
NLR-TP-2001-181

Utilizing supercomputer powerUtilizing supercomputer powerUtilizing supercomputer powerUtilizing supercomputer power
from your desktopfrom your desktopfrom your desktopfrom your desktop

B.C. Schultheiss and E.H. Baalbergen

NationaalNationaalNationaalNationaal Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TP-2001-181

Utilizing supercomputer powerUtilizing supercomputer powerUtilizing supercomputer powerUtilizing supercomputer power
from your desktopfrom your desktopfrom your desktopfrom your desktop

B.C. Schultheiss and E.H. Baalbergen

The contents of this report have been initially prepared for publication as paper in the
HPCN 2001 proceedings in the Springer Verlag series Lecture Notes in Computer Science.

The work reported has been executed as part of NLR�s basic research programme,
Workplan number I.2.A.2.

The contents of this report may be cited on condition that full credit is given to NLR and
the authors.

Division: Information and Communication Technology
Issued: 7 May 2001
Classification of title: Unclassified

-2-
NLR-TP-2001-181

Summary

Potentially unlimited computing power is provided today by computing facilities available via the

Internet. Unfortunately, the facilities exhibit a variety of non-uniform interfaces to the users. Each

facility has its own operating system, its own policy with respect to access and accounting, its own

set of tools, and its own data. To utilize the computing power, a user has to select an appropriate

facility, and has to know how to access and operate the facility, which tools to use, what options

to provide for these tools, how to execute tools, how to submit a job for execution, etc..

TheSuperbroker infrastructure gives easy access to HPCN facilities in the Netherlands through a

web browser, thereby taking care of the networking and system details. The user is provided with

a single working environment, which gives easy access to the available, usually remote resources

as if they were present on a single computer (a ”metacomputer”). Using the desktop’s native

software only, the user can easily browse the working environment, start tools, and submit jobs

using point-and-click and drag-and-drop operations. The working environment may be tailored

for particular end users and application areas. This paper presents the design and implementation

of the infrastructure.

-3-
NLR-TP-2001-181

Contents

1 Introduction 4

2 Requirements 4

3 Design 5

4 Implementation 7

4.1 SPINEware object servers 8

4.2 Web-interface server 9

4.3 Web-interface Java applets 9

5 A case study: Superbroker 10

6 Conclusions 11

7 References 13

5 Figures

Appendices 14

A Acronyms 14

(14 pages in total)

-4-
NLR-TP-2001-181

1 Introduction

Potentially unlimited computing power is provided today by computing facilities available via the

Internet. Unfortunately, the facilities exhibit a variety of non-uniform interfaces to the users. Each

facility has its own operating system, its own policy with respect to access and accounting, its own

set of tools, and its own data. To utilize the computing power, a user has to select an appropriate

facility, and has to know how to access and operate the facility, which tools to use, what options

to provide for these tools, how to execute tools, how to submit a job for execution, etc..

Ideally, the remote computing resources should be accessible without any technical barrier: with-

out the need to install extra software and accessible through a simple graphical user interface (GUI)

with a look and feel the user is familiar with. Put in technical terms, we want the high performance

computers to operate asapplications servers that can be accessed by an end-user through athin

client.

First, this paper presents the requirements, design, and implementation of a general infrastructure

for web-access to remote computing facilities. The key elements of the implementation are the

GUI consisting of Java applets, an HTTP daemon with Java servlets, and SPINEware ([7]) object

servers with CORBA interfaces. The implementation raises issues such as the communication

between the Java applets and the HTTP daemon servlets, the communication between the HTTP

daemon servlets and the SPINEware object servers, and launching SPINEware servers when nec-

essary. These topics are covered in the present paper.

Next, a case study demonstrates how this general infrastructure is applied to provide theSuper-

broker working environment, for accessing the public Dutch HPCN facilities.

2 Requirements

Figure 1 presents an overview of the required functionality for the Superbroker working envi-

ronment: a user easily and uniformly accesses tools and data on the HPCN facilities as if these

were available from a single computer. The decisive requirements for the web-based access to the

HPCN facilities are:
� Provide access to the HPCN facilities through a single network address.
� Provide access to the HPCN facilities without the need for installation of extra software on

the local desktop. Also, the software running on the local desktop shall be portable. We

have translated these requirements into: the only required software is aJava 2 capable web

-5-
NLR-TP-2001-181

RUG

SARA

HP C

Internet

NLR

firewall

firewall
firewall

firewall

firewall

Fig. 1 Usage of SPINEware to access remote HPCN facilities

browser.
� Provide the user with a simple, predefined working environment which allows the user to

browse through and access the available tools, data, and information.
� Provide support for the integration of tools in a working environment. The tools vary from

compilers to Computational Fluid Dynamic applications. Tools may require a set of input

parameters and files.
� Offer support for transportation of code and data files, including the required build (i.e.,

make) instructions, between the end user and the HPCN facility, if possible in compressed

or encrypted form.
� Provide support for starting up (remote) jobs on the HPCN facilities.
� At job start-up, the job parameters can be specified, allowing the user to, e.g., limit the

duration of a job.
� The user interface shall give a fast response (say within 0.2 seconds). Note that the action

as specified using the web interface may take some time, depending on network delay.
� An authentication mechanism using user name and password shall be used. The user must

be able to change the password. We translated this requirement into: the system must

use the user name password mechanism of the HPCN facilities that are accessed. Data

communication shall be secure.
� In order to enable users protected by a firewall to access a remote HPCN server, the com-

munication between the user’s user interface and the remote HPCN server shall be based on

a widely available protocol such as HTTP or HTTPS.

3 Design

This chapter describes how services on remote hosts can be accessed using a locally running web

browser.

-6-
NLR-TP-2001-181

The design must be such that the system can be used as follows. The user starts a native web

browser and specifies the name (URL) of the login html page. The user selects the remote com-

puting facility on which he or she wants to launch the initial SPINEware object server (see section

4.1 for details), and specifies the user name and password for the selected facility. A SPINEware

object server will be launched. The user’s web browser now provides a single working environ-

ment, which gives access to the available resources as if they were stored on a single computer (a

”metacomputer”) [7]. The user can browse the working environment, start tools, and submit jobs

using point-and-click and drag-and-drop operations. In addition to browsing through information

and launching tools on the specified host, the user may open browsers for accessing resources on

other hosts as well. Data can simply be moved and copied by dragging and dropping icons from

one browser window to another. The working environment may be tailored for particular end users

and application areas.

(netscape, explorer)
with java 2 support

REXEC

object server
SPINEware

remote

object server
SPINEware

remote

object server
SPINEware

initial

applet

(Java)

HTTP/HTTPS

HTTPD with servlet support

servlet
CORBA

(Java)

same functionality as SPINEware Tcl/Tk user interface

web−interface client web−interface server

web browser

Fig. 2 SPINEware architecture

The architecture of the system is shown in figure 2. The figure displays a 3-tier model:
� The Java applets that implement the GUI.
� SPINEware object servers that carry out the requested actions and that manage the resources

involved.
� A web-interface server that enables the user to obtain the applets, and that functions as a

middle-tier in the communication between the applets and the SPINEware object servers.

The technical details are discussed in chapter 4. Figure 3 shows two possible architectures for the

communication layer between the SPINEware object servers and the local GUI applets.
� Architecture I is the 3-tier architecture as presented and implemented. This architecture is

required when using Java applets, because applets can only reconnect to the HTTP daemon

from which they were obtained. An advantage of this architecture is that we can use our

-7-
NLR-TP-2001-181

own communication layer between the Java applets and the web interface server. At this

moment, we simply use the HTTP protocol or the Secure HTTP (HTTPS) procotol. HTTPS

is available by default from the Java libraries. However, the HTTP daemon has to support

it. Within the Superbroker project (see chapter 5), an Apache HTTP Daemon ([6]) with

HTTPS support is used. Another advantage of the 3-tier architecture is that it is possible to

monitor which users are logged on at any moment and what the users are doing, because

all communication is done via the same web-interface server. An administration applet

enables the administrator to do the monitoring. A disadvantage of a 3-tier system is the

communication overhead.
� Architecture II shows a web-interface client which directly communicates with the SPINEware

object servers. This is only possible when running the web-interface client as a stand-alone

program instead of Java applets due to security restrictions imposed on Java applets. Note

that architecture II does not fulfil the ”only a Java 2 capable browser is required” require-

ment.

As an obvious design principle, we have clearly separated the communication layer from the

implementation of the GUI.

spine−servers.idl

spine−servers.idl

US.idl

US.idl

B2
Impl.

Architecture I

B1
Impl.C’s server stubs

A’s client stubs

C’s client stubs

(CORBA)

A’s server stubs

(CORBA)

A’s server stubs

C’s client stubs

Impl.

A C

Impl.

(CORBA)

A’s client stubs

(CORBA)

C’s server stubs

A

Impl.

C’s client stubs

A’s server stubs

C’s server stubs

(CORBA)

A’s client stubs

(CORBA)

Impl.

C

Architecture II

(HTTP: Post) (Servlet)

(Servlets)

C: SPINEware object server(s)

C: SPINEware object server(s)

A: web−interface client B: web−interface server

A: web−interface client

(HTTP: Post)

(IDLJ’s−IIOP)

(IDLJ’s−IIOP)

Fig. 3 Architectures I and II

-8-
NLR-TP-2001-181

4 Implementation

This chapter presents the technical details of the 3-tier model: SPINEware object servers, the

web-interface server, and the Java applets.

4.1 SPINEware object servers

SPINEware exhibits an object-based model. In a working environment, all resources available

from the interconnected hosts are modeled as objects. SPINEware provides ”basic” object classes

such as File, Directory (for a native system’s directory or folder), ObjectFolder (a folder for or-

ganizing objects), Trashcan (”recycle bin”), Printer, AtomicTool (wrapped, ready-for-execute pro-

grams), Job (for managing the execution of AtomicTools), Workflow (for chaining tools, thereby

passing output files from one tool as input files for another), and the GUI object named UserShell.

Starting from the basic object classes, new classes may be added - whether or not inheriting from

existing classes - and existing classes may be modified. The access operations on the objects are

defined in terms of methods. Examples areEdit for File, View for Directory and ObjectFolder, and

Execute for AtomicTool.

Each object in SPINEware has a (world-wide) unique object identifier, which contains the class

(”type”), the Internet name of the host it resides on, and a host-unique identifier. The URL naming

scheme is used to identify a SPINEware object. An object identifier is usually written as a so-called

”SPIRL”, a SPINE ResourceLocator. For example, directory/home/user/src on hostdesk12.nlr.nl

can be identified using the SPIRL

spine://Directory@desk12.nlr.nl//home/user/src

SPIRLs are also used for specifying method invocations, such as

spine://Directory:View@desk12.nlr.nl//home/user/src

which instructs SPINEware to display the contents of the specified directory on the user’s desktop.

SPINEware provides aSPIRL broker utility, which enables method invocations from within tools,

scripts, and command-line interpreters.

The objects available from a host via a SPINEware working environment are managed by and ac-

cessible via aSPINEware (object) server running on the host on behalf of the user and the working

environment. When a session with a working environment is started, one SPINEware object server

is started initially. This server will handle all requests from the user interface. A minimum (i.e.,

single-host) session with a working environment involves at least a user interface and the initial

SPINEware object server for accessing the host’s resources as objects. If an object on another host

-9-
NLR-TP-2001-181

is accessed, the initial SPINEware object server starts (”on demand”) a SPINEware object server

on the other host, and relays all subsequent method invocations (and the corresponding results)

involving objects on that host.

The communication among the SPINEware objects is based on CORBA, and is implemented

using an off-the-shelf CORBA implementation,ILU [4]. This product supports CORBA-based

inter-object communication over local networks as well as the Internet, and is capable of being

used in combination with firewalls.

4.2 Web-interface server

The web-interface server is the middle tier of the system, see figure 2. This middle tier is imple-

mented using an HTTP daemon (httpd) with Java servlets.

The servlets are invoked by applets (see chapter 4.3) when the GUI wants to invoke an object

method via the SPINEware object server. For example, if the user wants to see the contents of a

job queue, thegetContents method of the Job object is invoked.

When the user logs on to the system, theLogin servlet is invoked. The Login servlet takes care of

publishing a new instance of the SPINEware UserShell object to the CORBA naming service for

the user who logs on, and launches a SPINEware object server on the specified host usingrexec and

the user name and password provided by the end user. For example, if the SPINEware Tool Editor

(started upon invocation of theEdit method of the AtomicTool object) needs to display an error

message, it invokes theErrorMessage method of the UserShell object. This results in invocation

of the ErrorMessage implementation in the web-interface server via its CORBA interface. The

web-interface server ensures that the correct applet code is run. This applet method invocation

is, due to security restrictions on applets, implemented by a blocking poll for a command by the

applet.

The CORBA interface of the webinterface server has been built using Java’sidlj. So, the protocol

used between the SPINEware object server and the webinterface server is CORBA’sIIOP.

4.3 Web-interface Java applets

The web-interface client (i.e. the GUI) is implemented by Java 2 applets. All communication with

the web-interface server is implemented using HTTP or HTTPSPost commands. Consequently, if

a firewall is between the end user’s system and the web-interface server, this poses no problem as

long as the firewall allows HTTP (or HTTPS). Also, the applets always initiate the communication.

As explained in the previous chapter, the Java applets poll the web-interface server for commands

-10-
NLR-TP-2001-181

to be executed.

The webserver will send anSC UNAUTHORIZEDmessage if the user name and password are not

specified in the servlet request, and thus obtains the username and password. In response, the web

browser will display a login window, prompting the user to specify the user name and password

of the system he or she wants to access initially.

Any customization information for the GUI (e.g., which browsers to open, colors, character sets,

etc.) will be stored at the accessed remote host, and will be obtained from the SPINEware object

server at login.

To access local files from the GUI, Java Web Start [8] is supported. The GUI could also be run as

a Java standalone program instead of using the web browser, thus enabling access to the local file

system.

5 A case study: Superbroker

The managing institutes of the major HPCN facilities in the Netherlands (NLR, SARA, HPC-RuG,

and HPaC/TUD) have developed a uniform infrastructure namedSuperbroker, that provides users

from small and medium-sized enterprises (SMEs), government, and industry, with easy access to

the HPCN facilities in the Netherlands and support for using those facilities. The activities for

realizing this infrastructure have been carried out in the scope of the HPCN 2000 Infrastructure

project, which was funded by the Dutch HPCN Foundation.

The Superbroker web site (http://www.superbroker.nl) provides the user with access to

information on the HPCN facilities, enables the user to obtain accounts on the HPCN facilities, and

offers working environments to facilitate access to data and tools on the HPCN facilities. Figure

4 shows the Superbroker architecture: it is a specialization of the general SPINEware architecture

as shown in figure 2.

To interactively access an HPCN facility with a predefined working environment, start a web

browser on your local workstation or PC, and provide theSuperbroker URL. After successful

registration and login, a file browser for the top-level ObjectFolder of the working environment

pops up, as shown in figure 5. From this very moment on, you may browse through the working

environment by opening Directories and ObjectFolders via double clicking on icons. The tree-

shaped organization of the working environment together with the on-line help information will

-11-
NLR-TP-2001-181

(Netscape, explorer with Java 2) servlets and HTTPS support

REXEC

(at www.superbroker.nl)

SGI Origin 2000
SARA:

NLR:
NEC SX/5

User’s local web browser Apache www−server with

applet

(Java)

object server
SPINEware

remote

object server
SPINEware

remote

object server
SPINEware

remote

object server
SPINEware

remote

CORBAHTTP/HTTPS

servlets
HTTPD

HPaC/TUD

HPC−RuG

Fig. 4 Access to HPCN facilities through a web interface using SPINEware

help you to find your way around in the working environment and to locate and use the resources

you need.

TheSuperbroker presently provides means to upload program code and data, to build executable

programs and tools from the program code on the HPCN facilities, to run existing as well as your

own programs, and to download results. The SPINEware object classes Queue (for Job queues)

and Workflow (for chaining tools) offer useful possible extensions for working environments based

on the Superbroker concept. The Queue class supports specification of jobs to be run on super-

computers, and to be managed by supercomputer-native job management systems, such as NQS

and Codine, both of which are supported by SPINEware. The Workflow class supports definition

of tool chains, which allow the use of tools and data involved to be specified in the form of a graph

and to be reused by other users as well.

6 Conclusions

This paper described a general infrastructure for easy and uniform access to remote computing

facilities from the desktop computer, using the desktop’s native web browser as GUI. This in-

frastructure, SPINEware, has been applied to instantiate theHPCN 2000 Superbroker working

environment.

The GUI is simply started by entering the URL of the start page in the native web browser.

The GUI has the look and feel of a graphical file-system browser, enabling the user to browse

-12-
NLR-TP-2001-181

Fig. 5 Accessing HPCN facilities through the superbroker web site

through and access the available resources, such as files, directories/folders, and tools. Tools can

be started, and jobs can be submitted using intuitive point-and-click and drag-and-drop operations.

SPINEware takes care of the system details.

The end user only requires a Java-2 enabled web browser to access the defined working environ-

ments. The end user is able to enhance the working environments by integrating new tools, or

adding new tool chains.

Behind the screen, a web-interface server (an HTTP daemon with Java servlets) functions as an

intermediate between the end user’s GUI (Java applets) and the SPINEware object servers on the

remote hosts. Communication between the web-interface server and the Java applets is based on

HTTP or HTTPS, thus minimizing firewall problems. The web-interface server communicates

with the SPINEware object servers through CORBA. SPINEware object servers are automatically

-13-
NLR-TP-2001-181

launched on the hosts that are accessed during a session.

7 References

1. Orfali, R and D. Harkey,Client/Server programming with Java and Corba, ISBN 0-471-

16351-1

2. Eckel, B,Thinking in Java, ISBN 0-13-659723-8, http://www.bruceeckel.com

3. Java Servlets and Serialization with RMI,

http://developer.java.sun.com/developer/technicalArticles/RMI/rmi/

4. ILU 2.0alpha14 Reference Manual, Xerox Corporation.

Can be obtained via ftp://beta.xerox.com/pub/ilu/ilu.html

5. Hunter J.; W. Crawford;Java Servlet Programming, ISBN 1-56592-391-X, O’Reilly & Asso-

ciates.

6. Apache HTTP server project, http://www.apache.org/httpd.html.

7. Baalbergen, E.H. and H. van der Ven,SPINEware - a framework for user-oriented and tai-

lorable metacomputers, in: Future Generation Computer Systems 15 (1999) pp. 549-558,

NLR-TP-98643.

8. Java Web Start, http://java.sun.com/products/javawebstart/

-14-
NLR-TP-2001-181

Appendices

A Acronyms

CODINE COmputing in DIstributed Network Environment, a job management system

from GENIAS.

CORBA Common Object Request Broker Architecture, seehttp://www.omg.org.

GUI Graphical User Interface.

HPaC/TUD High Performance Applications Center at Delft Technical University.

HTTP HyperText Transfer Protocol.

HTTPD HTTP Daemon or webinterface server.

HTTPS Secure HTTP.

IDL CORBA’s Interface Definition Language.

IDLJ Java’s IDL-to-Java Compiler to generate Java bindings from a given IDL file.

IIOP CORBA’s Internet Inter-ORB Procotol. This is the protocol that must be used to

provide interoperability with other CORBA implementations.

ILU The Inter-Language Unification system, a free CORBA implementation from

Xerox.

NLR Dutch National Aerospace Laboratory.

NQS Network Queing System, a job management system.

REXEC Protocol to remotely start a process.

RUG Rijksuniversiteit Groningen.

SARA Academic Computing Services Amsterdam.

SME Small and Medium Enterprises.

SPINEware SPINEware is a system for the construction and operational use of functionally-

integrated working environments in a computer network.

SPIRL SPINEware resource locator.

URL Universal Resource Locator, unique address of a document or a resource on the

the internet in the form protocol://server domain name/pathname.

