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Problem area
Massively separated flows play an
important role in topics such as the
design of silent landing gear, the
study of stability and control prop-
erties of fighter aircraft in relation
to vortex breakdown, and the study
of aerodynamic loads on structural
aircraft components due to buffet-
ting. These flows are strongly tur-
bulent, involving a large range of
spatial and temporal scales, which
makes it difficult to model their dy-
namics with high physical accuracy
and reliability. Flow computations
based on the Reynold-averaged
Navier–Stokes (RANS) equations
are not able to capture the smaller
turbulent scales. Large-eddy sim-
ulations (LES), on the other hand,
do capture a significant range of

scales, but are computationally too
demanding for complex geometries.
In recent years, therefore, research
has focussed on hybrid RANS-LES
methods, improving the physical
accuracy compared to RANS, but
without the cost of a full LES. In
particular, NLR has developed the
eXtra-Large Eddy Simulation (X-
LES) method.

Description of work
An important issue in hybrid
RANS–LES methods is the captur-
ing of free shear layers. Typically,
free shear layers are present be-
tween the attached boundary layers
(computed with RANS) and the
separated flow regions (computed
with LES). These shear layers may
develop too slowly in X-LES and
similar hybrid RANS–LES meth-
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ods. As a consequence the size of
the separated flow regions may be
overpredicted. Apparently, the com-
putations are too clean compared
to windtunnel or free-flight exper-
iments: the shear layer remains
stable, because there are no dis-
turbances present that may trigger
unstable modes. To resolve this is-
sue, a stochastic term is introduced
in the LES model.

Results and conclusions
For standard X-LES computa-
tions, the instabilities in a plane
free shear layer develop very slowly
and remain purely two dimensional.
The plane shear layer is success-

fully destabilized by introducing a
stochastic term in the LES model.
Three dimensional instabilities de-
velop rapidly and lead to fully de-
veloped, realistic turbulence within
a short distance.

Applicability
Free shear layers appear in many
applications, for example, vorti-
cal flows around fighter aircraft or
landing gear wakes, and strongly
influence the downstream flow de-
velopment. For all these applica-
tions, the new stochastic method is
relevant and may improve the com-
putational results.
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Summary

In this paper, a stochastic term is introduced in the subgrid-scale model of the X-LES method in

order to improve the computation of turbulent free shear layers. These shear layers may develop

too slowly in X-LES and similar DES-type methods, even when fine grids and high-order numer-

ical methods are used. For a plane free shear layer, the stochastic subgrid-scale model induces

rapid development of fully 3D turbulence in contrast to the standard method for which the flow

remains purely 2D. A comparison is made with experimental results and with results of a zonal

RANS–LES method with LES content added at the RANS–LES interface.
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1 Introduction

An important issue in methods similar to the Detached Eddy Simulation (DES) method of Spalart

et al. (Ref. 13) such as X-LES is the development of free shear layers starting from turbulent

boundary layers. Even though free shear layers are intrinsically unstable, computational results

may show stable shear layers of lengths that seem unphysical (see, e.g., Spalart (Ref. 12)). In

our experience, this behaviour is not necessarily caused by excessive levels of dissipation as it

is also found when the shear layer is fully captured in LES mode using fine grids and high-order

numerical schemes (and even if no subgrid-scale model is used). Instead, it appears that the un-

stable modes of the shear layer are simply not triggered because the computations are void of

any disturbances, either physical or numerical. In this paper, the subgrid-scale model employed

in X-LES is extended with a stochastic term, destabilizing the shear layer and leading to rapid

development of fully 3D turbulence.

In DES-type methods, the turbulent boundary layers upstream of a free shear layer are typically

in RANS mode and therefore do not contain any resolved turbulence. As a consequence, the de-

velopment of turbulence in the shear layer will start from the intrinsic instability of the shear

layer and will not be forced by turbulence coming from the boundary layers. This resembles

the situation when the upstream boundary layers are laminar. In that case, however, the distance

over which the initial, essentially 2D, Kelvin–Helmholtz instabilities develop into fully 3D turbu-

lence may be very long (of the order of hundreds of initial displacement thicknesses or more, see

Huang & Ho (Ref. 4)).

One possible approach to resolve this issue is by adding LES content at the RANS–LES inter-

face, forcing the development of 3D turbulence in the shear layer. This is feasible in a zonal

RANS–LES approach. In X-LES and similar DES-type methods, however, the RANS–LES in-

terface is dynamic, which complicates adding LES content. Therefore, an alternative method to

speed-up the shear-layer development is considered. This method consists of adding a stochastic

term to the subgrid-scale (SGS) model. Stochastic SGS models have been used in the literature

to model backscatter, seen as a random forcing of the resolved scales through non-linear inter-

actions with the subgrid scales (e.g., Leith (Ref. 9), Schumann (Ref. 11)). Here, the main goal is

not to model backscatter, but to see if a stochastic SGS model can act as a disturbance to trigger

3D instabilities in the shear layer.
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2 Modelling

2.1 The X-LES method
The X-LES formulation (Ref. 7) is a particular DES method (Ref. 13) that consists of a com-

position of a RANS k–ω turbulence model and a k-equation SGS model. Both models use the

Boussinesq hypothesis to model the Reynolds or subgrid-scale stress tensor, which depends on

the eddy-viscosity coefficient νt. Furthermore, both models are based on the equation for the

modelled turbulent kinetic energy k, which depends on its dissipation rate ε. Both the eddy vis-

cosity and the dissipation rate are modelled using the turbulent kinetic energy as velocity scale

together with a length scale lt,

νt = lt
√

k and ε = βk
k3/2

lt
, (1)

where lt is defined as a combination of the RANS length scale l =
√

k/ω and the SGS filter

width ∆,

lt = min{l,C1∆}, (2)

with C1 = 0.05. The RANS k–ω model is completed by an equation for the specific dissipa-

tion rate ω. The X-LES method will be in LES mode if C1∆ < l. Note that in that case the SGS

model is completely independent of ω.

2.2 Stochastic subgrid-scale model
In the standard X-LES method (and in most other DES-type methods), the SGS stress tensor is

modelled using the Boussinesq hypothesis, which essentially means that the effect of the subgrid-

scale turbulent fluctuations on the resolved scales is modelled as a diffusion process. In the rep-

resentation of this diffusion process, however, the ‘randomness’ of the subgrid-scale fluctuations

is lost. An alternative representation of diffusion, based on an analogy with the random-walk

process, is given by the following stochastic PDE:

φ(x, t + δt) = φ(x, t) + δt ν ξiξ j
∂2φ

∂xi∂x j
, (3)

where the vector components ξi (the random-walk direction) are independent stochastic variables

with standard normal distribution N(0, 1), so that E(ξi) = 0 and E(ξiξ j) = δi j. Note that the

expectation of this equation is the standard diffusion equation.

To incorporate this stochastic diffusion model in the SGS model, the cross terms are dropped and

a single stochastic variable ξ = N(0, 1) is used for all three vector components. The stochastic

10
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diffusion model then reduces to the standard diffusion equation with a stochastic diffusion coeffi-

cient ν∗ = ξ2ν. In the same way, the stochastic variable can be included in the expression for the

SGS eddy viscosity:

νt = ξ
2C1∆

√
k. (4)

At each time step, a new value of ξ is drawn for every grid cell.

The stochastic SGS eddy viscosity should only be used when the X-LES method is in LES mode,

not when it is in RANS mode. One option is to multiply C1∆ with ξ2 in the expression for lt
(equation (2)). This, however, would make the switching between RANS and LES modes as well

as the dissipation rate ε dependent on the stochastic variable. Instead, the eddy viscosity is set

explicitly as

νt =


k/ω if l ≤ C1∆ ,

ξ2C1∆
√

k if l > C1∆ ,
(5)

while the expressions for lt and ε are left unaltered.

2.3 Zonal RANS–LES method
As the stochastic SGS model is effective throughout the complete LES zone, it may have other

effects besides triggering the shear-layer instabilities. Therefore, as a reference, also a different

approach to destabilizing the shear layer is considered. A zonal RANS–LES method is used, set-

ting the boundary layers explicitly to RANS and the shear layers explicitly to LES. The same

turbulence models as in the X-LES method are used, i.e., the RANS k–ω turbulence model and

the k-equation SGS model. At the RANS–LES interface, LES content is added to the solution in

the LES zone. This added LES content may destabilize the shear layer, while the original SGS

model is maintained in the complete LES zone. Developing methods for introducing LES con-

tent is currently an active research area, for example, using precursor data (Ref. 10) or synthetic

turbulence (Refs. 1, 5). Here, a simple model for the LES content is chosen, based on white

noise and introducing isotropic resolved stresses. Although such an approach requires a signif-

icant distance to develop realistic turbulence, it is considered sufficient for our present purpose

(i.e., reference method for destabilizing the shear layer).

To introduce the LES content, the following flux is added to the LES momentum equation at the

interface:

ρ(ūiu′j + u′i ū j + u′iu
′
j + τ

r
i j)n j, (6)
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with the ρ density, ūi the time-averaged velocity vector, u′i the added resolved turbulent veloc-

ity fluctuations, τri j the added resolved turbulence, and ni the unit vector normal to the interface.

This flux was derived by subtracting the RANS equations from the LES equations. For the time-

averaged velocity, the instantaneous RANS velocity is used. The turbulent velocity fluctuations

are computed as

u′i =
√

2
3 krξi, (7)

where kr is the desired resolved turbulent kinetic energy. Again, the vector components ξi are

independent stochastic variables with standard normal distribution N(0, 1). This approach intro-

duces isotropic resolved stresses, given by

τri j = −u′iu
′
j = −

2
3 krδi j. (8)

Alternatively, a non-isotropic stress tensor can be introduced by including the Choleski decom-

position of the resolved stress tensor in the model for u′i (see Batten et al. (Ref. 1)). Note that the

expectation or time average of the additional momentum flux equals zero, so that no net momen-

tum source is created.

The desired resolved turbulent kinetic energy (kr) is equal to the modelled turbulent kinetic en-

ergy in the RANS zone (kR) minus the time-averaged SGS turbulent kinetic energy (ks),

kr = kR − ks, (9)

where for kR the solution of the k-equation at the RANS side of the interface is used. The value

of ks is determined by comparing the RANS and SGS models of the dissipation rate,

εR =
βk(kR)3/2

l
and εs =

βk(ks)3/2

C1∆
. (10)

Because the dissipation of resolved stresses can be neglected (viscous dissipation taking place

at the Kolmogorov scales), the two modelled dissipation rates should be equal. This gives the

following relation between ks and kR:

ks = αkR with α =

(
C1∆

l

)2/3

, (11)

so that finally

kr = (1 − α)kR. (12)

In regions where α > 1, the value of kr is set to zero.
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3 Results

3.1 Plane free shear layer
As a basic test case for investigating the stability issue, the experiment of Delville (Ref. 2) for

a plane free shear layer is considered. The free shear layer starts from the trailing edge of a flat

plate with free-stream velocities u1 = 41.54 m/s and u2 = 22.40 m/s at the different sides of the flat

plate. At the trailing edge, the turbulent boundary layers are fully developed with the momentum

and displacement thicknesses equal to θ1 = 1.0 mm and δ∗1 = 1.4 mm at the high-speed side and

θ2 = 0.73 mm and δ∗2 = 1.0 mm at the low-speed side. The θ-based Reynolds number at the high-

speed side is Reθ1 = 2900 at the trailing edge. The shear layer develops in a 0.3 m × 0.3 m square

test section of length 1.2 m. A self-similar flow with fully developed turbulence is reached well

within the test section.

A computational domain is used with a width of 0.15 m (z-direction) and a height of 0.3 m (y-

direction). To capture the correct boundary-layer profiles at the trailing edge, the flat plate has a

length of 0.5 m on the high-speed side and 0.3 m on the low-speed side and fine-tuning has been

done by varying the transition locations. The grid is stretched in the y-direction to capture the

boundary layers with approximately y+ = 1 for the first grid cell. A computational ‘test sec-

tion’ is defined with a length of 1 m after the trailing edge and with a uniform grid in the x- and

z-directions, followed by a buffer zone of 1 m length with a stretched grid in x-direction.

Two grid levels are used, G1 and G2, with 1.29 and 10.3 million grid cells. Grid G2 has 96 cells

in z-direction and 640 cells in x-direction in the computational test section, giving a mesh size

h = 1.5625 mm in both directions (similar to Tenaud (Ref. 14)). The filter width ∆ is set equal to

this mesh size. For grid G2, a dimensionless time step of δt+ = u1δt/L = 0.0016 is used (with the

length of the test section, L = 1 m, as reference length), giving a CFL number u1δt/h = 1. For

grid G1 the mesh sizes, the time step, and the filter width are all doubled compared to G2.

Computations are performed with a high-order finite-volume method that has low numerical

dissipation and dispersion and that preserves the skew-symmetry of convection (Ref. 6). This

method was designed for the LES regions of hybrid RANS–LES computations and was shown to

significantly improve the grid convergence with a fixed filter width (Ref. 8).

First, standard X-LES computations are performed on grid G1. The computations are started

from the solution of a steady X-LES computation, which was not converged and therefore con-

tains 3D perturbations of the shear layer. Initially, instabilities in the shear layer are visible shortly

after the trailing edge (Fig. 1a), but as the computation continues, the shear layer stabilizes with

13
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(a) After 500 time steps (time t+ = 1.6)

(b) After 3500 time steps (time t+ = 11.2)

Fig. 1 Instantaneous contours of vorticity (y-component) for standard X-LES computation of plane

shear layer on grid G1 (1.29 million cells).

the first visible instabilities shifting down to a location of approximately 0.4 m after the trailing

edge (Fig. 1b). Moreover, even though the solution originally contains 3D disturbances, it be-

comes quickly two-dimensional (Fig. 2a). The solution essentially displays the behaviour of an

initially laminar shear layer: growth of a 2D Kelvin–Helmholtz instability followed by vortex

pairing. For such a shear layer, fully developed 3D turbulence is only reached after a distance of

at least 10λ0/R with λ0 the initial instability wavelength and R = (u1 − u2)/(u1 + u2) (Ref. 4). In

this case, λ0 ≈ 60 mm and R = 0.3, giving a distance of at least 2 m.

A possible cause for slow shear-layer development is an excessive level of dissipation. The pre-

sented computation, however, uses a high-order finite-volume method with low numerical dis-

sipation on a grid with high resolution in all directions. It has been verified that the shear layer

is fully captured in LES mode. Switching off the SGS model completely in the shear layer or

continuing the computation on the finer grid G2 makes no essential difference. Therefore, it is

concluded that, in this case, the slow development is not caused by high dissipation. Instead, the

lack of any kind of disturbance in the computation, either physical or numerical, is perceived as a

possible cause.

14
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(a) Standard X-LES on grid G1 (time t+ = 9.6) (b) X-LES with stochastic SGS model on grid G1 (time

t+ = 9.6)

(c) X-LES with stochastic SGS model on grid G2 (time

t+ = 4.8)

(d) Zonal RANS-LES on grid G2 (time t+ = 1.6)

Fig. 2 Instantaneous isosurfaces of Q = ω2 − S 2, coloured with vorticity magnitude ω, for X-LES and

zonal RANS–LES computations of plane shear layer (S is magnitude of rate-of-strain).
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Using the stochastic SGS model in X-LES results in a dramatic improvement for the plane free

shear layer. The initial, spanwise vortices appear much closer to the trailing edge and already

show 3D disturbances (Fig. 2b). The flow then rapidly develops fully 3D turbulence. Continuing

the stochastic X-LES computations on grid G2 (Fig. 2c), the shear layer develops even quicker

and finer turbulent structures are captured. As a reference, zonal RANS–LES computations are

also performed on grid G2 (Fig. 2d). The initial, spanwise vortices show stronger 3D disturbance

than stochastic X-LES, but the subsequent development of the shear layer appears similar, show-

ing similar fine-scale structures.

The mean velocity and resolved stresses are computed by averaging in time (over at least 2000

times steps) and in the spanwise direction. Self-similar solutions are obtained for stochastic X-

LES and for zonal RANS–LES within the test section. Fig. 3 compares these self-similar solu-

tions at three stations towards the end of the test section with the experimental results. The simi-

larity coordinate is given by η = (y−y1/2)/θ, with y1/2 the location where u+ = (u−u2)/(u1−u2) =
1
2 and θ the shear-layer momentum thickness. The profiles of the mean velocity and the resolved

shear stresses of the computations are close to each other and to the experiment. For the resolved

normal stresses, the stochastic X-LES and zonal RANS–LES results on grid G2 are close to each

other and show only a small difference with the experiment, whereas the stochastic X-LES re-

sults on grid G1 deviate more strongly.

The main difference between the computations and the experiment is seen in the growth of the

shear layer in terms of the momentum thickness (Fig. 4). The experiment shows a linear growth

over a large part of the test section, which is consistent with a self-similar solution. The compu-

tations on grid G2 initially show a larger growth rate (dθ/dx) but tend towards the same rate as

the experiment near the end of the test section. Again, the strongest difference with the experi-

ment is found for the stochastic X-LES results on grid G1 with a significantly larger spreading

rate over the entire test section.

Note that the present methods do not aim to resolve a significant part of the turbulence coming

from the boundary layers. Therefore, the initial development of the shear layer differs from the

experiment, which results in different initial momentum thicknesses. The best one can expect is a

rapid development towards the same similarity solution with a similar spreading rate.

3.2 Supersonic base flow
Finally, as a less academic application, the supersonic base flow of a cylindrical afterbody is

considered (experiment of Herrin & Dutton (Ref. 3), free-stream Mach number M∞ = 2.46,

16
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(a) Mean velocity profile (b) Resolved shear stress 〈u′v′〉

(c) Resolved normal stress 〈u′u′〉 (d) Resolved normal stress 〈v′v′〉

Fig. 3 Self-similar solution for X-LES and zonal RANS–LES computations of plane shear layer com-

pared to experiment of Delville (Ref. 2).
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Fig. 4 Momentum thickness for X-LES and zonal RANS–LES computations of plane shear layer com-

pared to experiment of Delville (Ref. 2).

Reynolds number based on diameter ReD = 3.3 · 106). A grid of 4.4 million cells, with a typi-

cal mesh size h = 0.015D, and a time step of δt+ = u∞δt/D = 0.0033 are used. In this case,

the shear-layer stability issue is less severe, because unstable modes may be triggered by the re-

solved turbulence that is convected in the wake of the base towards the shear layer onset.

In a standard X-LES computation, the shear layer develops too slowly, leading to an overpredic-

tion of the size of the wake. In fact, as the computation continues, the level of resolved turbu-

lent kinetic energy in the shear layer keeps dropping, its peak keeps shifting down stream, and

the size of the wake keeps growing. Even the final solution (after 19,500 time steps, i.e.,. a time

interval t+ = 64.4) seems not to have settled yet (and therefore has been averaged over a rela-

tively small time interval of 6,000 time steps). With the stochastic X-LES method, the computa-

tion does settle well within 17,000 time steps (and has been averaged over the last 10,000 time

steps). As a result, the stochastic method predicts higher levels of resolved turbulent kinetic en-

ergy (Fig. 5a) that compare better to the experiment (Fig. 5b) and a smaller size of the wake, also

closer to the experiment (Fig. 6).

Despite these improvements, a clear overprediction of the size of the wake, compared to the ex-

periment, remains. The initial development of the shear layer still appears to be too slow. As the

grid in the initial shear layer is relatively coarse, locally refining the grid may possibly improve

the results.

18
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(a) Stochastic and standard X-LES

(b) Stochastic X-LES and experiment

Fig. 5 Resolved turbulent kinetic energy for X-LES computation of supersonic base flow of a cylindrical

afterbody compared to experiment of Herrin & Dutton (Ref. 3).

Fig. 6 Mean axial velocity component along wake axis for X-LES computation of supersonic base flow

of a cylindrical afterbody compared to experiment of Herrin & Dutton (Ref. 3).
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4 Conclusion

Turbulent free shear layers as computed in DES-type methods such as X-LES may be stable over

a length that is inconsistent with experiments. Here, it has been shown that this is not necessarily

due to excessive levels of dissipation that stabilize the shear layer, but that it can also occur for

computations on fine grids using high-order numerical methods. Apparently, the computations

are void of any disturbances that can induce the rapid growth of shear-layer instabilities. Instead,

the shear layer develops only slowly, similar to an initially laminar shear layer. With the intro-

duction of a stochastic term in the subgrid-scale model, the shear layers in X-LES computations

are destabilized and realistic, full 3D turbulence develops more rapidly.
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