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Summary

In the paper algorithms for optimising a tetrahedral grid are proposed. In order to obtain an

optimised tetrahedral grid a new concept is introduced, namely: a structured tetrahedral grid. This

grid type fits naturally into the classification of grid types as made in (Ref. 3). The tetrahedral

optimisation algorithm consists of two components:

1. An algorithm to optimise the grid connectivity

2. An equi-distribution algorithm to optimise the cell size of the tetrahedral elements.
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1 Introduction

The generation of a tetrahedral grid that is optimal in terms of grid structure and element size forms

a challenging task. It is known that state-of-the-art Delaunay-based tetrahedral grid generation al-

gorithms produce an irregular tetrahedral grid that possesses sliver elements and non-uniform grid

connectivities.

Several tetrahedral grid optimisation algorithms have been proposed to prevent the occurrence

of grid irregularities which arise due to the tetrahedral grid generation algorithm. Among these

methods is Rebay’s method which is an algorithm that in fact optimises during generation time

(Refs. 1, 2, 4). Another algorithm is based on a chrystallic approach that has been proposed in

(Ref. 6). A seed element is utilised to achieve a suitable grid structure. In this chrystallic approach

the grid structure near boundaries is difficult to maintain.

A common approach adopted in tetrahedral grid generation is to employ a post-processing step

in order to optimise the tetrahedral grid. In this post-processing step grid transformations and

smoothing iterations are carried out. Requirement during the transformation and smoothing itera-

tions is that the volumes of the elements remain positive. This approach is pursued in this paper.

Before addressing the issue how to achieve an optimal tetrahedral grid one firstly should answer

the question how an optimal tetrahedral grid is defined. To this purpose in this paper the concept

of a structured tetrahedral grid is introduced.
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2 A structured tetrahedral grid

In viscous flow-solver algorithms gradient and diffusion operators are usually approximated by

means of a central discretisation based on Gaussian integration. As already shown for a prismatic

grid (Ref. 3) the principle of central symmetry plays a crucial role for achieving accuracy. For

a tetrahedral grid this property implies that for a central node each surrounding node has one

associated node that is located opposite and reflected to the central node. In such a way the first-

order error terms due to Taylor expansion of the gradient and/or diffusion operator vanish. If one

requires in addition that central symmetry should also hold for the all interior nodes in the grid

it can be concluded that the most optimal tetrahedral grid is a uniform tetrahedral grid with equi-

sided tetrahedral elements with di-hedral angles of 60 degrees and with edge lengthh. This is in

fact astructured tetrahedral grid which fits well in the classification of grid types as presented

in (Ref. [3]). For a structured tetrahedral grid each interior node is surrounded by 24 equi-lateral

tetrahedral elements with edge sizesh. In addition each interior edge in the grid shares 6 equi-

sided tetrahedral elements. An example for such an edge is shown in Figure 1. For a uniform grid

and a smooth solution on the grid the gradient and diffusion operator are then approximated with

second order accuracy.

In general a structured tetrahedral grid cannot be uniform in cell size since a range of gradients of

the flow solution have to be resolved. Refinement of a structured tetrahedral grid can be obtained

by controlling the size of tetrahedral elements using an externally specified distribution function.

Requirement for second-order accuracy is then that the nodes associated to the central node should

be located1 + O(h2) away from their central symmetric position. Another aspect is that the

topology of the structured tetrahedral grid possibly cannot be maintained in parts of the flow

domain where the distribution function is non-uniform.



- 6 -
NLR-TP-2000-343

3 Transformations to improve the grid connectivity

To obtain a structured tetrahedral grid firstly an overview of possible transformations that improve

the grid connectivity is made. In order to explain these transformations extra notation is intro-

duced. Signifyen as an interior edge of the tetrahedral grid which hasn neighbouring tetrahedral

elements. In this chapter transformations of edgesen andem occurring in one tetrahedral element

are described.

Well-known transformations are the edge-swapsS(e3), S(e4) andS(e5). In Figure 2 an example

of the edge-swapS(e3) is shown. Three tetrahedral elements are transformed into two tetrahedral

elements where the edgee3 is deleted. The transformationS(e4) leads to a new edgee4 as shown

in Figure 3. The edge-swapS(e5) yields two edgese4. These transformations can be represented

as

S(e3) () 2 elements

S(e4) () e4 (1)

S(e5) () 2e4

Consider two non-connected edgesen andem in one tetrahedral element as shown in Figure 4. In

a tetrahedral element three combinations of these two edgesen andem exist. DenoteT(en; em)

as the transformation of the tetrahedral element where the first edge is transformed. The following

transformations are possible (disregarding transformations with edges having more than 6 neigh-

bouring elements):

T(e3; e3) () e4

T(e3; e4) () e5

T(e3; e5) () e6

T(e4; e3) () e5 (2)

T(e4; e4) () e4 + e5

T(e4; e5) () e4 + e6

T(e5; e3) () 3e4
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The transformations listed are invertible. The listed transformations show that edgese3 can be

removed from the tetrahedral grid without introducing new edgese3. In contrast for edgese4

this property does not hold. The transformation of a tetrahedral element having the combination

(e3; e5) into the constructione6 is shown in Figure 5. Since the transformationse4 do not remove

edgese4 from the grid additional transformations are needed.

To describe these transformations consider now two edgesen andem in one tetrahedral element

that are connected (both edges share same node). Transformations are:

R(e3; e3) does not exist

R(e3; e4) () e3 + 2 elements

R(e4; e4) () e5 (3)

R(e4; e5) () e5 + 2 elements

From the transformations (3) it can be observed that the edgese4 can be transformed into edges

e3 ande5. By combining these transformations (3) with the transformationT(e3; e5) edgese6 can

be obtained. This means that the grid can be optimised towards a structured tetrahedral grid.

To illustrate the latter transformation consider the tetrahedral construction shown in Figure 6 that

contains three edgese4 that are connected. By using the transformationsR(e4; e4) andT(e3; e5)

the optimal construction can be obtained. A requirement that complicates the optimisation of

the tetrahedral grid is that during a transformation the minimum volume of a tetrahedral element

should be maximised. This requirement makes it sometimes not possible to perform a transfor-

mation. Therefore an additional algorithm is needed to optimise the cell size of the tetrahedral

elements.
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4 Improvement of the distribution of tetrahedral elements

To improve the cell size of the elements in the tetrahedral grid, the tetrahedral elements are redis-

tributed by means of a redistribution algorithm. The grid connectivity is kept fixed.

The algorithm that improves the distribution of the tetrahedral elements is based on a minimi-

sation of the function

min
X
l

V 2
l

w(x)
(4)

with Vl the volume of a tetrahedral elementl in the tetrahedral grid and where a weighting function

w = w(x) is taken into account. Typically, the weighting function is taken as the desired spacing

at the pointx to the power six. The solution of the minimisation is an equi-lateral tetrahedral grid

that meets the desired spacing function.

The function that is minimised is quadratic in terms of the physical coordinates of each node in

the grid, since the volume of a tetrahedral elementl can be defined as (see also Figure 7):

Vl =
1

6
(nl; x � x1):

By differentiating the function (4) for each node in the grid a3� 3 system for the physical coor-

dinatesx of the node is obtained

X
Tl

Bl (x� x1) = 0; (5)

with the symmetric matrix for tetrahedral elementTl

Bl =
h
nl n

T
l

i
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For each node in the interior of the tetrahedral grid (hence disregarding boundary nodes) system

(5) is solved by adopting a time-integration algorithm

dx

dt
+
X
Tl

Bl (x� x1) = 0; (6)

Euler-forward time-integration is taken to approximate the time-derivative. For redistributing a

tetrahedral grid typically a few number of time steps are employed.

To ensure that the volume elements remain positive during time stepping an upperbound for the

explicit time-step is needed. For the volume of a tetrahedral elementVm at the time levelj+1 the

requirement

V j+1
m =

1

6
(nm; x

j+1
� xm1) � 0

should hold. Substitution of (5) with Euler-forward time integration yields

V j+1
m = V j

m ��t
X
Tl

V
j
l (n

j
m; n

j
l ) � 0

which provides the upperbound for the time step:

�t �
V j
mP

Tl
V
j
l (n

j
m; n

j
l )

Since this upperbound is expensive to compute (due to the computation of all the inner products)

the time step is determined as:

�t =
minm V j

mP
Tl

V
j
l



- 10 -
NLR-TP-2000-343

The redistribution algorithm based on time-stepping is fast since the time step only depends on

the volumes of the tetrahedral elements of the previous time-level, so that they only have to be

computed once every time step. As in the grid very badly shaped tetrahedral elements may be

present the volume calculation is based on the algorithm described in (Ref. 5).
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5 Conclusions

In the paper the concept of astructured tetrahedral grid has been introduced. This grid type fits

naturally into the classification of grid types as made in (Ref. 3). A structured type of tetrahedral

grid combines the advantages of a high level of automation of the grid generation with a high

accuracy of numerical discretisation stencils. This type of grid would for instance be beneficial

for time-accurate flow calculations for complex geometric configurations.

In the paper algorithms have been proposed that optimise a tetrahedral grid. The connectivity

of the tetrahedral grid can be improved by adopting grid transformations. The element size distri-

bution is improved by means of a redistribution algorithm based on a local time stepping method.

The redistribution algorithm is fast compared to a standard Laplacian smoothing algorithm since

the positiveness of the tetrahedral elements does not have to be inspected. Application of the al-

gorithms described in the paper clearly lead to an optimised tetrahedral grid both in terms of grid

structure as well as conforming the desired distribution function. More work is needed to define a

strategy using these algorithms for constructing a structured tetrahedral grid.

In addition the algorithms proposed in this paper provide as well a framework for hybrid (pris-

matic/tetrahedral) grid optimisation and for unstructured moving grids (see for instance Ref. 7) as

needed for time-accurate flow calculations.
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Fig. 1 Example of an edge e6 (in bold) which has six tetrahedral elements as neighbour

e
3

Fig. 2 Example of the edge-swap S(e3); edge e3 (in bold) has three neighbouring elements and

is deleted; As a result of the edge-swap two tetrahedral elements remain.
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e4

4e

e4

Fig. 3 Examples of the edge-swap S(e4) into another edge e4; two possibilities exist

en

em

Fig. 4 Example of a tetrahedral element which has two edges en and em which are non-

connected
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e6

e3

e5

Fig. 5 Transformation of an edge e6 into two edges edges e3 and e5

Fig. 6 Transformation of one edge e6 into three edges e4 each corresponding with four tetrahedral

elements; Two possibilities exist.
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l
n

l
V

2

3

1

x

x

x

x

Fig. 7 Definition of the nodes x, x1, x2 and x3, the normal vector nl of the tetrahedral element l


