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Executive Summary

Extra-Large Eddy Simulations Using a High-Order Finite-Volume
Scheme

Problem area
Massively separated flows play an
important role in topics such as the
design of silent landing gear, the
study of stability and control prop-
erties of fighter aircraft in relation
to vortex breakdown, and the study
of aerodynamic loads on structural
aircraft components due to buf-
fetting. These flows are strongly
turbulent, involving a large range of
spatial and temporal scales, which
makes it difficult to model their dy-
namics with high physical accuracy
and reliability. Flow computations
based on the Reynold-averaged
Navier–Stokes (RANS) equations
are not able to capture the smaller
turbulent scales. Large-eddy sim-
ulations (LES), on the other hand,
do capture a signifcant range of
scales, but are computationally too
demanding for complex geometries.
In recent years, therefore, research
has focussed on hybrid RANS-LES

methods, improving the physical
accuracy compared to RANS, but
without the cost of a full LES. In
particular, NLR has developed the
eXtra-Large Eddy Simulation (X-
LES) method.

Description of work
The accuracy of a flow computation
depends not only on the employed
physical model, but also on the nu-
merical method. In this paper, the
impact on X-LES of a numerical
method with fourth-order accu-
racy is considered. This high-order
method prevents unphysical dissipa-
tion of the smaller turbulent struc-
tures inside the massively separated
flows. Furthermore, the scheme pre-
serves essential conservation and
symmetry properties of the flow
equations that are solved. A grid
convergence study is performed for
the separated flow over a rounded
bump in a square duct, comparing
the fourth-order method to a stan-
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dard second-order method. Further-
more, the supersonic flow over a
cavity is considered, which involves
a shock wave. The fourth-order
method is extended with a shock-
capturing capability that maintains
the high numerical accuracy in the
separated flow regions.

Results and conclusions
The presented results show that the
high-order method improves the
numerical accuracy of the X-LES
computations significantly. The
fourth-order results are less sensi-
tive to the grid resolution than the
second-order results. The fourth-
order method allows the mesh size
to be at least twice as large as for

the second-order method to ob-
tain the same numerical accuracy.
A standard method for comput-
ing shock waves is shown to be too
dissipative in the separated flow re-
gions. A modified approach, that
can be combined with the high-
order method, is shown to effec-
tively resolve this problem.

Applicability
X-LES computations of massively
separated flows will be performed
with the high-order numerical
method. This means that for the
same computational cost, a numer-
ically more reliable result can be
obtained, compared to the second-
order method.
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Summary

This paper focuses on numerical aspects for hybrid RANS–LES computations using the X-LES

method. In particular, the impact of using a high-order finite-volume scheme is considered. The

finite-volume scheme is fourth-order accurate on non-uniform, curvilinear grids, has low nu-

merical dispersion and dissipation, and is based on the skew-symmetric form of the compress-

ible convection operator, which ensures that kinetic energy is conserved by convection. A lim-

ited grid convergence study is performed for the flow over a rounded bump in a square duct. The

fourth-order results are shown to depend only mildly on the grid resolution. In contrast, second-

order results require at least half the mesh size to become comparable to the fourth-order results.

Additionally, the high-order method is extended with a shock-capturing capability in such a way

that interference with the subgrid-scale model is avoided. The suitability of this extension is

demonstrated by means of a supersonic flow over a cavity.
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1 Introduction

If a large-eddy simulation (LES) employs an explicit subgrid-scale (SGS) model, and one is in-

terested in validating this model, then it is important to distinguish modelling errors from numer-

ical errors. Typically, for a given numerical method, this is done by performing a grid conver-

gence study. For LES, this requires that the SGS model is independent from the grid resolution,

which can be obtained by fixing the filter width. In the context of hybrid RANS–LES compu-

tations, more often than not, second-order discretization methods are used. Performing a grid

convergence study then easily leads to excessively fine grids, as second-order schemes typically

require at least four grid cells per filter width (e.g., Vreman et al., 1997). Therefore, such grid

convergence studies are seldom performed. Furthermore, in practice, often only one cell per filter

width is used and it is likely that the results are strongly influenced by numerical errors from the

second-order scheme.

To reduce the interference of numerical errors with the SGS model, the numerical accuracy of

the scheme should be improved at wave lengths close to the filter width. These wave lengths

are represented by only a few mesh widths and so the numerical accuracy is not determined by

the order of the scheme, but rather by its dispersion and dissipation characteristics at large wave

numbers. Numerical schemes optimized in that sense are, for example, the dispersion-relation

preserving (DRP) scheme of Tam and Webb (1993) and the compact schemes of Lele (1992).

In this paper, a fourth-order finite-volume scheme with low numerical dispersion and dissipation

is used for performing hybrid RANS–LES computations using the X-LES method (Kok et al.,

2004). In particular, a high-order discretization of the convective operator is required, as shown,

for example, by Kravchenko and Moin (1997). The finite-volume scheme is fourth-order accu-

rate on non-uniform, curvilinear grids, has low numerical dispersion and dissipation, and is based

on the skew-symmetric form of the compressible convection operator, which ensures that kinetic

energy is conserved by convection (Kok, 2006). The accuracy of this finite-volume scheme has

been assessed for a number of canonical test cases, including the convection of an isentropic vor-

tex and the decay of isotropic, homogeneous turbulence. It was shown that the mesh size may

be at least twice as large as for a second-order scheme to reach the same level of accuracy. It

was also shown that, for the isentropic vortex, the skew-symmetric form reduces the numerical

entropy errors by an order of magnitude. Thus, this scheme appears to be more amenable to per-

forming grid convergence studies. A limited study is performed here for the flow over a rounded

bump in a square duct, with the finest grid having two grid cells per filter width.

6



NLR-TP-2007-800

In more general cases, where a shock wave may be present in the flow, a particular numerical

error that may easily dominate the SGS model is the numerical dissipation introduced by shock-

capturing schemes. This issue is considered by means of the supersonic flow over a cavity.

2 The X-LES method

The X-LES formulation is a particular DES method (Spalart et al., 1997) that consists of a com-

position of a RANS k–ω turbulence model and a k-equation SGS model. Both models use the

Boussinesq hypothesis to model the Reynolds or subgrid-scale stress tensor, which depends on

the eddy-viscosity coefficient . Furthermore, both models are based on the equation for the mod-

elled turbulent kinetic energy k, which depends on its dissipation rate ε. Both the eddy viscosity

and the dissipation rate are modelled using the turbulent kinetic energy as velocity scale together

with a length scale lt,

νt = lt
√

k and ε = βk
k3/2

lt
(1)

where lt is defined as a combination of the RANS length scale l =
√

k/ω and the SGS filter

width ∆,

lt = min{l, C1∆}, (2)

with C1 = 0.05. The RANS k–ω model is completed by an equation for the specific dissipation

rate ω. The X-LES method will be in LES mode when the filter width (times C1) is small com-

pared to the RANS length scale. Note that in that case the SGS model is completely independent

of ω.

3 High-order finite-volume method

In order to reduce the interference of numerical discretization errors with the subgrid-scale model,

a high-order finite-volume scheme is employed. Details of this scheme are given by Kok (2006).

In particular, the high-order scheme is used to discretize the inviscid terms of the flow equations.

The diffusion terms (viscous terms and terms due to turbulence model) as well as the transport

equations of the k–ω model are discretized with a standard second-order finite volume scheme.

The high-order finite-volume scheme has the following key properties:

• It is formally fourth-order accurate. The order of accuracy is maintained on non-uniform

curvilinear grids, provided they are sufficiently smooth. The finite-volume method has

been made fourth-order accurate by extending the approach of Verstappen and Veldman

(2003), which uses Richardson extrapolation, from Cartesian to curvilinear grids.
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• The numerical dispersion of the scheme is minimized by extending the dispersion-relation

preserving approach of Tam and Webb (1993) to finite-volume schemes.

• A central scheme is employed, containing no numerical dissipation. A small amount of

sixth-order artificial diffusion is added explicitly to enhance stability. The artificial diffu-

sion is scaled such that it introduces an error of only fifth order.

• The finite-volume approach leads to local conservation of mass, momentum, and energy.

• The discretization is based on the skew-symmetric form of the compressible convection

operator in such a way that kinetic energy is exactly conserved by convection. For incom-

pressible flow, this implies that the total kinetic energy cannot increase, ensuring numerical

stability. For compressible flow, this is not the case (the total kinetic energy can increase

due to work done by the pressure), but the advantage of the skew-symmetric form is that

it does not lead to production or dissipation of kinetic energy interfering with the SGS

model.

Although the high-order scheme is intended for the LES regions, it is applied throughout the

complete flow domain. Thus, also the RANS region is solved with the fourth-order scheme.

Others have proposed hybrid numerical schemes (Travin et al., 2002), in which a second-order

upwind scheme is used in the RANS region. Although the fourth-order scheme is here used

throughout, second-order accuracy is considered to be sufficient in the RANS region. Therefore,

no effort has been made to develop a fourth-order accurate boundary condition at solid walls, and

a second-order accurate boundary condition is used instead.

4 Flow over a rounded bump in a square duct

As first test case, the turbulent, separated flow over a rounded bump in a square duct (so-called

ONERA bump) is considered. This is a standard DESider1 test case for which experiments have

been performed within the project by ONERA (Aupoix, 2007) in a hydraulic channel. The duct

has a height of 0.3 m, a width of 0.5 m, and a length of 2.367 m. The bump has a height of 0.138 m,

starts at the inflow plane at x = −0.367 m, and ends at x = 0 m. At the entrance, velocity pro-

files from the experiment are prescribed, which have a centre velocity of approximately 7 m/s.

Furthermore, water with a density of 997 kg/m3 and a dynamic viscosity of 0.89 · 10−3 Pa · s is

considered. As a compressible flow solver is used for solving this incompressible flow, an inflow

Mach number of M = 0.1 is chosen.
1DESider project (Detached Eddy Simulation for Industrial Aerodynamics) which is funded by the European

Union
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Fig. 1 ONERA bump: impression of geometry and grid (coarse level, i.e., showing every other

grid point)

To study the grid dependence of the numerical schemes, a fixed filter width should be used, inde-

pendent of the grid resolution. In this way, the SGS model is fixed and increasing the grid reso-

lution will influence only the numerical errors and not the modelling errors. A coarse and a fine

grid are considered, with the coarse mesh size equal to twice the fine mesh size. The filter width

is defined as a factor times the maximum of the mesh size in the different computational direc-

tions, with the factor equal to one on the coarse grid and to two on the fine grid. In other words,

per filter width, the coarse grid has one grid cell whereas the fine grid has two.

The fine grid has 284 cells in x-direction (streamwise), 120 cells in y-direction (height), and 152

cells in the z-direction (width), totalling 5 180 160 cells (see Figure 1 for an impression). The

grid outside the boundary layers is uniform from the inflow plane to x = 0.6 m. A time-step size

is used of ∆t = 0.00189 s, leading to a CFL number of approximately 2 in the uniform-grid re-

gion on the coarse grid. As the aim is here to look only at the effect of the spatial discretization

on the results, the same time-step size is used for both grids. This means that the time-integration

error is independent of the grid resolution, just like the SGS model. Therefore, although this er-

ror will influence the grid-converged solution, it will not affect the grid dependence of the solu-

tions.

Computations are performed with both the second-order and the fourth-order schemes. Figure 2

shows the solution on the coarse grid in the centreplane z = 0, averaged over 2048 time steps

(3.87 s). Clearly, the fourth-order result contains a larger separation region with the reattach-

ment occurring further downstream and with a different streamline topology. This larger sepa-

ration region is also present on the fine grid for both the second-order and fourth-order results
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Fig. 2 ONERA bump: time-averaged pressure coefficient and streamlines on coarse grid in

plane z = 0

(not shown), also averaged over 2048 time steps. This is also reflected in the pressure distribution

along the bottom wall, given in Figure 3. The fourth-order result is closer to the experimental

data, although a gap still remains. Moreover, for the fourth-order scheme, the coarse and fine-

grid results are closer to each other than for the second-order scheme. In particular, in the smaller

separation region, the second-order coarse-grid results show a low peak in the pressure coeffi-

cient (around x = 0.1 m) that is not present in the other results.

Profiles in the centreplane of the time-averaged velocity and of the resolved Reynolds stress are

given in Figure 4 and Figure 5. The velocity profiles show that the second-order coarse-grid re-

sult reattaches around x = 0.35 m, the second-order fine-grid and fourth-order coarse-grid re-

sults around x = 0.45 m, the fourth-order fine-grid result just beyond that, and finally the exper-

iment around x = 0.625 m. The fourth-order velocity profiles are closer to the experiment. In

particular, before reattachment (of the X-LES results), the second-order results show fuller veloc-

ity profiles. Such profiles can be the effect of high levels of numerical dissipation in the second-

order computations. For the profiles of resolved Reynolds stress, the second-order coarse-grid

result deviates the most from the other results. In particular, the peak value is located at smaller

values of y (closer to the wall), which is further away from the experiment. Surprisingly, at the

10
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x [m]
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Experiment
X-LES 2nd-order coarse
X-LES 2nd-order fine
X-LES 4th-order coarse
X-LES 4th-order fine

Fig. 3 ONERA bump: time-averaged pressure coefficient along centreline (z = 0) at bottom

wall

first sections, the fourth-order fine-grid result shows the lowest level of resolved kinetic energy

and the second-order coarse-grid result the highest. The level of resolved kinetic energy depends

on the triggering of instabilities in the shear layer. Apparently, the result with the lowest numeri-

cal accuracy triggers the instabilities the first, possibly due to numerical disturbances.

Concerning the difference with the experimental results, similar differences were obtained by

other partners in the DESider project, using a range of hybrid RANS–LES models. The differ-

ence in pressure level at inflow is caused by the difference in size and shape of the separation re-

gion, resulting in different losses in the tunnel and therefore in a different pressure jump between

inflow and outflow. Critical for the size of the separation region is the rate at which the shear

layer after the separation point becomes unstable. This rate appears to be lower in the computa-

tions than in the experiment. This is an aspect of hybrid RANS–LES models that needs further

research. Another issue is the strength of the vortices along the side walls of the tunnels, which

may be overpredicted in the computations.
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Fig. 4 ONERA bump: time-averaged velocity profiles (x-component) along cross sections in

centreplane
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Fig. 5 ONERA bump: resolved Reynolds-stress profiles (xy-component) along cross sections

in centreplane
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5 Supersonic flow over a cavity

For transonic and supersonic flows including shock waves, the high-order scheme must be ex-

tended with a shock-capturing capability. Standard approaches, such as the Jameson scheme as

well as upwind schemes, will give rise to high levels of numerical dissipation away from shocks

that may completely swamp the subgrid-scale model. Here, the standard Jameson scheme is con-

sidered. A blending of second-order and sixth-order artificial diffusion is added to the scheme,

where the second-order diffusion is switched on near shocks using a pressure-based shock sen-

sor. For the momentum equation, the second-order artificial diffusion in the x-direction can be

written as

∂

∂x

(
νa

∂(ρu)
∂x

)
, (3)

in which νa is an artificial viscosity coefficient given by

νa = s(|u|+ c)∆x, (4)

with s the shock sensor, u the x-component of velocity, c the speed of sound, and ∆x the mesh

size. This artificial viscosity should be small compared to the eddy viscosity. For the standard

Jameson sensor,

sJ =
|pi+1 − 2pi + pi−1|
pi+1 + 2pi + pi−1

(5)

(with i the grid index), the artificial viscosity is O((∆x)3) in smooth flow regions. Thus, the nu-

merical scheme will only be third-order accurate. Therefore, the following modification is con-

sidered,

s = min{20s2
J , sJ}, (6)

for which the artificial viscosity is O((∆x)5) and which restores the fourth-order accuracy of the

scheme in smooth flow regions. Furthermore, the value of the sensor in the shock (sJ ≥ 0.05) is

maintained.

To assess the high-order scheme including the shock-capturing capability, the supersonic flow

over a cavity is considered. The cavity has length-to-depth and length-to-width ratios L/D =

L/W = 4.5 (open cavity), a free-stream Mach number M = 1.5, and a Reynolds number

ReL = 4.5 · 106. The domain inside the cavity is represented by 524 288 grid cells, consisting

of a single block with a near-uniform grid of 192 × 32 × 32 cells, surrounded by blocks with

stretched grids to capture the near-wall layers.
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X-LES computations are performed with the filter width defined as the maximum of the mesh

size in the different computational directions. An (unconverged) steady computation is used

as the initial solution. Both the second-order and the fourth-order scheme are blended with the

Jameson shock-capturing scheme as explained above. The main question is to what extent the

second-order artificial diffusion interferes with the subgrid-scale model.

In Figure 6 and Figure 7, the solutions are compared after 64 time steps of size ∆t = 0.0812L/u∞.

The pressure contours in subfigures (a) clearly show an oblique shock wave structure. Subfigures

(b) show the ratio of the artificial viscosity νa and the eddy viscosity νt in the region where the

flow can be considered turbulent (νt > ν∞). For the second-order scheme, the standard Jame-

son shock sensor is used. There is clearly a strong interference of the artificial diffusion with

the subgrid-scale model. In a large part of the cavity, the artificial viscosity is of the same order

or even larger than the eddy viscosity. For the fourth-order scheme, using the modified ‘fourth-

order’ shock sensor, the situation improves strongly. In most part of the cavity the artificial vis-

cosity is negligible compared to the eddy viscosity. If two cells are used per filter width, then

the ratio of artificial and eddy viscosity is reduced further by a factor 25 = 32 (as it scales with

(∆x)5 in smooth flow regions).

Thus, it appears to be feasible to blend the high-order scheme with a shock-capturing scheme,

without numerical dissipation interfering with the subgrid-scale model.

6 Conclusions

X-LES computations using fourth-order and second-order finite-volume schemes have been pre-

sented. For the flow over a rounded bump in a square duct, the fourth-order results are clearly

superior to second-order results, showing weaker grid dependence. Consistent with previous re-

sults for canonical test cases, it appears that for the fourth-order scheme the mesh sizes may be

twice as large as for the second-order scheme to reach the same level of numerical accuracy. It

is likely that computations with a second-order scheme and with one grid cell per filter width,

as is commonly the case for hybrid RANS–LES computations, suffer from numerical errors in-

terfering with the subgrid-scale model. This is more so if a standard shock-capturing scheme is

used, including some form of second-order numerical dissipation, as has been shown for the su-

personic flow over a cavity. For the Jameson scheme, a simple modification has been proposed

so that the scheme can be used in combination with the fourth-order finite-volume scheme, while

leaving the order of accuracy away from shocks intact.
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(a) Pressure

(b) Ratio of artificial and eddy viscosity coefficients for the artificial diffusion

in the first computational direction (approximately x direction)

Fig. 6 Flow over cavity: Second-order scheme’s solution in the centre plane after 64 time steps

(ReL = 4.5 · 106, M = 1.5)

(a) Pressure

(b) Ratio of artificial and eddy viscosity coefficients for the artificial diffusion

in the first computational direction (approximately x direction)

Fig. 7 Flow over cavity: Fourth-order scheme’s solution in the centre plane after 64 time steps

(ReL = 4.5 · 106, M = 1.5)
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and aerodynamics. In P. Wesseling, E. Oñate, and J. Périaux, editors, ECCOMAS CFD 2006,

Egmond aan Zee, The Netherlands, 5–8 September 2006. NLR-TP-2006-525.

J. C. Kok, H. S. Dol, B. Oskam, and H. van der Ven. Extra-large eddy simulation of massively

separated flows. In 42nd AIAA Aerospace Sciences Meeting, Reno, NV, 5–8 January 2004.

AIAA paper 2004-264.

A. G. Kravchenko and P. Moin. On the effect of numerical errors in large eddy simulations of

turbulent flows. Journal of Computational Physics, 131:310–322, 1997.

S. K. Lele. Compact finite difference schemes with spectral-like resolution. Journal of Computa-

tional Physics, 103(1):16–42, 1992.

P. R. Spalart, W.-H. Jou, M. Strelets, and S. R. Allmaras. Comments on the feasibility of LES

for wings, and on a hybrid RANS/LES approach. In C. Liu and Z. Liu, editors, Advances in

DNS/LES. Greyden Press, 1997. Proc. 1st AFOSR Int. Conf. on DNS/LES, 1997, Ruston

(LA), USA.

C. K. W. Tam and J. C. Webb. Dispersion-relation-preserving finite difference schemes for com-

putational acoustics. Journal of Computational Physics, 107:262–281, 1993.

A. Travin, M. Shur, M. Strelets, and P. R. Spalart. Physical and numerical upgrades in the

detached-eddy simulation of complex turbulent flows. In R. Friedrich and W. Rodi, editors,

Advances in LES of Complex Flows, pages 239–354. Kluwer Academic Publishers, 2002.

Proc. of the Euromech Colloquium 412, 2000, Munich, Germany.

R. W. C. P. Verstappen and A. E. P. Veldman. Symmetry-preserving discretization of turbulent

flow. Journal of Computational Physics, 187(1):343–368, 2003.

B. Vreman, B. Geurts, and H. Kuerten. Large-eddy simulation of the turbulent mixing layer.

Journal of Fluid Mechanics, 339:357–390, 1997.

17


	NLR-TP-2007-800-final.pdf
	Introduction
	The X-LES method
	High-order finite-volume method
	Flow over a rounded bump in a square duct 
	Supersonic flow over a cavity
	Conclusions
	Acknowledgments
	References

	ES.pdf
	Introduction
	The X-LES method
	High-order finite-volume method
	Flow over a rounded bump in a square duct 
	Supersonic flow over a cavity
	Conclusions
	Acknowledgments
	References




