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Summary

The goal of this research is to optimize multigrid methods for higher order accurate space-time

discontinuous Galerkin discretizations. The main analysis tool is discrete Fourier analysis of

two- and three-level multigrid algorithms. This gives the spectral radius of the error transforma-

tion operator which predicts the asymptotic rate of convergence of the multigrid algorithm. In the

optimization process we therefore choose to minimize the spectral radius of the error transfor-

mation operator. We specifically consider optimizing h-multigrid methods with explicit Runge-

Kutta type smoothers for second and third order accurate space-time discontinuous Galerkin fi-

nite element discretizations of the 2D advection-diffusion equation. The optimized schemes are

compared with current h-multigrid techniques employing Runge-Kutta type smoothers. Also, the

efficiency of h-, p- and hp-multigrid methods for solving the Euler equations of gas dynamics

with a higher order accurate space-time DG method is investigated.

UNCLASSIFIED 2



UNCLASSIFIED
NLR-TP-2010-531

Contents

1 Introduction 4

2 Multigrid error transformation operator 4

3 Three-level multigrid analysis 5

3.1 Discrete Fourier analysis 5

3.2 Three-grid Fourier analysis 6

4 Optimizing multigrid for space-time DG discretizations 8

4.1 Pseudo-time integration and Runge-Kutta methods 9

4.2 Optimization results 9

5 Testing multigrid performance 10

5.1 The 2D advection-diffusion equation 10

5.2 The Euler equations 14

6 Conclusions 15

References 16

1 Table

4 Figures

(17 pages in total)

UNCLASSIFIED 3



UNCLASSIFIED
NLR-TP-2010-531

1 Introduction

Space-time discontinuous Galerkin (DG) discretizations of time-dependent partial differential

equations result in a system of (non)-linear algebraic equations which can be solved efficiently

with multigrid methods. In this paper we will discuss the optimization of multigrid techniques

for higher order accurate space-time DG discretizations describing advection dominated flows.

This research is a continuation of Ref. 3, 7 where we presented a multigrid algorithm in com-

bination with a pseudo-time integration method for second order accurate space-time DG dis-

cretizations of the compressible Euler and Navier-Stokes equations. The main benefits of this

multigrid algorithm are that no large global linear system needs to be solved and, through the

use of Runge-Kutta type smoothers, the locality of the DG discretization is preserved. The al-

gorithm is easy to implement and parallelize, even on locally refined meshes, and insensitive to

initial conditions. For higher order accurate space-time DG discretizations the multigrid perfor-

mance was, however, not satisfactory. The objective of this paper is to discuss improvements

in the computational performance of space-time DG discretizations when higher order polyno-

mial basis functions are used. The main tool to analyze the multigrid performance is three-level

discrete Fourier analysis. This analysis tool is used to optimize the multigrid performance by

minimizing the spectral radius of the multigrid error transformation operator. In particular, the

focus will be on searching for better coefficients in the multigrid smoothing operator. More de-

tailed information on the multigrid algorithms and the analysis techniques used in this paper can

be found in e.g. Ref. 1, 6, 10, 11.

The outline of this paper is as follows. After a brief introduction in Chapter 2 on the multigrid

error transformation operator, a summary of the discrete Fourier analysis of the multigrid algo-

rithm will be given in Chapter 3. Next, we discuss the optimization of the multigrid algorithm in

Chapter 4. Results of the optimization process will be given in Chapter 5 as well as a compar-

ison in efficiency between h-, p- and hp-multigrid methods. Finally, conclusions are drawn in

Chapter 6.

2 Multigrid error transformation operator

The main goal of the multigrid algorithm is to iteratively solve in an efficient way a system of

(non)-linear algebraic equations Lhvh = fh on a mesh Mh, with Lh a linear or non-linear dis-

cretization operator and fh a given right hand side. In the h-multigrid method we use a finite se-

quence Nc of increasingly coarser meshes Mnh, n ∈ {1, · · · , Nc} to generate approximations
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to the original problem. In addition, the data on the different meshes are connected with restric-

tion operators Rmh
nh : Mnh → Mmh and prolongation operators Pnh

mh : Mmh → Mnh, with

1 ≤ n < m ≤ Nc. On these meshes a set of auxiliary problems is solved Mnh, 1 < n ≤ Nc,

namely Lnhvnh = fnh, in order to accelerate convergence. For non-linear problems we use the

Full Approximation Scheme (FAS), see e.g. Ref. 6, but in the analysis of the multigrid perfor-

mance we only consider linear problems.

In order to understand the performance of the multigrid algorithm we need to consider the multi-

grid error transformation operator. Given an initial error eA
h , the error eD

h after one full multigrid

cycle with three grid levels is given by the relation

eD
h = M3g

h eA
h

with

M3g
h = Sν2

h (Ih − P h
2h(I2h −Mγc

2h)L−1
2h R2h

h Lh)Sν1
h (1)

and

M2h = Sν4
2h(I2h − P 2h

4h L−1
4h R4h

2hL2h)Sν3
2h. (2)

Here, Snh and Inh are, respectively, the smoothing and identity operator on the mesh Mnh, νi,

i = 1, · · · , 4, the number of pre- and post-smoothing iterations and γc the cycle index. In the

multigrid analysis and computations we will also consider the effect of solving the algebraic sys-

tem on the coarsest mesh approximately using νc smoother iterations instead of using an exact

inverse. Next to h-multigrid also p-multigrid methods are possible in which on a single mesh

coarser approximations are obtained by using lower order discretizations. Of course, combina-

tions of both techniques are possible resulting in hp-multigrid methods.

3 Three-level multigrid analysis

3.1 Discrete Fourier analysis
Consider the infinite mesh Gh, which is defined as

Gh :=
{
x = (x1, x2) = (k1h1, k2h2) | k ∈ Z2, h ∈

(
R+

)2}
.

On Gh we define for vh : Gh → C the norm

‖vh‖2Gh
:= lim

N→∞

1
4N2

∑
|k|≤m

|vh(kh)|2,
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where |k| = max{|k1|, |k2|}. In the theoretical analysis we only consider linear problems, where

the linear systems on the various meshes are described using stencil notation

Lnhvnh(x) =
∑
k∈Jn

ln,kvnh(x + kh), x ∈ Gnh, (3)

with stencil coefficients ln,k ∈ Rmk×mk and finite index sets Jn ⊂ Z2 describing the stencil.

The restriction operators Rmh
nh , prolongation operators Pnh

mh and smoothing operators Snh with

1 ≤ n < m ≤ Nc are also expressed using stencil notation, see e.g. Ref. 6, 10, 11.

On the infinite mesh Gh, we define for x ∈ Gh the continuous Fourier modes with frequency

θ = (θ1, θ2) ∈ R2 as φh(θ, x) := eiθ·x/h with θ · x/h := θ1x1/h1 + θ2x2/h2, h ∈
(R+)2 and i =

√
−1. We also define the space of bounded infinite grid functions by F(Gh) :=

{vh | vh : Gh → C with ‖vh‖Gh
< ∞}. For each vh ∈ F(Gh) there exists a Fourier transforma-

tion, hence vh(x) can be written as a linear combination of Fourier components

vh(x) =
∫
|θ|≤π

v̂h(θ)eiθ·x/hdθ, x ∈ Gh, (4)

with x/h := (x1/h1, x2/h2) = j ∈ Z2, and inverse transformation

v̂h(θ) =
1

4π2

∑
x∈Gh

vh(x)e−iθ·x/h, −π ≤ θj < π,

see e.g. Ref. 1. Due to aliasing, Fourier components with |θ̂| := max{|θ1|, |θ2|} ≥ π are not

visible on Gh. These modes coincide with eiθ·x/h, where θ = θ̂ (mod 2π). Hence, the Fourier

space F := span
{
eiθ·x/h | θ ∈ Θ = [−π, π)2, x ∈ Gh

}
contains any bounded infinite grid

function.

3.2 Three-grid Fourier analysis
For the three-grid Fourier analysis we define the Fourier harmonics F4h(θ) as

F4h(θ) := span
{
φh(θα

β , x) | α ∈ α2, β ∈ β2

}
, where

θ = θ0
0 ∈ Θ4h := [−π/4, π/4)2,

θβ = θ0
0 − (β̄1 sign (θ1), β̄2 sign (θ2))π,

θα
β := θβ − (ᾱ1sign ((θ1)β), ᾱ2 sign ((θ2)β))π,

α2 := {α = (ᾱ1, ᾱ2) | ᾱi ∈ {0, 1}, i = 1, 2}

β2 := {β = (β̄1, β̄2) | β̄i ∈ {0,
1
2
}, i = 1, 2}.

Note that we have 16 coupled Fourier harmonics, all related to θ00
00. In the transition from G2h to

G4h the modes θβ = θ0
β are not visible due to aliasing.
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The error eD
h after one iteration of a three-grid multigrid cycle is determined by eD

h = M3g
h eA

h ,

with eA
h the initial error and M3g

h the three-level multigrid error transformation operator defined

by (1).

The properties of the error transformation operator can be investigated using discrete Fourier

analysis. For this purpose we introduce the following matrices

L̂2g
h (θβ) = diag (L̂h(θ00

β ), L̂h(θ11
β ), L̂h(θ10

β ), L̂h(θ01
β )) ∈ C4m×4m (5)

Ŝ2g
h (θβ) = diag (Ŝh(θ00

β ), Ŝh(θ11
β ), Ŝh(θ10

β ), Ŝh(θ01
β )) ∈ C4m×4m (6)

R̂2g
h (θβ) = (R̂2h

h (θ00
β ), R̂2h

h (θ11
β ), R̂2h

h (θ10
β ), R̂2h

h (θ01
β )) ∈ Cm×4m (7)

P̂ 2g
h (θβ) = (P̂ h

2h(θ00
β ), P̂ h

2h(θ11
β ), P̂ h

2h(θ10
β ), P̂ h

2h(θ01
β ))T ∈ C4m×m (8)

where diag refers to a diagonal matrix consisting of m × m blocks with m ∈ N. The Fourier

symbol of the linear operator Lnh is equal to L̂nh(θ) =
∑

k∈Jn
ln,ke

iθ·k. Similar expressions can

be derived for the Fourier symbols of the restriction operator R̂mh
nh (θ), the prolongation operator

P̂nh
mh(θ) and the smoothing operator Ŝnh(θ) on the various mesh levels. For more details, see e.g.

Ref. 1, 6, 11. We also introduce the matrices

L̂3g
h (θ) = bdiag

(
L̂2g

h (θ00), L̂
2g
h (θ 1

2
1
2
), L̂2g

h (θ 1
2
0), L̂

2g
h (θ0 1

2
)
)
∈ C16m×16m

Ŝ3g
h (θ) = bdiag

(
Ŝ2g

h (θ00), Ŝ
2g
h (θ 1

2
1
2
), Ŝ2g

h (θ 1
2
0), Ŝ

2g
h (θ0 1

2
)
)
∈ C16m×16m

R̂3g
h (θ) = bdiag

(
R̂2g

h (θ00), R̂
2g
h (θ 1

2
1
2
), R̂2g

h (θ 1
2
0), R̂

2g
h (θ0 1

2
)
)
∈ C4m×16m

P̂ 3g
h (θ) = bdiag

(
P̂ 2g

h (θ00), P̂
2g
h (θ 1

2
1
2
), P̂ 2g

h (θ 1
2
0), P̂

2g
h (θ0 1

2
)
)
∈ C16m×4m

Q̂3g
h (θ) = bdiag

(
L̂−1

2h (2θ00), L̂−1
2h (2θ 1

2
1
2
), L̂−1

2h (2θ 1
2
0), L̂

−1
2h (2θ0 1

2
)
)
∈ C4m×4m.

The discrete Fourier transform of the error transformation operator for a three-level multigrid

cycle M̂3g
h (θ) ∈ C16m×16m then is equal to Ref. 11

M̂3g
h (θ) =

(
Ŝ3g

h (θ)
)ν2

(
I3g − P̂ 3g

h (θ)Û3g(θ; γc)Q̂
3g
h (θ)R̂3g

h (θ)L̂3g
h (θ)

)(
Ŝ3g

h (θ)
)ν1 (9)

with I3g the 16m × 16m identity matrix and θ ∈ Θ4h \ Ψ3g, where Ψ3g is defined as Ψ3g :={
θ ∈ Θ4h | L̂4h(4θ0

0) = 0 or L̂2h(2θ0
β) = 0 or L̂h(θα

β ) = 0
}

. We still need to obtain an

explicit expression for Û3g(θ; γc) ∈ C4m×4m. On the mesh G2h the modes θα
β reduce after the

restriction operator to modes 2θ0
β , hence using the result of a two-level analysis the coarse grid

error transformation operator is equal to

M̂2g
2h(2θβ) =

(
Ŝ2g

2h(2θβ)
)ν4

(
I2g − P̂ 2g

2h (2θβ)L̂−1
4h (4θ0

0)R̂
2g
2h(2θβ)L̂2g

2h(2θβ)
)(

Ŝ2g
2h(2θβ)

)ν3 ,
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with I2g the 4m×4m identity matrix and θβ ∈ Θ2h := [−π/4, π/4)2\Ψ2g, where Ψ2g is defined

as Ψ2g :=
{
θ ∈ [−π/4, π/4)2 | L̂4h(4θ0

0) = 0 or L̂2h(2θ0
β) = 0

}
. The matrices L̂2g

2h, Ŝ2g
2h, R̂2g

2h

and P̂ 2g
2h are given by (5)-(8), respectively, with h replaced by 2h. The matrix Û3g(θ; γc) then is

equal to

Û3g(θ; γc) = I2g −
(
M̂2g

2h(2θβ)
)γc .

The spectral radius of the error transformation operator gives a prediction of the asymptotic rate

of convergence of the multigrid method. This asymptotic convergence is expressed in terms of

the asymptotic convergence factor per cycle, which is equal to

µ = sup
θ∈Θ3g\Ψ3g

ρ
(
M̂3g(θ)

)
, (10)

with ρ is the spectral radius. A requirement for convergence of the multigrid algorithm is that the

spectral radius satisfies the condition µ < 1. By minimizing the spectral radius of the three-level

multigrid error transformation operator (9), we obtain optimized multigrid algorithms.

4 Optimizing multigrid for space-time DG discretizations

The theory of the previous sections holds for general linear discretizations and smoothing opera-

tors, but in this paper we are specifically interested in designing optimized multigrid methods for

higher order accurate space-time DG discretizations. For the optimization, we will consider the

2D advection-diffusion equation as model problem

∂tu + ~a · ∇u−∇ · ( ¯̄A∇u) = 0, x ∈ Ω ⊂ R2, t ∈ R+, (11)

where we assume that the advection velocity ~a ∈ R2 and diffusion matrix ¯̄A ∈ (R+)2 are con-

stant, with ¯̄A11 = νx, ¯̄A22 = νy and ¯̄A12 = ¯̄A21 = 0. We do not discuss the details of the

space-time DG discretization for the advection-diffusion equation, but refer to Ref. 3, 5 for more

details. In the multigrid optimization we consider a uniform space-time mesh with elements

∆t × ∆x × ∆y and periodic boundary conditions. The discretization depends on the follow-

ing dimensionless numbers:

CFL =
a∆t

h
, Rex =

a(∆x)2

νxh
, Rey =

a(∆y)2

νyh
, AR =

∆y

∆x
,

in which h = ∆x
√

1 + AR2 and a =
√

a2
x + a2

y. Furthermore, we introduce the flow angle

γflow with respect to the x-axis so that ax = cos(γflow)a and ay = sin(γflow)a.

UNCLASSIFIED 8
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4.1 Pseudo-time integration and Runge-Kutta methods
The system of algebraic equations resulting from the space-time DG discretization of the 2D

advection-diffusion equation can be represented as

L(ûn; ûn−1) = 0, (12)

with ûn the expansion coefficients of a polynomial approximation of u and n refers to the time

index. To solve the system of coupled equations for the expansion coefficients ûn in (12), a

pseudo time derivative is added to the system Ref. 7:

∆x∆y
∂û∗

∂τ
= − 1

∆t
L(û∗; ûn−1), (13)

which is integrated to steady-state in pseudo-time. At steady state, ûn = û∗. For the pseudo-time

integration we introduce the dimensionless number λ = ∆τ/∆t and use the pseudo-time CFL

number, defined as CFLτ = λCFL. To solve (13) we consider N -stage Runge-Kutta methods.

For notational purposes, we set L(V̂ ∗;un−1) = L(V̂ ∗). Initialize V̂ 0 = ûn−1. Then, an N -stage

Runge-Kutta scheme is given by:

(1 + βjλI)V̂ j = V̂ 0 − λ

( j∑
l=1

αj+1,lL(V̂ l−1)/(∆x∆y)
)

+ λβj V̂
j−1, j = 1, ..., N,

with û∗ = V̂ N . We see that there are a number of free parameters in the Runge-Kutta smoother.

The smoother is therefore a good candidate for optimization. We will minimize the spectral ra-

dius (10) by optimizing the parameters α and β. In this paper only 5-stage Runge-Kutta schemes

are considered for which we require that they are second order accurate in pseudo-time. This

requirement gives constraints on the α coefficients. The β coefficients serve as the Melson cor-

rection to improve stability for small values of λ ∼= 1, see Melson et al. Ref. 4.

4.2 Optimization results
We now provide some examples of the optimization of the Runge-Kutta (RK) smoothers for

multigrid. We distinguish between diagonal RK schemes (dRK5) and full RK schemes (fRK5) in

which all coefficients αj+1,l, with 1 ≤ l ≤ j ≤ N , are non-zero. We present optimized RK coef-

ficients for the second (p = 1) and third (p = 2) order accurate space-time DG discretizations of

the 2D advection-diffusion equation. For this we use the optimization procedures fminsearch

and fmincon, available in Matlab. As constraint in the fmincon procedure, we require that

both the spectral radius of the smoother and the three-level multigrid error transformation op-

erator are less than 1. The optimization was performed for advection dominated steady flows in

which we fix the Reynolds numbers Rex = Rey = 100 and the CFL number as CFL = 100.

We also set the flow angle γflow = π/4, the aspect ratio AR = 1 and the number of pre- and
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post-smoothing steps ν1 = ν2 = 1. On the coarsest grid, we use four smoother steps instead of

an exact inverse. Furthermore, γ = 1. As initial guess in the optimization procedure, we use the

EXI RK method Ref. 7 for the optimized dRK5 scheme. We then use the dRK5 scheme as initial

guess to obtain the fRK5 scheme. The optimized coefficients and spectral radii of the smoother

ρS and the 3-level multigrid operator ρMG are given in Table 1. As a comparison, we also give

the spectral radius of the 3-level multigrid operator with EXI-RK smoother, ρEXI−MG when us-

ing the given parameters. We see that for these parameters the multigrid algorithm with the EXI

smoother is very unstable, while good convergence can be achieved with our optimized schemes.

5 Testing multigrid performance

In this section we test the multigrid performance. We start in Section 5.1 by comparing the op-

timized h-multigrid algorithms of the previous sections to the original EXI-EXV h-multigrid

method Ref. 3. For this we consider the 2D advection-diffusion equation. In Section 5.2 we con-

sider a more complex test case in which we solve the Euler equations for inviscid flow over an

NACA0012 airfoil. We will compare the performance of h-multigrid with p- and hp-multigrid.

5.1 The 2D advection-diffusion equation
In order to demonstrate the performance of the optimized algorithms we consider (11) on Ω =

(0, 1)2 with initial condition u(x, y, 0) = 1 − 1
2(x + y) and boundary condition u(x, y, t) =

g(x, y). Here g(x, y) equals at the domain boundary the exact steady state solution of (11) given

by:

u(x, y) =
1
2

(
exp(a1/νx)− exp(a1x/νx)

exp(a1/νx)− 1
+

exp(a2/νy)− exp(a2y/νy)
exp(a2/νy)− 1

)
.

In the discretization we use a Shishkin mesh Ref. 3 which is suitable for dealing with boundary

layers. The parameters in the test cases are the following: we consider a mesh with 32 × 32 el-

ements, one physical time step, with ∆t = 100, a =
√

2, νx = νy = 0.01 and a flow angle

γflow = π/4. For the optimized RK schemes, we used a local pseudo-time scaling to deal with

viscous flows Ref. 9. For the multigrid computations we use νi = 1, i = 1, 2, 3, 4 and γ = 1.

On the coarsest mesh we investigate the effect of using νC = 4 smoother iterations or solving the

discrete system exactly.

In Figures 1 and 2, we show the convergence results of the different smoothers for 3-level multi-

grid. We see that in all cases a big improvement is obtained with the optimized Runge-Kutta

smoothers over the original EXI-EXV smoother. For a second order accurate space-time DG

UNCLASSIFIED 10
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Table 1 Optimized coefficients for the dRK5 and fRK5 smoothers for 3-level multigrid for

steady flows.

dRK5 p = 1 fRK5 p = 1 dRK5 p = 2 fRK5 p = 2

α21 0.057689952980.0578331573 0.048650095890.04877436325

α31 - -

0.0002051554736

- -

0.0002188348438

α32 0.1405960888 0.1403808301 0.130316854 0.1300906122

α41 - 0.0003953470071 - 2.608884832e-

05

α42 - -

0.001195029164

- 2.444376496e-

05

α43 0.267958213 0.2681810517 0.2729621396 0.2734805705

α51 - 0.0001441249202 - -

0.001250385487

α52 - -

0.0002608610327

- -

0.0007838720635

α53 - -

0.0003368070181

- -

0.0004890887712

α54 0.5 0.8473374098 0.5 4.412139367

α61 - 0.4115573097 - 0.8097217358

α62 - -

0.003144851878

- 0.08435089009

α63 - -

0.0001096455683

- -

0.01986799007

α64 - 0.001555741114 - 0.01359815476

α65 1.0 0.5901414466 1.0 0.1121972094

β1 0.057689952980.04887040625 0.048650095890.5551936269

β2 0.1405960888 0.1274785795 0.130316854 0.1333199239

β3 0.267958213 0.2287556298 0.2729621396 -1.332263675

β4 0.5 0.9547064029 0.5 -3.649588578

β5 1.0 2.52621971 1.0 0.46771792

CFLτ 0.8 0.8 0.4 0.4

ρS 0.98812 0.98914 0.98974 0.9896

ρMG 0.89151 0.81762 0.90049 0.89903

ρEXI−MG 167.06 - 124.02 -
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Fig. 1 Convergence results of second order space-time DG for three level multigrid algorithms

with different Runge-Kutta smoothers. (dRK5, fRK5 and the EXI-EXV scheme Ref. 2,

exact and approximate solution of equations on coarsest mesh).
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Fig. 2 Convergence results of third order space-time DG for three level multigrid algorithms

with different Runge-Kutta smoothers. (dRK5, fRK5 and the EXI-EXV scheme Ref. 2,

exact and approximate solution of equations on coarsest mesh).
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discretization the number of multigrid cycles to obtain 4 orders of reduction in the residual is re-

duced from 3283 to 371. For the third order accurate DG discretization the number of multigrid

cycles reduces from 21254 to 184. Furthermore, comparing dRK5 with fRK5, we see that the

differences for a second order accurate space-time DG discretization is negligible. For a third

order accurate space-time DG discretization this difference is, however, significant. Using more

Runge-Kutta coefficients enlarges the possibilities to optimize the smoother.

The effect of solving the equations on the coarsest mesh with high accuracy is very large. With-

out this the multigrid convergence significantly slows down after a rapid initial decrease of the

residual. In particular, for nonlinear problems it is tempting to solve the algebraic system on the

coarsest mesh only approximately, because otherwise a global Newton solver is required. The

effect of accurately solving the algebraic equations for the linear advection-diffusion equation on

the coarsest mesh is, however, non-negligible.

5.2 The Euler equations
We now compare the performance of an h-multigrid method with p- and hp-multigrid. Since

the difference between EXI and the optimized RK smoothers for the Euler equations is small

we will only show the EXI results. As test case we consider 2D steady subsonic flow around a

NACA0012 airfoil with an angle of attack of α = 2◦ and far-field Mach number Ma = 0.5

(MTC1 test case). Since this test case is a steady-state flow problem, we consider a space-time

DG discretization which is only first-order accurate in time but third-order accurate in space. The

grid around the airfoil has 448× 64 elements.

For single-grid, p- and hp-multigrid computations we used a pseudo-time CFL number of CFLτ =

1.6, while for h-multigrid CFLτ = 0.8. Larger pseudo-time CFL numbers for h-multigrid re-

sulted in unstable calculations. For the p-multigrid method we solve the lowest order problem

approximately taking νC = 20. For the h- and hp-multigrid methods we solve the coarsest grid

problem approximately, also taking νC = 20. Furthermore, for the h-multigrid method, we also

solve the coarse grid problem exactly using a matrix-free Newton method. In all cases, 5 pre-

and post-smoothing steps were taken on each multigrid level. The Mach contours are given in

Figure 3 while the convergence history plot is given in Figure 4.

We see that h-multigrid performs the worst while p- and hp-multigrid converge six orders in ap-

proximately the same amount of work units. We, however, had to take a twice as small CFLτ

number in the h-multigrid calculation compared to the other calculations. Furthermore, we see

that after the high-frequency error modes have been smoothed, h-multigrid efficiency quickly

deteriorates. A possible reason for this could be that the coarse-grid problem of the h-multigrid

UNCLASSIFIED 14



UNCLASSIFIED
NLR-TP-2010-531

0.415

0.
32

5

0.615
0.5150.505

0.4150.425 0.4750.4

0.475

0.2250.
61

5

0.
48

5

0.465

0.665

0.345
0.445

0.
45

50.335

0.465

0.
46

5

0.
51

5

0.285

0.455

0.475

0.
46

5

0.355

0.
52

5

0.345
0.465

0.
50

5

0.505

0.
50

5

0.
58

5 0.
60

5

0.475
0.475

0.525

0.385

0.
57

5 0.595

0.555

0.485

0.425

0.545

0.525

0.575
0.

55
5

0.
55

5 0.
50

5

0.465

0.555

0.485

0.575

0.495
0.495

0.545

0.
50

5

0.5150.
49

5

0.
55

5

0.565

0.
45

5

0.555
0.555

0.515

0.555 0.
51

5

0.505

0.515

0.495

0.525

0.5
45 0.

51
5

0.
50

5

0.545

0.485

0.
51

5

0.
50

5

0.495

0.
53

50

0.495
0.495

0.495
0.4

0

Fig. 3 Mach contours of inviscid flow around an NACA0012 airfoil (α = 2◦,Ma = 0.5).

algorithm is not solved well with respect to the characteristic components, see Ref. 12. We also

see that there is hardly any difference in solving the coarse grid equations exactly with the New-

ton method or approximately by performing νC smoothing steps. This in contrary to the results

obtained in Section 5.1, where we saw a large improvement when the coarse grid problem was

solved exactly.

Regarding the hp-multigrid, where we first start with p-multigrid and continue at the lowest

polynomial order with h-multigrid, we see that initially there is a significant improvement in

reduction of the residual compared to the single-grid computation, but in the asymptotic regime

single-grid and hp-multigrid have approximately the same residual reduction per work unit. The

reason for this behavior is unclear yet. For the p-multigrid method, initial convergence is signifi-

cantly faster than for the single-grid computations, but in the asymptotic regime also a compara-

ble convergence history is obtained.

6 Conclusions

Using discrete Fourier analysis, we have analyzed two- and three-level multigrid algorithms for

the solution of linear algebraic systems originating from higher order accurate space-time DG

discretizations. For the 2D advection-diffusion equation we have shown that by minimizing
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Fig. 4 Convergence history of single-grid, h-, p- and hp-multigrid techniques for the solution of

inviscid flow around an NACA0012 airfoil (α = 2◦,Ma = 0.5).

the spectral radius of the multigrid error transformation operator, a significant improvement in

the multigrid performance can be achieved. The algorithms have been tested on a 2D problem

containing boundary layers, where the optimized Runge-Kutta smoothers show a significant im-

provement compared to the original EXI-EXV Runge-Kutta smoother discussed in Ref. 2, 3.

Apart from optimizing the multigrid smoother, also the solution of the algebraic system on the

coarsest mesh has a big impact on the multigrid performance.

We also compared the performance of h-multigrid with p- and hp-multigrid for solving the Euler

equations. We considered subsonic inviscid flow around a NACA0012 airfoil. No significant dif-

ference was observed between the EXI scheme and the optimized Runge-Kutta smoothers. The

main problem is the deterioration of the convergence rate after the high frequency error modes

are smoothed, in particular for h-multigrid. Also, the effect of solving the equations on the coars-

est mesh exactly or approximately is small. This in contrast with the 2D advection-diffusion

case. Furthermore, we saw that the p- and hp-multigrid methods show a better convergence rate

than the h-multigrid method.
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