  cross-power 

c  sound speed 

xe


 unit vector in x-direction 

F  transfer function 

f  frequency 

samf  sample frequency 

G  Green’s function 

ng  pressure amplitude induced by unit point source 

i  imaginary unit 

K  number of samples during one revolution 

M


 Mach vector 

m  mode number 

N  number of microphones 

p  acoustic pressure 

np  complex pressure amplitude 

t  (receiver) time 

nt  receiver time at n-th microphone 

t  sample time 

U


 flow speed 

V  number of stator vanes 

v


 see Eq. (17) 

w


 see Eq. (18) 

x


 receiver location 

nx


 microphone location 

 

  see below Eq. (5) 

( )n t  acoustic pressure at microphone location 

  sampled acoustic pressure 

et  emission time delay 

  Dirac-delta function 

j  pulse times 
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  sample number 

max  see Eq. (23) 

min  see Eq. (23) 

  azimuthal angle 

  emitted signal 

  emission time 




 (potential) source location 

0


 reference source location 

  rotor angle 

  angular rotor speed 

  angular frequency ( 2 f ) 

 

Abbreviations 

BPF Blade Passing Frequency 

EO Engine Order 

RPM  Revolutions Per Minute 

SPL Sound Pressure Level 
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1 Introduction 

Through better design and the use of higher bypass ratios, aircraft turbofan engine noise has 

been substantially reduced over the last decades. As a consequence, on modern aircraft (e.g. the 

Airbus A340) many other noise sources, like slats, flaps, and landing gears, have comparable 

strengths. Nevertheless, even in the landing phase, the engines are still the loudest noise sources 

(Ref. 1). Therefore, there is a continuous need to further reduce engine noise. 

 

Engine noise can be tonal (buzz-saw noise, rotor alone noise, fan-stator interaction, blade row 

interaction in the turbine), and broadband (jet noise, fan-broadband noise). Tonal noise and jet 

noise have been extensively studied, but fan-broadband noise is a rather unexplored area.  

 

At lower engine speeds, typically during approach, fan-broadband noise is a major component 

of the total noise emitted from turbofan engines. This broadband noise can be caused by various 

possible mechanisms: interaction of the intake duct boundary layer with the rotor blade tips, 

interaction of the turbulent rotor wakes with the stator vanes, rotor blade self noise (trailing 

edge noise), and stator vane self noise. 

 

 
Fig. 1  Drawing of fan rig; the Kulite sensor array is located on the grey strip in the intake 

 

For investigations of broadband noise reduction devices, it is important to know which of the 

above-mentioned source mechanisms prevail. Unfortunately, there is no straightforward recipe 

to locate these sources experimentally, and to estimate their strengths. A possible tool may be 
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the phased array beamforming technique, which has become a standard tool for acoustic source 

location in wind tunnel and flight testing.  

 

Application of a microphone array inside a turbofan engine is more complicated than at a 

certain distance. First, there is limited freedom in microphone positioning, as the microphones 

are not supposed to disturb the flow. Possible microphone positions are the duct wall, the 

turbulence control screen (TCS), and the stator vanes. A second complication is that the free-

field Green’s function may not be the most appropriate transfer function for defining the 

steering vectors, as it neglects the reflections of the duct wall. It may be better to use 

numerically calculated Green’s functions which include the presence of the nacelle. But, 

nonetheless, inaccuracies will remain, because these Green’s functions do no include the (often 

unknown) source directivities. 

 

 
Fig. 2  Lay-out of intake microphone array 

 

In this report, the beamforming techniques as applied to experimental results with a Rolls-

Royce fan rig in the AneCom-Aerotest facility near Berlin (Ref. 2) are described. Measurements 

were done with a circular array of microphones mounted in the intake (Fig. 1), which is 

drooped. This array, which consists of 100 Kulite sensors, is designed and used for azimuthal 

mode detection. It has a non-uniform lay-out (Fig. 2), in order to extend the range of modes to 

be detected (Ref. 3). 

 

The beamforming techniques are tested on a reference case with low engine speed (50 %). A 

liner was installed between the fan and the array. The auto-spectrum, averaged over all array 
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microphones, is plotted in figure 3. The peaks at BPF (Blade Passing Frequency) and higher 

harmonics are clearly visible. Also visible are puzzling humps next to BPF and 2BPF. 

 

In the following chapters, beamforming techniques with stationary and rotating focus are 

described, and applied to the reference test. Then, a breakdown is given into tonal and 

broadband noise. Finally, some further investigations are described on the humps as plotted in 

figure 3. 

 

0 2000 4000 6000 8000 10000

Frequency [Hz]

10
 d

B

 
Fig. 3  Average auto-spectrum at microphone array 

 

 
2 Beamforming 

2.1 Stationary focus 

 

2.1.1 Conventional beamforming 

With the conventional beamforming technique, noise source maps are constructed as follows. A 

“scan” is made over a “source” plane, i.e., a plane where acoustic sources are assumed to be 

located. On each point 


 of this scan plane, a point source of unit strength is imagined. An 

imaginary point source like that induces imaginary acoustic spectra on each microphone.  

 

Now consider a given frequency, and say that ng  is the (complex) pressure amplitude at 

microphone n, induced by a unit source in 


. The conventional beamforming technique 

compares how well these imaginary pressure amplitudes match with the measured counterparts 

np . This is done by minimising: 
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2

1

N

n n
n

J p ag


  , (1) 

 

where N is the number of microphones and a is the reconstructed source amplitude in


. The 

solution of this minimisation problem is: 

 

1 1

N N

n n n n
n n

a g p g g 

 

  . (2) 

 

After squaring and averaging, an expression is obtained featuring the cross spectral matrix C: 

 
2 2

2

1 1 1 1 1 1

1 1
22

N N N N N N

n n m m n n m nm n n n
n m n n m n

A a g p p g g g g C g g g    

     

   
     

   
    . (3) 

 

At those points 


 on the scan plane where the values for A are the highest, actual noise sources 

may be assumed.  

 

The technique described above assumes that the acoustic sources are concentrated in points. In 

other words, the spatial extent of the sources is assumed to be zero, which may be a violation of 

the actual situation. In most beamforming applications, however, this is not a serious limitation. 

 

2.1.2 Point sources 

A more critical issue is the propagation from the assumed point source to the microphones, in 

other words, the construction of the induced pressure amplitudes ng . In external array 

applications, usually a free space Green’s function G is used, i.e., the solution of the 

(convective) Helmholtz equation with a Dirac-delta function in the right-hand side: 

 
2

2
2

1
2 ( )G if U G x

c x
           

 
, (4) 

 

where   is the Nabla-operator, c is the speed of sound, U


 is the wind speed, and x


 is the 

receiver (microphone) location. The solution of (4) is 

 

 

  2
2

exp 2

4

eif t
G

M x x



   

 


   
   

, (5) 

 

with M U c
 

, 
22 1 M  


, and 
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    2
2

2

1
et M x M x x

c
   


 

          
 

     
. (6) 

 

Apart from the earlier mentioned point source assumption, the source description of Eq. (5) 

lacks the following: 

a) It neglects any reflections (engine nacelle, intake plane, spinner). 

b) It assumes uniform flow conditions. 

c) It assumes a source with uniform directivity. 

Nevertheless, this “free-field” Green’s function will be used for beamforming. In order to 

reduce the effects of reflections, measurements with a liner (as we use here) are preferred. 

 

A Green’s function of a flow duct (expressed in duct modes) would partly remove drawback a) 

(no reflections), but then a purely cylindrical geometry is assumed, neglecting the effects of 

droop, spinner and flow non-uniformities. Thus, the remedy could be worse than the disease.  

 

Green’s function values may also be calculated by CAA methods. If this is done at sufficiently 

high accuracy, it would remove drawbacks a) and b), but drawback c) remains. Precise 

knowledge is then required of the flow field, and, if a liner is present, of the wall impedance. 

Maybe, it is also possible to determine the Green’s function values by measurements, but this 

does not remove drawback c) either. 

 

2.1.3 Beam patterns 

Obviously, a ring-shaped array as in figure 2 is not ideal for source location. Commonly, arrays 

for beamforming cover a disk-shaped area (e.g. in spiral forming groups) or are cross-shaped. 

To investigate the beamforming properties of the array, the beam patterns of a simulated point 

source are considered for a range of 1/3 octave band frequencies. The scan plane is at the 

leading edge of the stator, and the point source is on the scan plane.  

 

The beam patterns are plotted in figure 4 at a range of 10 dB. The circles in the plots correspond 

to the tip of the rotor, and to the splitter. (The inner circle is also close to the rotor hub.) The 

dynamic range (peak level minus highest side lobe level) of the array is about 7 dB. Commonly, 

arrays for beamforming have higher dynamic range (~ 12 dB). Nevertheless, a dynamic range of 

7 dB is still high enough for conducting some beamforming attempts. 
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Fig. 4 Results of conventional beamforming with simulated point source near the  
 rotor trailing edge (beam patterns) 

 

2.1.4 Results 

Results with the conventional beamforming method (neglecting microphone auto-powers) are 

shown in figure 5 and figure 6. In figure 5, the scan plane is at the leading edge of the rotor, and 

in figure 6 at the leading edge of the stator. The lack of axi-symmetry in the plots can be related 

to the droop of the intake (Fig. 1). 

 

Comparing both figures shows that the radial position of the sources depends on the axial 

position of the scan plane. This is a consequence of the ring-shape and the position of the array. 

With this array set-up, it is not possible to determine the axial location of the sources.  
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At 4000 Hz, 5000 Hz and 6300 Hz, the stator vanes are clearly visible as noise sources. It is 

likely that figure 6 gives a better indication of the source locations than figure 5. These source 

locations seem to be near the tips. At lower frequencies, the noise seems to be generated at or 

close to the splitter.  

 

The sizes of the source spots in figure 6 are comparable to the simulated results in figure 4. 

 

 

 
 
Fig. 5  Results of conventional beamforming on rotor leading edge plane 
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Fig. 6  Results of conventional beamforming on stator leading edge plane 

 

2.2 Rotating focus 

 

2.2.1 Beamforming on moving sources 

With a moving source, at ( )t


, it is no longer possible to apply beamforming techniques in the 

frequency domain. Instead of reconstructing source amplitudes at given frequencies, we have to 

reconstruct directly the signal ( )t  emitted by the source. The source assumption is now 

described by: 

 

 
2

2
2

1
( ) ( )G U G t x t

c t x
             

 
. (7) 
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The solution of Eq. (7), which is derived in Ref. 4, reads: 

 

 ( , ) ( ) , ( ), ,G x t F x t    
 

, (8) 

 

with 

 

       1
, ( ), , 4 ( ) ( ) ( )F x t c t U x U t

c
                   

 

    
, (9) 

    2 2
2

2

1
( ) ( ) ( )t M x M x x

c
       


 

          
 

     
. (10) 

 

If ( )n t  is the pressure fluctuation measured by the n-th microphone, then ( )   can be 

reconstructed by the “Delay and Sum” method: 

 

1

1
( ) ( )

N

n
nN

   


  , (11) 

 ( ) ( ) , ( ), ,n n n n nt F x t     


, (12) 

    2 2
2

2

1
( ) ( ) ( )n n n nt M x M x x

c
       


 

          
 

     
. (13) 

 

Source powers in the frequency domain can be obtained through Fourier transformation of 

( )  , and averaging: 

 
2

2
1 1

1 1
ˆ ˆ ˆ

2 2

N N

n m
n m

A
N

   

 

   , (14) 

 

where ̂  is the Fourier transform of  . Results without auto-powers can be obtained by 

evaluating (14) as: 

 

1 1

1
ˆ ˆ

2 ( 1)

N N

n m
n m

m n

A
N N

  

 



  . (15) 
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2.2.2 Source tracking 

It is assumed that the axis of rotation coincides with the x-axis. Then, in the case of a rotating 

fan, the position of moving sources can be described by: 

 

     0( ) cos ( ) sin ( )x xe e v w         
     

, (16) 

 

with 

 

 0 0 x xv e e   
   

, (17) 

xw e v 
  

, (18) 

 

and xe


 is the unit vector in x-direction. The source position at ( ) 0    is given by 0


. 

 

 
Fig. 7  Pulse signal 

 

The time-dependent angles ( )   are derived using a tacho pulse generator which gives a pulse 

for every rotor revolution. This pulse signal (see Fig. 7) is stored in one of the channels of the 

data-acquisition system. Using a technique based on cross-correlations, pulse times j  are 

calculated. Herewith, the time-dependent RPM can be calculated at a relative accuracy of less 

than 0.01% (see Fig. 8). Using these pulse times, we can define: 

 

1

1

( ) 2 j

j j

 
  

 








. (19) 
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Thus, by definition, ( ) 0    at the pulse times j . The beamforming process starts with the 

choice of a basic scan grid of possible source locations 0


, which are the locations of the 

rotating sources at the pulse times. The rotation is then described by Eqs. (16)-(19).  

 

4690

4692

4694

4696

4698

4700

0 2 4 6 8 10
s

R
P

M

 
Fig. 8  Development of RPM as calculated from pulse signal 

 

Each emission time period 1,j j     is sampled into K samples: 

 

1 1( ),  0,..., 1k j j j

k
k K

K
         , (20) 

 

where K is chosen such that the sampling rate 1( )j jK     is approximately the same as the 

sampling frequency samf  of the measured data. The corresponding rotation angles are: 

 
( ) 2k k k K     . (21) 

 

Using Eqs. (11)-(13), with k  , the sample values of the emitted signal   can be obtained. 

Then, with (14) or (15) the source spectra can be calculated. 

 

2.2.3 Results 

Results of the beamforming technique with rotating focus (without auto-powers) are shown in 

figure 9. At the frequency bands 2500 Hz, 3150 Hz, and 4000 Hz, the rotor blades are visible. In 

figure 10, the (narrow-band) peak values of the source plots are compared with corresponding 

results of the conventional beamforming method (at the same scan plane, see Fig. 5). With 

rotating focus, the BPF-peaks have disappeared. On the other hand, the non-BPF levels seem to 

be somewhat higher. On the second hump location (approximately 4 kHz), a peak is found 

which is narrower than the hump. 
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Fig. 9  Results of beamforming with rotating focus on rotor leading edge plane 
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Fig. 10  Narrow-band peak values of beamforming results – stationary vs rotating focus 
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3 Tonal and broadband noise 

3.1 Splitting technique 

Part of the noise signal, as measured by the microphones, is repeated every rotor revolution. If 

the RPM is constant, then this “rotor-bound” noise consists of pure tones, of which the 

frequencies are multiples of the revolution frequency. At low engine speeds, when the fan tip 

speed is subsonic, usually only the BPF (revolution frequency  number of rotor blades) and its 

higher harmonics appear in the spectrum.  

 

The rotor-bound noise is extracted from the total noise with the following method. Let  

 

   samt f        (22) 

 

be the sampled values of the measured noise signal by one of the microphones. Consider a 

series of samples between two pulse times: 

 

min min max1 1 ...j jt t t         . (23) 

 

Fourier components are calculated by: 

 

   
max

max min

min

2
1 11 exp 2k j j jp ik t



  
 

      


      . (24) 

 

These complex numbers are averaged over all revolutions, and then calculated back to the time 

domain: 

 

     
max min( 1) / 2

1 1
1

exp 2k j j j
k

t p ik t
 

     
 

 


     . (25) 

 

After the rotor-bound noise has been determined, the broadband noise can be obtained by 

subtracting the rotor-bound noise from the total noise.  

 

In figure 11 the breakdown into tonal (rotor-bound) and broadband noise is shown of the 

average microphone auto-spectrum (cf. Fig. 3). Apparently, the humps have a broadband 

character. 
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Fig. 11  Average auto-spectrum at microphone array – breakdown into tonal  
 and broadband noise 
 

 
 
Fig. 12  Results of conventional beamforming on stator leading edge plane – tonal noise 
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3.2 Results with stationary focus 

Beamforming results on the stator leading edge plane, after splitting into tonal and broadband 

noise, are shown in figure 12 and figure 13, respectively. The levels are relative to the levels in 

figure 6. Tonal noise is dominating at 5000 Hz and 6300 Hz, while broadband noise is 

prevailing at other frequency bands. Only at 4000 Hz, broadband noise sources on the stator 

vanes can be observed. This happens to be at the second hump (cf. Fig. 11). The peak values of 

the narrow-band conventional beamforming results are shown in figure 14. Now the BPF tones 

protrude more than in figure 11. This could mean that tonal noise is more localized than 

broadband noise. Also, the humps are more pronounced. 

 

 
 
Fig. 13  Results of conventional beamforming on stator leading edge plane – broadband noise 
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Fig. 14  Narrow-band peak values of conventional beamforming results –  
 breakdown into tonal and broadband noise 

 

 
Fig. 15  Results of beamforming with rotating focus on rotor leading edge plane – tonal noise 
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3.3 Results with rotating focus 

Results of beamforming on the rotor leading edge plane with the method of Section 2.2, again 

after splitting into tonal and broadband noise, are shown in figure 15 and figure 16, where the 

levels are relative to figure 9. Broadband noise is now dominating, except at 4000 Hz. As in 

figure 9, the rotor blades are visible as noise sources at the frequency bands 2500 Hz, 3150 Hz, 

and 4000 Hz, but now we can also vaguely see rotor blade noise sources in higher frequency 

bands.  

 

The peak values of the beamforming results are shown in figure 17. Remarkably, the tonal noise 

dominates at frequencies around 4000 Hz, which seems to be in contrast with figure 14. This 

paradox can be explained with some basic knowledge about rotor-stator interaction noise 

(Ref. 5), as will be worked out below.  

 

An acoustic mode in a flow duct can be described by: 

 
( )( , ) i t mp p x r e   , (26) 

 

with 2 f  . If a mode with inm m  and in   interacts with a rotor having B blades and 

angular frequency , then new acoustic modes are generated with: 

 

out in

out in

,

,

B

m m B

  


  
  

 (27) 

 

in which  is any integer. The rotor blades experience unsteady loading, with 

 

blade in in out outm m        . (28) 

 

Now consider the mode spectra (tonal noise) at 2BPF ( 2B   ) and at 3BPF ( 2B   ). 

These spectra are plotted in figure 18. At 2BPF, one of the dominant modes is 4m   , and at 

3BPF the dominant modes are around 20m  . These are the well-known rotor-stator interaction 

modes: 

 

m nB kV  , (29) 

 

where n is the BPF order, V is the number of stator vanes, and k is an integer. In our case, we 

have 24B  , 52V  , and 1k  . When these modes interact with the rotor, we have according 

to (28): 
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 blade in inm nB nB V V           . (30) 

 

In other words, the frequency on the rotor is equal to the “vane passing frequency”. This is the 

peak frequency that is observed in figure 17, and there is no direct relation with the second 

hump in figure 14. The origin of the humps in figure 14 will be further explored in the next 

chapter. 

 

 
 
Fig. 16  Results of beamforming with rotating focus on rotor leading edge  
 plane –  broadband noise 
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Fig. 17  Narrow-band peak values of beamforming results with rotating  
 focus –  breakdown into tonal and broadband noise 
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Fig. 18  Mode spectra at 2BPF and 3BPF – tonal noise 

 

 
4 A closer look to the spectral humps 

The origins of the broadband humps in figure 11 are not yet understood, but at least the 

following can be said about them: 

 

1. Peak frequencies 

The peak values of the broadband humps appear at engine orders EO = 26 ( 26   , 

f = 2034 Hz) and EO = 52 ( 52   , f = 4068 Hz). 
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2. Modal content 

The mode spectra at the peak frequencies are shown in figure 19. The noise appears to be 

concentrated in single modes, viz. 4m   at EO = 26 and 15m   at EO = 52. 
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Fig. 19  Mode spectra at 2034 Hz (EO = 26) and at 4068 Hz (EO = 52) – total noise 

 

3. Frequencies at the rotor 

According to Eq. (28), the dominating acoustic modes, mentioned above, should correspond 

with rotor blade loading frequencies at EO = 22 (1721 Hz) and EO = 37 (2895 Hz). Indeed, 

around those frequencies small humps are visible in figure 17. Between these two humps, there 

is a third hump around EO = 28 (2190 Hz). This one corresponds with another peak in the mode 

spectrum of EO = 26 (Fig. 19), namely 3m   .  

 

 
 
Fig. 20  Conventional beamforming on stator leading edge  
 plane –  broadband noise: narrow-band result at EO = 26 
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Fig. 21  Conventional beamforming on stator leading edge  
 plane –  broadband noise: narrow-band result at EO = 52 

 

4. Possible source locations on the stator 

Narrow-band conventional beamforming results (scan plane at the stator leading edge) at 

EO = 26 and EO = 52 are shown in figure 20 and figure 21, respectively. At EO = 26, the 

sources seem to be located near the splitter. At EO = 52, the sources seem to be located near the 

tips of the stator vanes. However, looking more closely to figure 21, it seems to be that the 

number of sources in circumferential direction is less than the number of stator vanes (V = 52). 

 

 
 
Fig. 22  Beamforming with rotating focus on rotor leading edge  
 plane –  broadband noise: narrow-band result at EO = 22 

 

 

 

 

 



  

NLR-TP-2006-320 

 

  28 

 

 
 
Fig. 23  Beamforming with rotating focus on rotor leading edge  
 plane – broadband noise: narrow-band result at EO = 28 

 

 
 
Fig. 24  Beamforming with rotating focus on rotor leading edge 
 plane – broadband noise: narrow-band result at EO = 37 

 

5. Possible source locations on the rotor 

Narrow-band beamforming results with rotating focus (scan plane at the rotor leading edge) at 

EO = 22, EO = 28, and EO = 37 are shown in figure 22 to figure 24. Each of these plots seem to 

show a different noise source mechanism: Figure 22 shows sources around the rotor hub, figure 

23 seems to show a source in the middle of the spinner, and figure 24 shows sources on the 

rotor blades. 
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6. Coherence 

A surprising feature of the hump at EO = 52 is the single mode behaviour (see Fig. 19). It is 

shown in figure 21 and in figure 24 that the noise is radiating from many locations. Since the 

noise is broadband, or at least not rotor-bound, it is natural to expect that all these sources are 

incoherent. However, with incoherent sources a single non-zero mode would not be expected. 

Apart from 15m  , there should be, at least, also peaks at 0m   and 15m    (Ref. 6).  

 

An estimate of the number of incoherent sources can be made with an eigenvalue analysis of the 

cross-spectral density matrix of the microphone array. The number of (highest) eigenvalues is a 

good indication of the number of (loudest) incoherent source components. In figure 25, the 10 

highest eigenvalues are plotted, over the entire frequency range. The figure shows that the 

highest eigenvalue at EO = 52 (and to a smaller extent at EO = 26) is significantly higher than 

the next eigenvalue, which indicates that the noise is dominating by a single coherent 

component. 
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Fig. 25  Values of 10 highest eigenvalues of microphone array cross-spectral  
 density matrix – broadband noise 

 

Another way to consider this coherence issue is to look at source coherence in the scan plane 

(Ref. 7). By considering source coherence, it is possible to remove in a noise source plot all 

sources that are coherent with the peak source. This is, in fact, one iteration of the alternative 

CLEAN method (with unit loop gain), as described in Appendix A. This technique is applied to 

the conventional beamforming results of EO = 26 and EO = 52. The resulting source plots in 

figure 26 and figure 27 show what is left from figure 20 and figure 21, respectively, after 

subtracting the main coherent component. Since figure 27 (EO = 52) is virtually empty, all 

sources shown in figure 20 are apparently coherent.  
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Fig. 26  Conventional beamforming on stator leading edge  
 plane – broadband noise: narrow-band result at  
 EO = 26 – after subtraction of main coherent component 

 

 
 
Fig. 27  Conventional beamforming on stator leading edge  
 plane – broadband noise: narrow-band result at  
 EO = 52 – after subtraction of main coherent component 

 

7. Possible source mechanism 

Using mode detection and phased array techniques, we are able to determine many properties of 

the source mechanisms causing the spectral humps, like: 

 their broadband (non rotor-bound) nature, 

 their modal content, 

 frequencies of unsteady loading at the rotor, 

 possible source locations on the stator, 

 possible source locations on the rotor, 
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 their coherent behaviour. 

Nonetheless, to the knowledge of the author, the cause for the spectral humps has not been 

found yet, but with the features mentioned above it should be easier to trace the source origin. 

The coherent behaviour of the noise sources suggests that it is possibly something like rotor 

instability. 

 

 
5 Conclusions 

The main conclusions of this report are: 

 Application of phased array beamforming techniques, both with stationary and rotating 

focus, to measurements with a circular intake microphone array is feasible. Noise 

source locations on both rotor and stator are clearly visible. 

 The breakdown into tonal and broadband noise gives valuable additional information. 

 Knowledge about the (azimuthal) modal content is very important to understand the 

beamforming results. 

 

 
6 Future research 

The following future investigations on this subject are envisaged: 

 study of the effects of wall reflections, 

 study of the effects of an intake liner, 

 research into possible improvements by choosing a different array location. 
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Appendix A Source deconvolution using CLEAN 

A method of removing a dominant source is CLEAN (Ref. 8), a technique that astronomers use 

to remove side lobes of bright stars from maps obtained with multiple telescopes. Basically, 

CLEAN performs the following steps 

 It searches for the location of the maximum source auto-power in the acoustic image. 

 It subtracts the appropriately scaled theoretical beam pattern of that source (“dirty 

beam”, including side lobes) from the acoustic image. 

It replaces this “dirty beam” by a “clean beam” (beam without side lobes).  

This process can be done iteratively, for multiple sources. Ignoring the “clean beam” issue, the 

analysis is as follows. 

 

Suppose that beamforming is expressed in vector notation as: 

 

A  w Cw , (31) 

 

where the asterisk means “complex conjugate transpose”, C is a cross-power matrix, and w a 

weight vector. This weight vector is derived from a transfer vector g  (e.g. in Eq. (3) we have 
w g g g ), which points to a source location 


. Suppose that maxw  is the weight vector with 

the maximum ‘array output’ maxA : 

 

max max maxA  w Cw . (32) 

 

The weight vector maxw  is associated with a transfer vector maxg  and a source location max


.  

 

A modified array output modA , without the disturbing influence of the source in max


 can 

formally be written as 

 

mod maxA   w Cw w C w , (33) 

 

where maxC  is the cross-power matrix induced by the source in max


. This matrix maxC  is 

unknown, but a reasonable guess seems to be: 

 

max max max maxA C g g . (34) 

 

Equations (33) and (34) form the basis for the CLEAN algorithm, which is as follows: 

 Step 1:  Apply the beamforming algorithm to the scan plane, search for the peak source 

location max


, and determine the corresponding matrix maxC . 
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 Step 2: Replace the cross-power matrix C by maxC C , where  is a safety factor with 

0 1  , called the “loop gain”. 

 Step 3: Return to step 1, unless a certain stop criterion is fulfilled.  

Afterwards, the information that has been subtracted in Step 2 can be used to produce a “clean 

map”. 

 

The CLEAN algorithm, as sketched above, is based on the assumption of point sources. 

Furthermore, it assumes that the sound transfer is well described by maxg . The latter assumption 

includes a uniform directivity and no loss of coherence, which is seldom fulfilled in aero-

acoustic measurements. To overcome this limitation, an alternative approximation for maxC  is 

proposed below. 

 

The matrix maxC  will be defined such that the source cross-power 1,2 1 2A  w Cw  of any scan 

point 


 with the peak location max


 is determined entirely by maxC . In other words: 

 

max max max
 w Cw w C w  (35) 

 

for all possible w. This is satisfied when 

 

max max maxCw C w . (36) 

 
Equation (36) does not have a unique solution for maxC , but it does when we write  

 

max maxA C hh . (37) 

 

The solution of (36) with (37) is 

 

max

maxA


Cw
h , (38) 

 

and, consequently, 

 

max max
max

maxA




Cw w C

C . (39) 

 

Herewith, we have an alternative for (34) that does not make use of the transfer vector maxg , 

except to define the weight vector maxw . It is noted that maxh g  if (34) holds.  
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For wind tunnel measurements, source removal using CLEAN gives generally better results 

than principal component removal. Using CLEAN, the approximation (39) gives better results 

than (34). It gives no complications, when the beamforming is started without the main diagonal 

of C. As soon as an updated cross-power matrix is introduced by step 2 (see above), then the 

main diagonal can no longer be neglected.  
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