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Summary

A grid deformation method has been developed for the movement of multiblock, structured grids

due to surface deformation arising from aeroelastics or design optimisation. The method uses

a volume spline interpolation technique to compute the deformation of block vertices and block

edges. After that, the deformation of block-faces is computed by an arclength-based two-dimensional

transfinite interpolation method. Finally, an arclength-based three-dimensional transfinite interpo-

lation method is used to compute the deformation of grid points inside the blocks. The method is

demonstrated for simple and complex aeroelastic aircraft applications using Navier-Stokes com-

putational fluid dynamics.
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1 Introduction

Unsteady flow calculations for problems with deforming surface shapes, such as those found in

aeroelastic simulations, require a fast and reliable method for deforming the computational grid

during each time step. Like most authors, we consider grid deformation as a method of propagating

geometric displacements into an existing initial grid while preserving the original character of the

mesh (Refs. 5, 7,8). Several requirements are put on the grid deformation method. Since the grid

deformation has to be carried out at each time step, it is of major importance to keep the method

simple and efficient. Further, it should be robust enough to handle arbitrarily complex multi-

block grids, including Navier-Stokes boundary layer grids and grid singularities. The method must

produce deformed grids of acceptable quality to the flow solver. Preserving positive Jacobians

(volumes) is a minimum requirement. Maintaining smoothness, orthogonality, and the overall

quality and characteristics of the initial grid is also needed. Additionally, at block interfaces, the

deformed grid must remain point matched ( � � -continuity). Finally, the only required input is the

initial grid and the displacements of the grid points in those faces that define the configuration

surface.

One of the advantages of structured multi-block grids compared to unstructured grids is that trans-

finite interpolation (TFI) can be used to compute the displacements of the interior grid points in

a block from previously computed displacements of grid points in the six block-faces. Similarly,

a two-dimensional TFI method can be easily used to computed the displacements of the interior

grid points in a face from previously computed displacements of grid points in the four face-

edges. Therefore, the main problem is the computation of the displacement of vertices and edges

in a multi-block grid.

It is assumed that the displacement of the configuration surface is prescribed. From the connec-

tivity information in a multi-block grid, it is possible to identify all vertices on the configuration

surface. The prescribed displacements of those vertices are interpolated with the volume-spline

method of Hounjet and Meijer (Ref. 10). The volume-spline method generates a function to com-

pute the displacement everywhere as a function of location in space. The volume spline method

is only used to compute the displacements of grid points in all vertices and all edges not lying on

the configuration surface. The displacements of the remaining grid points are subsequently com-

puted with a two-dimensional TFI method in the interior of faces and with a three-dimensional

TFI method in the interior of the blocks, as mentioned above.

The volume-spline method requires a matrix inversion of a full square matrix of � � � rows where

� is the number of vertices on the configuration surface. In practice, it appears that for a complex
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fighter aircraft, the number of vertices on the configuration surface is typically of order 100.

The proposed grid deformation method is purely algebraic and non-iterative. The computation of

a displacement by the volume-spline method in an arbitrary location in space is much more ex-

pensive than the computation of a displacement by a transfinite interpolation method. Fortunately,

the volume spline method is only used to compute the displacements of grid points at vertices and

edges which is a negligible amount of points compared to the remaining grid points in faces and

blocks.

The grid deformation method as described here has been implemented in a stand-alone code to

be used for static aeroelastic calculations and design optimisation. It also became part of NLR’s

time-dependent Reynolds-averaged Navier-Stokes flow solver ENSOLV for static and dynamic

aeroelastic calculations (Ref. 2).
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2 Volume Spline Interpolation

Volume spline interpolation is a very simple method to interpolate non-uniformly spaced data. The

method belongs to the category of scattered data interpolation methods using radial basis functions

(Ref. 1). The method is easily coded, robust and fully automatic. To introduce the method, it is

first described in one dimension and after that extended to 3D.

Consider a set of unordered support points � � � � � 	 � 
 � � � � � � , together with function values

� � � � � 	 � 
 � � � � � � . The volume spline interpolation function � � � �� � may then be defined

as

� ! � $ �
%&

� ' ) + � , � ! � $ (1)

with , � ! � $ � 0 � 2 � � 0 . The unknown coefficients + � can be computed from the interpolation

conditions � ! � � $ � � � . For � 9� � � , it is clear that < = � > < � = � B . Thus, volume spline interpolation

in one-dimension is nothing else then piecewise linear interpolation. It is clear that for � �� D F
we have

� ! � $ � D �
%&

� ' ) + � H
%&

� ' ) + � � � (2)

Therefore, the function � ! � $ is bounded if I %� ' ) + � � B . In general, a bounded piecewise linear

interpolation is obtained by

� ! � $ � + �
�

%&
� ' ) + � , � ! � $ (3)

where the coefficients + � � 
 � B � � � � , are computed from the interpolation conditions � ! � � $ � � �
together with side condition I %� ' ) + � � B .

The extension of the volume spline method to three dimension is straightforward. In that case we

have support points � O� � � � Q 	 � 
 � � � � � � with function values � � � � � 	 � 
 � � � � � � , and the

interpolation function is defined as

� ! O� $ � + �
�

%&
� ' ) + � , � ! O� $ (4)

with , � ! O� $ � V O� 2 O� � V . Again the coefficients + � � 
 � B � � � � , are computed from the interpolation

conditions � ! O� � $ � � � together with side condition I %� ' ) + � � B .

The Laplacian of a scalar function Y ! , $ with , � V O� V obeys in 3D the relation\ Y � � > , = < > < , ! , = < Y > < , $ . For Y ! , $ � , we have
\ Y � b > , and thus

\ \ Y � B .
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Thus, the volume spline interpolation function � ! O� $ obeys the biharmonic equation
\ \ Y � B

everywhere except at the support points. Therefore, like in 1D, the interpolation function � ! O� $
will not possess new local extrema outside the support points. This important property makes the

volume spline interpolation method suitable for our purposes, because it will reduce the risk of

the occurrence of grid folding in the deformed mesh. The boundedness of the volume spline is

important to let the displacement decay towards the farfield boundaries. Notice that the volume

spline interpolation has both rotational and translational invariance.

The volume spline method can also be used to interpolate a vectorfield. In that case we have

support points � O� � � � Q 	 � 
 � � � � � � with vectors � O� � � � Q 	 � 
 � � � � � � , and the interpolation

is defined as

O� ! O� $ � O+ �
�

%&
� ' ) O+ � , � ! O� $ (5)

with , � ! O� $ � V O� 2 O� � V . Again the coefficients O+ � � 
 � B � � � � , are computed from the interpolation

conditions O� ! O� � $ � O� � together with side condition I %� ' ) O+ � � B . The coefficient matrix of the

linear system of equations for the coefficients O+ � is full and symmetric and only depends on the

position of the support points. The elements on the main diagonal are zero. Only one matrix

inversion need to be calculated to compute simultaneously the three components of the coefficients

O+ � . For more than about 200 support points the matrix may become poorly conditioned (Ref. 1).

The volume spline method is used to interpolate the displacements at all vertices on the con-

figuration surface. Thus the vertices on the configuration are used as support points O� � and the

displacement vectors O� � define the righthandside of the interpolation conditions. Symmetry is eas-

ily handled by mirroring of the configuration vertices and corresponding displacement vectors.

The solution of the matrix equation is obtained using the subroutine SGESV from the package

LAPACK retrieved from NETLIB which can be found at the Internet address

http://www.netlib.org/lapack/index.html.
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3 Transfinite Interpolation

After computing the displacement of the vertices and the edges of the blocks, the displacement

of the remaining grid points of the multi-block grid is computed by transfinite interpolation as

described below. Thus, the displacement of only a very small portion of grid points is computed

by the expensive volume spline interpolation method, while the displacement of the remaining

large part of grid points is computed by the inexpensive TFI method. The TFI method is only used

to compute the displacements of grid points in the interior of faces not lying on the configuration

surface and of grid points in the interior of blocks. The TFI-method is arclength-based in order to

preserve the characteristics of the initial mesh.

A multi-block grid consists of a set of blocks � � 	 , faces � � 	 , edges � � 	 and vertices � � 	 . The

connectivity relations between the elements of these sets define the multi-block topology (Refs.

3,4).

Furthermore, each block � � � � 	 has its own structured three-dimensional volume grid defined

as

� �
� � O� � 	 � 	 
 0 
 � B � � � � � �

� � � B � � � � � �
� � � B � � � � � �

	 � (6)

Additionally, normalized arclength variables ! � � � � � $ can be defined along the grid lines in respec-

tively the 
 � � and � direction. For example, the normalized arclength in the 
 direction is defined

as

� � 	 � 	 
 �
I ��

' ) V O�
� 	 � 	 
 2 O�

� �
) 	 � 	 
 V

I
% ��

' ) V O�
� 	 � 	 
 2 O�

� �
) 	 � 	 
 V

� (7)

Thus �
�

	 � 	 
 � B and � % � 	 � 	 
 � � . A similar formula is used to define � and � as normalized

arclength in respectively the � and � direction.

Each face � � � � 	 has its own structured two-dimensional surface grid defined as

� !
� � O� � 	 � 0 
 � B � � � � � !

� � � B � � � � � !
	 � (8)

Again, normalized arclength variables ! � � � $ can be defined along the grid lines of a surface grid

in respectively the 
 and � direction. The � coordinates of a surface grid are defined by Eq.(7)

whereby the � index is omitted.

Each edge � � � � 	 has its own structured 1D curve grid defined as

� "
� � O� � 0 
 � B � � � � � "

	 � (9)
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Each vertex � � � � 	 has its own position vector O� � .

The TFI-method for the computation of the displacements in the interior of a surface grid of a face

can be expressed most easily as a two-step recursionformula (Refs. 6). The first step computes the

displacements in the interior by straight-line interpolation in the 
 -direction:

O�
�

)
! 
 � � $ � ! � 2 � � 	 � $ O�

� ! B � � $ � � � 	 � O�
� ! � � � � $ � (10)

The second step adds the mismatch of the displacements along the second pair of opposite edges

by straight-line interpolation in the � -direction:

O�
� = ! 
 � � $ � O�

�
)

! 
 � � $ � ! � 2 � � 	 � $ ! O�
� ! 
 � B $ 2 O�

�
)

! 
 � B $ $

� � � 	 � ! O�
� ! 
 � � � $ 2 O�

�
)

! 
 � � � $ $ � (11)

Finally, the displacement in the interior of the surface grid is defined as

O�
� ! 
 � � $ � O�

� = ! 
 � � $ � (12)

After computing the displacement of the faces, the TFI-method is also used to compute the dis-

placement in the interior of the blocks. For a block, the TFI method is a three step recursion

formula. The first step computes the displacements in the interior by straight-line interpolation in

the 
 -direction:

O�
�

)
! 
 � � � � $ � ! � 2 � � 	 � 	 
 $ O�

� ! B � � � � $ � � � 	 � 	 
 O�
� ! � � � � � � $ � (13)

The second step adds the mismatch of the displacements along the second pair of opposite faces

by straight-line interpolation in the � -direction:

O�
� = ! 
 � � � � $ � O�

�
)

! 
 � � � � $ � ! � 2 � � 	 � 	 
 $ ! O�
� ! 
 � B � � $ 2 O�

�
)

! 
 � B � � $ $

� � � 	 � 	 
 ! O�
� ! 
 � � � � � $ 2 O�

�
)

! 
 � � � � � $ $ � (14)

The third step adds the mismatch of the displacements along the third pair of opposite faces by

straight-line interpolation in the � -direction:

O�
� Q ! 
 � � � � $ � O�

� = ! 
 � � � � $ � ! � 2 � � 	 � 	 
 $ ! O�
� ! 
 � � � B $ 2 O�

� = ! 
 � � � B $ $

� � � 	 � 	 
 ! O�
� ! 
 � � � � � $ 2 O�

� = ! 
 � � � � � $ $ � (15)
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Finally, the displacement in the interior of the volume grid is defined as

O�
� ! 
 � � � � $ � O�

� Q ! 
 � � � � $ � (16)

If the displacement of the configuration surface is zero, then the deformed and initial grid will be

identical.
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4 Results

Figure 1 shows an initial 12 blocks O-type grid for a RAE2822 airfoil. Notice that there are six

vertices on the airfoil. The displacements of these six vertices are input for the volume spline

method. Figures 2,3,4 show the deformed grid for a pitch down of � B
�
. Figure 3 shows a closeup

near the leading edge and figure 4 shows a closeup near the trailing edge. The original grid quality

and smoothness are maintained. For illustration purposes, the results are shown for an Euler mesh

without grid boundary layer. However, the method can be used equally well for a Navier-Stokes

mesh with boundary layer grid, as shown in figure 5.

Figures 6,7,8 show the deformed grid for an extreme pitch down angle of
� � �

. Figure 7 shows

that near the leading edge the deformed grid is still not folded although the mesh is rather skew.

At the trailing edge, grid folding occurs as shown in figure 8. This grid folding can be easily

removed by not only prescribing the deformation of the airfoil but also prescribing of the wake-

edge immediately behind the airfoil, as shown in figure 9. This example indicates that the method

may fail for large deformations. Fortunately, such large deformations will not occur for realistic

aeroelastic simulations or optimal design studies.

Figure 10 shows another type of application of the algorithm, namely the replacement of the

RAE2822 airfoil by a NACA0012 airfoil without changing the characteristics of the initial grid.

The applicability for very complex geometries, typical for fighter-aircraft configurations, has also

been demonstrated. Figure 11 shows an illustration. More details can be found in (Ref. 9).

The applicability of the algorithm for design optimisation has been demonstrated in (Ref. 11).

Figure 12 shows an illustration.
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5 Conclusions

The grid deformation as presented here is fully automatic and requires as input only an initial

mesh and the displacements of the grid points lying on the configuration surface. The method

uses the displacements of the vertices lying on the configuration surface as input for the volume

spline interpolation method. The computed volume spline is used to compute the displacements

of grid points at vertices and edges not lying on the configuration surface. Next, arclength-based

transfinite interpolation is used to compute the displacements of the remaining grid points in the

interior of faces and blocks. The method has been implemented in the NLR Reynolds-averaged

Navier-Stokes multi-block flow solver ENSOLV (Ref. 2) and is now used on a routinely basis

for aeroelastic simulations of military aircraft configurations (Ref. 9) and for aerodynamic shape

optimisation studies (Ref. 11). It appears that during each time step, the computer time to recom-

pute the deformed grid is less than 10% compared to the computer time spent by the flow solver.

The method appears to be sufficiently robust and may only fail for very large deformations which

fortunately do not occur for realistic aeroelastic simulations or optimal design studies.
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Fig. 1 RAE2822 grid: 12 blocks. Fig. 2 RAE2822 grid with
� � �

pitch down.

Fig. 3 Detail at leading edge. Fig. 4 Detail at trailing edge.

Fig. 5 RAE2822 NAS grid with
� � �

pitch

down.

Fig. 6 RAE2822 grid with � � �
pitch down.
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Fig. 7 Detail at leading edge. Fig. 8 Detail at trailing edge.

Fig. 9 RAE2822 grid with � �
�

pitch down and

prescribed wake-edge deformation

Fig. 10 RAE-airfoil replaced by NACA-airfoil.

Fig. 11 Aeroelastic deformation of tip missile

for fighter-aircraft.

Fig. 12 Grid deformation of a winglet during

optimal design process.


