
NLR-TP-99272

Quality first
Measuring a safety-critical embedded software
development process

E. Kesseler

NLR-TP-99272

This report is based on a presentation held at the VTT Symposium, Oulu, Finland,
June 22-24, 1998.

The contents of this report may be cited on condition that full credit is given
to NLR and the author.

Division: Information and Communication Technology
Issued: August 1999
Classification of title: unclassified

Quality first
Measuring a safety-critical embedded software
development process

E. Kesseler

-3-
NLR-TP-99272

Abstract

Software which is embedded in aircraft to which people entrust their lives becomes safety-

critical and consequently must be of the highest quality. Failures of such software must be

virtually non-existent. Due to the high costs of aircraft, hypothetical software failures would

also incur major financial losses. To guarantee that the safety of aircraft is an uncompromisable

requirement, an independent government agency certifies aircraft as fit-for-use.

The experience with a software development process model accommodating both safety-critical

requirements as well as commercial requirements is described. The findings are based on

process and product metrics. The first two versions of the software product have successfully

passed the certification and are currently being flown in numerous aircraft. In fact the software

product is so successful that it will be adapted to other aircraft models.

Measuring the requirements evolution contributed to the change from a waterfall based software

development process to a spiral software development process. Design stability is reflected in

the module evolution but needs to be complemented by other information. Requirements

evolution and its implementation status combined with design stability help in the trade-off

between additional deliveries, their functions and their release dates.

-4-
NLR-TP-99272

Abbreviations

CASE Computer Aided Software Engineering

COTS Commercial-Of-The-Shelf

EFIS Electronic Flight Instrument System

FAR Federal Airworthiness Requirement

HMI Human Machine Interface

IMC Instrument Meteorological Conditions

JAR Joint Aviation Requirement

NTSB (US) National Transport Safety Board

MC/DC modified condition/ decision coverage

SA / RT Structured Analysis / Real Time extensions

SD Structured Design

TCD Test Case Definition

VMC Visual Meteorological Conditions

-5-
NLR-TP-99272

Contents

1 Introduction 6

2 Application description 7

3 Air transport safety requirements 9

3.1 Applicable software safety document 9

3.2 Safety classification 9

3.3 Software life cycle 12

3.4 Verification 13

4 Software development process 14

5 Experience 15

5.1 DO-178B experience 15

5.2 Software classification 15

5.3 C language 15

5.4 Requirements evolution 16

5.5 Design evolution 18

5.6 Code size evolution 19

5.7 Code breakdown 20

5.8 Verification 21

6 Conclusions 23

(24 pages in total)

-6-
NLR-TP-99272

1 Introduction

Software which is embedded in aircraft to which people entrust their lifes becomes safety-

critical and consequently must be of the highest standards. Failures of such software must be so

rare as virtually non-existing during the lifetime of all aircraft concerned. Due to the high costs

of aircraft, hypothetical software failures would also incur major financial losses, a further drive

to require the highest quality. It is clear that in aircraft, safety is an uncompromisable

requirement.

To guarantee the safety of aircraft, an independent government agency certifies aircraft as fit-

for-use. Only after this certification the aircraft may be used commercially. To guarantee a

 world-wide equal level of safety, software airworthiness requirements are stated in one

document, [DO-178B]. This document contains information for both the certification

authorities and the developers.

A software development process based on the waterfall model is a well-proven way to produce

safety-critical software. [DEKK, KESS] provides an example where an ESA-PSS05 compliant

process is used. For complex technical systems like aircraft, the commercially determined time-

to-market mandates co-development of the various subsystems. Co-development will

inevitably result in requirements evolution. Even more so if complicated Human Machine

Interfaces are involved. The waterfall model is not intended to cope with such requirements

evolution.

The experience with a DO-178B compliant software development process which accommodates

a commercial time-to-market is described. The findings are based on process and product

metrics. The first two product versions have successfully passed the certification and are

currently being flown in numerous aircraft. In fact the software product is so successful that it

will be adapted to other aircraft models.

The sequel starts with a short description of the application. Subsequently some information

about the air transport safety requirements is provided, together with its influence on the

software development process to be applied. The experience gained during the production of the

embedded application is described, supported by metrics. The findings are summarised in the

conclusions.

-7-
NLR-TP-99272

2 Application description

To fly aircraft under all (adverse) conditions, pilots must fully rely on the data presented to

them, and on the correct and timely forwarding of their commands to the relevant aircraft

subsystems. The embedded avionics application discussed combines, controls, processes and

forwards the data between the subsystems and the flight deck. The flight deck may contain

conventional mechanical displays or a modern Electronic Flight Instrument System (EFIS) or

even a mix of these. The application generates all information for the flight deck as well as

processes all pilot inputs. This renders the application vulnerable to changes in the aircraft's

Human Machine Interfaces.

The embedded application is designed to operate in both Visual Meteorological Conditions

(VMC) and Instrument Meteorological Conditions (IMC). In the former conditions, the pilot

can obtain part of the necessary flight information from visual cues from outside the cockpit.

These conditions limit the aircraft operations to good weather operations. The latter conditions

allow all-weather operations of the aircraft. Under these conditions the displays of the flight

deck are needed by the pilot to fly. This renders the correct functioning of the displays safety-

critical. A number of equipment items needs to be duplicated to achieve the required low failure

probability.

During normal operations the embedded application processes about 100 different flight

parameters, originating from 10 different sensors, some of which are duplicated. Two

processors are used in each of the duplicated hardware units. The delay times within the entire

embedded application should be guaranteed to be less then 30 milliseconds with a cycle time of

25 milliseconds for the main processor. During the operational life of the embedded application

many extensions are expected, so 50% spare processor time shall be allowed for. The I/O

processor has a cycle time of 360 microseconds.

-8-
NLR-TP-99272

The influence of safety on the embedded application's functions will be illustrated for data

input. Depending on the criticality of the flight parameter, the software validates it in up to four

complementary ways:

� coherency test: a check on correct length and parity of the data;

� reception test: a check on the timely arrival of the data;

� sensor discrepancy test: a comparison between the two data values produced by the two

independent redundant sensors; and

� module discrepancy test: a comparison between the two parameter values produced by the

same sensor; one value directly read by the system from the sensor, and one obtained from

the redundant system via a cross-talk bus.
[Kess, Slui] contains more information on the application.

-9-
NLR-TP-99272

3 Air transport safety requirements

3.1 Applicable software safety document

For safety-critical software in airborne equipment [DO-178B] has been developed. This

document provides guidance for both the software developers and the certification authorities.

In civil aviation an independent governmental institution, the certification authority, performs

the ultimate system acceptance by certifying the entire aircraft. Only then the constituent

software is airworthy and ready for commercial use. [DO-178B] provides a world-wide "level

playing field" for the competing industries as well as a world-wide protection of the air

traveller, which are important due to the international character of the industry. In NLR's case

the certification authority concerned delegated some of its technical activities to a specialised

company.

Certifying the entire aircraft implies that when an aircraft operator wants an aircraft with

substantial modifications, the aircraft including its embedded software has to be re-certified.

 Substantial modifications are, for example, modifications which can not be accommodated by

changing the certified configuration files.

[DO-178B] was the first widely used document to address safety-critical software. Based on

amongst others the experience gained with this document, currently other more general-purpose

standards are available, like [ISO/DIS 15026] and [IEC 61508]. [SAE ARP 4754] addresses the

certification considerations for highly-integrated or complex aircraft systems. [SAE ARP 4754]

is complementary to [DO-178B] and applicable hardware specific standards.

3.2 Safety classification

Based on the impact of the system (i.e. aircraft) failure the software failure can contribute to, the

software is classified into 5 levels. The failure probability in flight hours (i.e. actual operating

hours) according to the Federal Airworthiness Requirement /Joint Aviation Requirement

[FAR/JAR-25] has been added. [FAR/JAR-25] uses the general principle of an inverse

relationship between the probability of a failure condition and the degree of hazard to the

aircraft or its occupants. As [DO-178B] considers qualitative demonstration of software

compliance to such high reliability to be beyond the current software technology, the

[FAR/JAR-25] numbers are provided for information only.

-10-
NLR-TP-99272

Level A: Catastrophic failure

Failure conditions which would prevent continued safe flight and landing.

[FAR/JAR-25] extremely improbable, catastrophic failure < 1x10-9

These failure conditions are so unlikely that they are not anticipated to occur during the entire

life of all aircraft of one type.

Level B: Hazardous/Severe-Major failure

Failure conditions which would reduce the capability of the aircraft or the ability of the crew to

cope with adverse operating conditions to the extent that there would be:

� a large reduction in safety margins or functional capabilities;

� physical distress or higher workload such that the flight crew could not be relied on to

perform their tasks accurately or completely;

� adverse effect on occupants including serious or potentially fatal injuries to a small

number of those occupants.

[FAR/JAR-25] extremely remote, 1x10-9 < hazardous failure < 1x10-7

Level C: Major failure

Failure conditions which would reduce the capability of the aircraft or the ability of the crew to

cope with adverse operating conditions to the extent that there would be, for example:

� a significant reduction in safety margins or functional capabilities;

� a significant increase in crew workload or in conditions impairing crew efficiency, or

� discomfort to occupants, possibly including injuries.

[FAR/JAR-25] remote, 1x10-7 < major failure < 1x10-5

-11-
NLR-TP-99272

Level D: Minor failure

Failure conditions which would not significantly reduce aircraft safety and which would

involve crew actions that are well within their capabilities. Minor failure conditions may

include for example:

� a slight reduction in safety margins or functional capabilities;

� a slight increase in crew workload, such as, routine flight plan changes or some

inconvenience to occupants.

[FAR/JAR-25] probable, minor failure > 1x10-5

Level E: No Effect

Failure conditions which do not affect the operational capability of the aircraft or increase crew

workload.

-12-
NLR-TP-99272

3.3 Software life cycle

[DO-178B] deliberately refrains from making statements about appropriate software life cycle

models. The life cycle is described rather abstract as a number of processes that are categorised

as follows:

� software planning process which entails the production of the following documents:

� plan for software aspects of certification. The main purpose of this document is to define

the compliance of the chosen software development process to [DO-178B] for the

certification authorities. This document contains many references to the project

documentation generated as part of the applied life cycle model;

� software development plan, which defines the chosen software life cycle and the software

development environment, including all tools used;

� software verification plan, which defines the means by which the verification objectives

will be met;

� software configuration management plan;

� software quality assurance plan.

� software development processes consisting of :

� software requirement process;

� software design process;

� software coding process;

� integration process.

� integral processes which are divided into :

� software verification process;

� software configuration management process;

� software quality assurance process;

� certification liaison process.

The integral processes are a result of the criticality of the software. Consequently the integral

processes are performed concurrently with the software development processes throughout the

entire software life cycle.

-13-
NLR-TP-99272

3.4 Verification

In order to provide the developer with maximum flexibility, [DO-178B] allows the developer to

choose the software life cycle model. [DO-178B] enforces traceability to its general

requirements by verifying that the life cycle process provides all data it requires. Each

 constituent software development process has to be traceable, verifiable and consistent.

Transition criteria need to be defined by the developer to determine whether the next software

development process may be started. In case of iterative processes, like in the spiral model,

attention needs to be paid to the verification of process inputs which become available after the

subsequent process is started.

Verification is defined in [DO-178B] as "the evaluation of the results of a process to ensure

correctness and consistency with respect to the inputs and standards to that process". Review,

analysis, test or any combination of these three activities can accomplish verification. Review

provides a qualitative assessment of correctness.

Analysis is a detailed examination of a software component. It is a repeatable process that can

be supported by tools. Every tool needs to be verified against the Tool Operational

Requirements, the contents of which is prescribed in [DO-178B]. For software tools the same

documentation and configuration control procedures apply as for the airborne software. Every

software tool needs approval of the certification authority.

Testing is "the process of exercising a system or system components to verify that it satisfies

specified requirements and to detect errors". By definition the actual testing of deliverable

software forms only part of the verification of the coding and integration processes. For

software classified at [DO-178B] level A, a mandatory 100% code coverage applies. This code

coverage consists of :

� statement coverage (every statement executed, called statement testing in [BS7925-2]);

� decision coverage (every decision executed for pass and fail, called branch/decision testing

in [BS7925-2]), and

� the modified condition/ decision coverage (mc/dc, same name in [BS7925-2]). Mc/dc

requires that for every condition in a decision, its effect on the outcome of the decision is

demonstrated.

Code coverage will be shown at module level testing.

-14-
NLR-TP-99272

4 Software development process

The definition of the software development process has been guided by previous experience

with safety-critical software for spacecraft. More information on the spacecraft application is

provided in [Dekk, Kess].

The project team was set up consisting of 2 separate groups, a development group and a

verification group. The verification group was headed by a team member with sufficient

authority to report, at his own discretion, to the company management outside the project

hierarchy, in compliance with [DO-178B]. Furthermore the quality assurance manager was

independent from both teams and not allowed to produce deliverable code or tests. The quality

assurance manager needed his technical background in order to judge technical choices made.

The embedded application project started using :

� the DOD-STD-2167A life cycle model [DOD], which is based on the waterfall model ;

� customer supplied requirement specifications in plain English ;

� formal reviews after each life cycle phase;

� software analysis using Structured Analysis with Hatley and Pirbhai Real Time extensions

(SA/RT) [Hatl, Pirb] supported by a Computer Aided Software Engineering (CASE) tool;

� software design using Yourdon Structured Design (SD) supported by the same CASE tool;

� the customer prescribed C language;

� NLR's proprietary C coding standard, with project specific enhancements and enforced by a

static analysis tool;

� execution of module tests and integration tests on the target system;

� an automated test tool to aid the construction and cost effective repetition of the functional

tests and code coverage tests;

� a proprietary configuration management tool;

� module and integration testing on the target with a simulated environment;

� integration with the aircraft avionics suite after integration of the embedded application.

-15-
NLR-TP-99272

5 Experience

5.1 DO-178B experience

Modern aircraft contain huge amounts of software, supplied by numerous independent suppliers

world-wide. Even a single aircraft contains software of many different suppliers. According to

the US National Transport Safety Board (NTSB), [DO-178B] works well as up to now no

catastrophic failure (i.e. fatalities or hull losses) can be directly attributed to a software failure

[IEEE]. An independent software engineering experiment using a [DO-178B] compliant

software development process by NASA confirms that no errors were identified in the

developed software [Hayh]. [DO-178B] contains sufficient information for first time users to

implement a compliant software process.

5.2 Software classification

In the embedded application, software classified at levels A, B and E has been realised.

Partitioning software is produced to allow software of various levels to run on the same

processor. At the end of the project 81% of the modules are classified at level A, 8% at level B

and 11% at level E. The increasing number of data fusion requirements lead to a larger share of

level A software at the expense of level B software. With the small amount of level B modules

remaining it is unclear whether the advantages of less rigorous testing of level B software

outweigh the more complicated software development process.

When software classified at different levels has to run on the same processor, special

partitioning software guarantees that software of one level can under no circumstance

compromise the functioning of software at other levels. This partitioning software consumed

only 1% of the total project effort. Even if all level B software would be developed as level A

software, the partitioning software remains necessary and cost effective for separation of level

A and level E (mainly maintenance) software.

5.3 C language

The C programming language contains numerous constructs that are unspecified, undefined or

left to be defined by the compiler supplier [Hatt]. The C programming language is considered a

project risk. This risk was reduced by choosing an ISO C-90 (also known as ANSI-C)

compliant compiler complemented by a project coding standard defining, amongst others, a safe

subset of C. Compliance to this project coding standard can be verified automatically by

customising a commercial tool. The tool verification required by [DO-178B] revealed that the

version management by the tool supplier turned out to be inadequate. The tool was already

marketed world-wide since 1986 to hundreds of customers. This illustrates the rigour of the

applied verification processes.

-16-
NLR-TP-99272

5.4 Requirements evolution

Due to the commercially defined short time-to-market, the customer defined the system

requirements concurrently with the software requirement process. Before the start of the

software design process the resulting analysis was subjected to a number of informal detailed

technical assessments, performing the formal requirements verification activities with the

exception of the certification authority involvement.

To aid the integration of the embedded application with the displays, co-developed by the

customer, and subsequently with the avionics suite of the aircraft, a first version of the software

with limited functionality was delivered before completion of the software requirements and

software design processes. The first version served its purpose well. A lot of feed-back was

obtained, resulting in many changes to and clarifications of the system requirements. Figure 1

depicts the resulting requirements evolution from the project start. Every point indicates a

 formal delivery of a working prototype or system to the customer. Figure 1 is cumulative: the

number of partially implemented requirements is added to the number of fully implemented

requirements. Superimposed is the number of requirement changes for each delivery. The status

of a requirement in a delivery can be:

� fully implemented;

� partially implemented i.e. the delivery only partially complies with the requirement and

additional work is needed arrive at full compliance;

� not implemented, i.e. no part of the requirements is included in the delivery.

Fig. 1 Evolution of requirements and their implementation status

-17-
NLR-TP-99272

The increase in the number of requirements and the reduction in the number of implemented

requirements after 300 and 520 working days are caused by new issues of the requirements

document.

The changes are caused by (in descending order):

� changes in the Human Machine Interfaces (HMI) of the aircraft. These changes originate

from pilot comments and can only be obtained from demonstrating a working prototype in a

realistic environment. Co-development of the displays and the embedded application helps

to reduce the amount of changes on system level;

� adding product features. Apart from marketing input, these changes also result from

experience with an actual prototype;

� integration of the embedded application with the displays and the aircraft subsystems.

Formal methods to specify these interfaces might have helped to reduce this class of

changes;

� ambiguities in the plain English specifications. Especially for HMI related features an

unambiguous specification method which is intelligible for pilots, HMI experts and

computer software experts is needed.

The requirements evolution combined with the need for intermediate versions resulted in a

change from the waterfall model to the spiral model. For the non-certified versions the formal

reviews were replaced by technical reviews with the same contents but without the external

attendants. The multiple deliveries implied frequent integration with the avionics suite at the

customer's site. This resulted in the combination of our team with the customer's display team

on one site. Of the 15 deliveries only the ones at 655 and 779 calendar days have been certified.

Note that the non-certified versions are not to be used in flying aircraft.

-18-
NLR-TP-99272

5.5 Design evolution

Figure 2 shows the evolution of the number of modules (files containing C code) and external

functions over time.

Fig. 2 Module evolution

Up until the first certified version the number of modules increased only slightly, indicating that

all changes could be accommodated in the original design. Due to different verification

requirements, software of different levels was split into different modules for certified

versions. This splitting causes the sharp rise in the number of commonly developed modules

just before the first certified version. Evolving data fusion requirements influenced the safety

classification of some functions. Some simplifications of a communication protocol for the

second certified version resulted in a minor reduction in the number of modules.

The number of external functions rose approximately continuously until the first certified

version, in accordance with the number of implemented requirements. The number of

functions remained virtually constant for the second certified version. This indicates that the

design remained relatively stable, most requirement changes could be accommodated in the

existing modules.

On average there are 5 functions per module. On average each file has been submitted to

configuration control 13 times. These changes are concentrated in one configuration item, the

second configuration item became stable after the version of day 536. The remaining 2

 configuration items remained unchanged after the version of day 438.

-19-
NLR-TP-99272

These results support the view that also in an environment with significant requirement

evolution a sufficiently mature design is needed before starting the coding process. The design

team leader ensured that the design remained uncompromising during the entire realisation

period.

5.6 Code size evolution

The code size evolution is shown in figure 3. Its continuous increase until the first certified

version corresponds with the continuous increase in the number of implemented requirements.

The subsequent slight reduction mirrors some requirements simplification.

Fig. 3 Code size evolution

The CASE tool used only allows to progress once from analysis to design and once from design

to code. It does not provide adequate support to incorporate analysis or design updates into the

next phases. The amount of effort needed for data input even makes updating the analysis or

design model cumbersome. After day 500 it was decided to retain the analysis model but limit

its depth in order to allow for its updating.

The design model was abandoned as the CASE tool data input effort became unaffordable with

the requirements evolution. Instead pseudo code was added to the code. The pseudo code

contains an abstract description of the code in about 27% of its size. Also all interface definition

information was added in extensive headers per function. This extra information explains the

considerable increase in the amount of comment before the first certified version. The comment

has a size of about 175% of the executable code.

-20-
NLR-TP-99272

On average each line of executable code has been modified 13.4 times, each comment line only

4.1 times. Changing the design information from the CASE tool to comment resulted in

considerable man-hour savings, at the expense of a transition period with a less intelligible

design. The design team leader and the verification team leader had sufficient knowledge to

answer any question on the spot. With a maximum team size of 16 people located on one site

this turned out to be a workable solution. The changes break down in about 60% changed lines,

15% deleted lines and 25% added lines. As the product grew in size over time more lines were

added then deleted.

5.7 Code breakdown

Fig. 4 Evolution of statement type distribution

For testing purposes a division of statements is made into :

� decisions and loops (consisting of the "switch", "if", "for" and "while" statements);

� assignments;

� data e.g. tables.

The results are shown in figure 4. All statement types increase approximately continuously

until the first certified version, with a slight decrease up till the second certified version. The

system design was already based on maximum configuration possibilities using data files.

Adapting the software behaviour to specific aircraft configurations by configuration files has the

advantage of obviating re-certification. The real-time constraints caused some run-time

optimised solutions. Experience with the various prototypes lead to more sophisticated solutions

-21-
NLR-TP-99272

which comply with both the real-time requirements as well as with the requirements evolution.

In the second certified version for each executable statement there is 1.48 lines of data. The

statement type distribution reflects the design based on maximum use of data for configuring

the software behaviour. The run-time optimisations are not reflected in a change of the

statement type distribution.

5.8 Verification

Each testable requirement is identified to allow traceability from requirements through all

development phases to verification. Every [DO-178B] compliant development phase contained

full traceability of each requirement, by including the requirement identification. This has

greatly helped the management of the virtually continuous requirement evolution. A lesson

learned is to allocate a separate identification to each verifiable part of a requirement. [Hayh

1998] reached this conclusion independently.

A standard applies for the software requirement process. Its application has to be verified. Some

simple tools can be produced to cost-effectively reduce the analysis effort. The same holds for

the design standard.

For module tests the use of a Commercial-Of-The-Shelf (COTS) test tool greatly reduced the

time needed to prepare the tests and to perform the regressions tests for each delivery. The

actual test code is generated from Test Case Definition (TCD) files. On average each safety-

critical function (i.e. [DO-178B] level A+B) is called 3.8 times during the verification tests.

The non-comment part of the test case definition files equals 2.9 times the non-comment size of

the code. The test comment grew to about 70% of the executable test case size implying that

tool-assisted module testing still consumes a significant mount of effort. Due to the size of the

test case definition files, comment is needed to document their function, to aid traceability, to

improve readability, etc.

[DO-178B] requires data to be verified by inspection, only decisions and assignments can be

verified by testing. For each testable statement 20 checks have been performed. For global data

the test tool automatically checks that no global data is inadvertently changed, causing the large

amount of checks per testable statement.

Integration testing was based on the white box approach. It comprised the correct functioning

of combinations of functions. Integration tests also verified 19% of the requirements. These

requirements could not be verified by black box testing only. Examples of the latter are

spare processor time and spare memory requirements. During integration 184 tests have been

performed. The COTS test tool did not support the multiple-module integration testing.

-22-
NLR-TP-99272

During validation testing the requirements are verified using a black box approach. Several

requirements can be verified in one test. The 132 tests verified 90% of the requirements.

Analysis was used to verify 12% of the requirements. Note that some requirements can only be

verified by a combination of analysis, validation testing and integration testing. Consequently

the 3 percentages add up to more then 100%.

-23-
NLR-TP-99272

6 Conclusions

[DO-178B] compliant software processes have proven adequate for safety-critical software

development.

Measuring the requirements evolution (refer figure 1) combined with the co-development need

for intermediate versions resulted in the change from a waterfall software development process

to a spiral software development process.

For a certifiable, safety-critical product with a commercially determined time-to-market co-

development is a solution. The various prototypes, with increasing number of implemented

requirements (refer figure 1), provided by a spiral software development process support this.

A sufficiently mature design is needed before starting the coding process for the first prototype.

The design team leader has to ensure that the subsequent software modifications do not

compromise the design. The module evolution (refer figure 2) needs to be complemented by

other information to assess the design stability.

Metrics help in analysing and controlling the software processes. For example the evolution of

requirements with their implementation status (refer figure 1) and the module evolution (refer

figure 2), help in the trade-off between the date of the next delivery and its functions.

The CASE tool used did not adequately support design updates rendering it incompatible with

the spiral model. Detailed design and interfaces can be included as comment in the code, to be

automatically retrieved for the required documentation. The added source code (refer figure

3) turned out to be acceptable.

The statement type distribution (refer figure 4) reflects the maximum use of data to configure

the software for each specific aircraft.

C combined with an appropriate coding standard and an automated analysis tool can be used for

safety-critical certifiable software.

For some analysis tasks simple tools can be produced which cost-effectively reduce the analysis

effort. The COTS test tool significantly reduced the testing effort.

-24-
NLR-TP-99272

 References

[BS7925-2] British Standard software testing part 2: software components testing

(August 1998)

[Dekk, Kess] Product Assurance For The Development Of The SAX AOCS Application

Software, G.J. Dekker, E. Kesseler (1996) ESA SP-377, NLR TP-96167

[DO-178B] DO-178B, Software Considerations in Airborne Systems and Equipment

Certification, (December 1992)

[DOD] DOD-STD-2167A Military Standard Defense System Software Development (1988)

[FAR/JAR-25] Federal Airworthiness Requirement/Joint Aviation Requirement FAR/JAR-25

[Hatl, Pirb] Strategies for real-time system specification, Hatley, D.J., Pirbhai, A. (1988) Dorset

House Publishing

[Hatt] Safer C, Hatton L., (1995) Mc Graw-Hill

[Hayh] Framework for small-scale experiments software engineering, K. J. Hayhurst

[IEC 61508] IEC 61508 Functional safety: safety related systems, 7 parts, (June 1995)

[IEEE, 1998] IEEE, Developing software for safety- critical systems, J.Besnard, M. DeWalt, J.

Voas, S. Keene (1998)

[ISO/DIS 15026] ISO/DIS 15026 Information technology - System and software integrity levels

(1996)

[Kess, Slui] Safety and commercial realities in an avionics application, E. Kesseler, E. van de

Sluis, Second World Congress on safety of transportation, NLR TP 97669 (1998)

[SAE ARP 4754] Society of Automotive Engineers Aerospace Recommended practise 4754,

Certification considerations for highly-integrated or complex aircraft systems, (November

1996)

