Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

e

RIE

=

NLR TP 97329

Partitioning and parallel development of an
unstructured, adaptive flow solver on
the NEC SX-4

H. van der Ven and J.J.W. van der Vegt

DOCUMENT CONTROL SHEET

ORIGINATOR'S REF. SECURITY CLASS.
TP 97329 U Unglassiefied

ORIGINATOR
National Aerospace Laboratory NLR, Amsterdam, The Netherlands

TITLE
Partitioning and parallel development of an unstructured, adaptive flow
solver on the NEC SX-4

PRESENTED AT _ _

the Parallel Computational Fluid Dynamics '97 Conference, Manchester,
England, May 19-21, 1997. The work described in this reﬁlort is partially
supported by the Dutch Foundation HPCN in the project NICE under contract

no. 96009.
AUTHORS DATE pp ref
H. van der Ven and J.J.W. van der Vegt 970626 12 5

DESCRIPTORS

Adaptation Galerkin method)
Algorithms Grid generation (mathematics)
Compressible flow) Parallel processing (computers)
Computational fluid dynamics Partitions (mathematics)

Computer systems performance Unsteady flow)
Finite element method Unstructured grids (mathematics)
ABSTRACT

NLR is developing a parallel, unstructured, adaptive flow solver based on
hexahedrons. Development is directed toboth the numerical algorithm and
parallel efficiency. After an earlier do-loop parallelization of the flow

solver on a NEC SX-4/16, a parallelization strategy for the adaptation
algorithm based on mesh partitioning will be described and executed.
Parallelization results will show that shared memory machines are
excellent platforms to develop domain decomposition methods for a flow
solver which is both under numerical development and used in production.

217-02

-3-
NLR-TP-97329

Summary

NLR isdeveloping aparalle, unstructured, adaptive flow solver based on hexahedrons. Develop-
ment is directed to both the numerical agorithm and parallel efficiency. After an earlier do-loop
parallelization of the flow solver on a NEC SX-4/16, a parall€elization strategy for the adaptation
algorithm based on mesh partitioning will be described and executed. Parallelization results will
show that shared memory machines are excellent platforms to develop domain decomposition
methods for a flow solver which isboth under numerical development and used in production.

-4-
NLR-TP-97329

Contents

1 Introduction

2 Description of the algorithm
3 Dynamicload balancing

4 Parallelization of the adaptation
5 Performance results

6 Paralle development

7 Conclusions

8 References

1 Table

2 Figures

(12 pagesin total)

10

11

12

)
)=

-5-
NLR-TP-97329

1 Introduction

The National Aerospace Laboratory NLR is developing a paralldl, adaptive, unstructured flow
solver based on a discontinuous Galerkin finite element discretization of the Euler/Navier-Stokes
equations for compressible flow. The main incentive for the development of this flow solver is
time-accurate flow simulation. Because of the computational complexity of the applications, the
underlying algorithmisalready parallelized during thealgorithm development stage. Thisrequires
frequent mutua updates, and step-by-step development of new functionality and performance
increases. Since the flow solver is aso used for production runs, at each stage the functionality
should not degrade. In this paper it will be shown that shared memory machines are excellent
platforms to accomplish this.

The two main components of the flow solver are the solution of the unsteady Euler equations of
compressible gas dynamics and a grid adaptation algorithm to improve capturing of loca flow
phenomena. In previouswork the flow solution part of the flow solver has been parallelized on an
NEC SX-4/16 withvery satisfactory resultsusing do-loop parall€lization and some special features
of thediscretization method (Van der Ven et a, Ref. 4: aspeedup of 11.5 on 14 processorsreaching
a speed of 8.5 Gflop/s). Nonetheless, for a more efficient paralelization of the flow solution
algorithm and paralelization of the grid adaptation algorithm a mesh partitioning is required.
A dynamic load balancing tool based on a loca migration technique has been developed and
integrated with the flow solver. During the step-by-step parallel devel opment the mesh partition
will be used to paraldlize increasingly more parts of the flow solver. Further developments will
be motivated by expected performance increases.

The mesh partition will be first applied to parallelize the adaptation algorithm. This agorithm
cannot be efficiently parallelized by low level do-loop parallelization and for time-accurate sim-
ulations with frequent grid adaptations, the serial adaptation algorithm would consume too much
computing time compared to the parallel flow solver.

The present paper isorganized asfollows. Inthe next chapter the algorithmsused intheflow solver
will be described; emphasis will be laid on the adaptation agorithm. In Chapter 3 the dynamic
load balancing algorithm will be described. In Chapter 4 the paralldization of the adaptation
algorithm and in Chapter 5 the performance results will be discussed. In Chapter 6 issues for
paralle development of paralel software will be addressed. In the last chapter conclusions will
be drawn.

)
=

-6-
NLR-TP-97329

2 Description of thealgorithm

NLR is developing a new, discontinuous Galerkin finite element algorithm for the Euler/Navier-
Stokes equations, Ref. 3. The discontinuous Galerkin finite element method can be considered as
amixtureof an upwind finite volume method and a finite element method. A combination of local
grid refinement and the discontinuous Galerkin finite element method is applied in the flow solver
Hexadap. This combination is capable of efficiently resolving local phenomena such as shocks
and vortica structures.

The grid structure consist of hexahedronal cells, which may be connected in an arbitrary way.
Each cell can have an unlimited number of neighbouring cells. The starting grid is a structured,
boundary conforming mesh, which is adapted during the flow simulation using anisotropic grid
refinement and coarsening, resulting in a completely unstructured mesh.

The cell structure is stored in a data structure which is a forest consisting of trees rooting in the
cells of the original mesh. Therefore, the cells of the original mesh are called ‘root’ cells. The
trees consists of branches to the kid cells into which the (root) cell is divided. Only the leaves
of the trees are cells which are used in the flow computations. They are cadled ‘active cdls,
and constitute the mesh on which the flow is solved. The other cellsin the tree are necessary to
described the data structure. A more complete description of the data structure can be found in
Van der Vegt et d, Ref. 3.

Theinitial mesh is frozen during the computations, that is, the data structure for this mesh is not
changed. It isused to computetheface-cell connections of the adapted mesh, which are necessary
for the update of the cell residuas by the face fluxes.

The anisotropic grid refinement is applied to the active cells. In each active cell ¢ a difference
V() of dl flow variables is computed based on the neighbouring states in a given direction d,
where d isone of 7, j or k. This difference is multiplied with a power of the diameter dsg(c) of
the cell in direction d to obtain the value of the sensor function:

f3(e) = Vi(e)(dsz(c))?,

The cells are then ordered with respect to their sensor function values. Only thefirst N1 cellsin
this order are coarsened and the last V, are refined. The numbers N, and V, are computed as
user-defined percentages of the total number of cells. In thisway the user has control over the
number of cellsthat are deleted or created during an adaptation. Methodswhich adapt those cells
for which the sensor function is above or below a certain threshold value are unpredictable in this

-7-
NLR-TP-97329

respect.
3 Dynamic load balancing

Adaptive flow solvers require dynamic load balancing agorithmsto repartition the mesh after a
grid adaptation. Thisis also required when, as in the present case, the partition is only used to
paralldize the adaptation algorithm, and not the flow solution part. Even though the workload
during an adaptation step is much harder to predict than the workload during a flow solution
step, no rebalancing of the mesh after an adaptation step would lead to large load imbalance in
subsequent adaptations. Also, the rebalancing reduces memory use, since al data is stored per
part in static arrays.

In this paper a dynamic load balancing tool based on the local migration technique of Ozturan
et a, Ref. 2, isused. Minor adaptations for shared memory machines are made. The algorithm
iteratively migrates cells between neighbouring parts in the mesh. Load requests between parts
determine the movement of cells. All partsrequest load from the most heavily loaded part. If they
are not connected to that part they will try the next part. Cellsto betransferred are assigned using
atwo dimensional greedy agorithm which repeatedly strips layers of cellswhich connect to both
parts. Through theiterative process|oad may traverse from one part through another into the next
part. Thiseventualy allowsload transfer between disconnected parts, and ensures connectivity.

The initial partition is obtained using the three dimensional greedy agorithm of Farhat, Ref. 1.
The partitioning agorithm is applied to the root cells, in order to decrease the problem size, and
hence improve efficiency. The root cells are weighted with the number of active cells contained
in the root cell.

The above described agorithm efficiently produces well-balanced partitions. Moreover, the size
of the boundaries of the parts remains roughly constant during the migration process. In Chapter 5
timings of the partitioning algorithm can be found. More details on the dynamic load balancing
algorithm and on the results can be found in Van der Ven, Ref. 5.

4 Parallélization of the adaptation

The serial adaptation a gorithm has the following structure:

do for al three directions
compute sensor function for al cells

-8-
NLR-TP-97329

order cellswith respect to sensor function values

coarsen/refine cells (update data structures for cells and grid points)
enddo
update data structures for faces

All but one step in this agorithm can be parallelized using the partition in a straightforward way.
The ordering of the cells with respect to their sensor function valuesisglobal in nature, and would
therefore imply a seria section. This seria section becomes prohibitively large for large meshes
and is about 5% of the adaptation time for the tests of the next section. By Amdahl’s Law this
seria sectionisanimpediment for an efficient parallelization and this part of the algorithm should
be changed.

The user control over the number of cells which are added or deleted during an adaptation should
be maintained. The decision therefore was made to decrease the problem size by not ordering the
complete set of cells but to collect the cells in buckets and order the buckets, which resultsin an
approximation of the sensor function by a piecewise constant function. A typical sensor function
isdisplayedin Figure 1: alarge number of cells has a sensor function value close to zero (and are
candidates for deletion) and a smaller number have large function values (and are candidates for
refinement). The approximation of the sensor function is chosen such that the rel evant features are
preserved as much as possible. The bucket sizes vary quadratically, and the first buckets contain
in the order of one element. The total number of buckets is 1% of the number of cells, thereby
reducing the problem size by a factor 100. In Figure 1 examples of the approximation of the
sensor function are shown for both coarsening and refinement.

After each adaptation of the mesh in a certain direction the mesh is repartitioned.
5 Performanceresults

The parale performance is measured for two different mesh sizes around an ONERA M6 wing.
Both meshes have the same root mesh consisting of 16,384 root cells. Both meshes are adapted
three times, between which 33 time steps are solved. In the first test the mesh size is increased
from 16,384 to 126,040 cells. In the second test the mesh size is increased from 189,049 to
300,652 cells.

In Table 1 elapsed timings are presented for the two tests. Timings are given for the complete
adaptation algorithm, and for its three components. the partitioning algorithm, the adaptation

-9-
NLR-TP-97329

(@ ©

Sensor function

Number of cells

Fig. 1 Typical sensor function and approximations. (a) Sensor function. (b) approximation of
sensor function for refinement, the ticks at the vertical axis determine the buckets and are
placed at increasing distances from the peak value. (c) approximation of sensor function
for coarsening, the ticks at the horizontal axis determine the buckets and are placed at

increasing distances from zero.

Table1l Elapsed timings[s] of the adaptation algorithm for both tests, left Test 1, right Test 2.
The adaptation agorithm (Adapt) is split into three parts: partitioning (Part.), the cell
part (Cells) and the face part (Faces).

procs parts Adapt Pat. Cels Faces procs parts Adapt Part. Céls Faces
1 1 105 - 390 66.0 1 1 441 - 162. 279
655 58 225 372 231. 566 86.3 139
636 78 206 352 233. 136 824 137.
644 102 197 345 233. 178 787 137.
42.8 78 135 215 138. 137 50.7 73.6
419 102 123 194 135. 178 454 718
16 420 127 112 18.1 16 142. 250 450 72.0
8 329 102 99 128 7 9.1 164 336 456
16 323 112 84 127 14 102. 234 313 473
32 351 168 80 103 28 976 269 282 425

0 K~ B~ DN
0 OO A~ DN

0 0 |k~ A BMINMDNDNMNDN
N NN (AR DMDNMNDNODN

of the cells (including the computation of the sensor function), and the update of the face data
structures.

Figure 2 showsthe speedupsfor the cell and face parts of the adaptation algorithm. The speedups
are computed based on the serial code which isobtained by compiling the parallel sourceignoring
the paralldization directives. The speedups are satisfactory, but not excellent. For the face part of

-10-
NLR-TP-97329

the algorithm this can be explained by the fact that in the present implementation the work load
of a part cannot be predicted beforehand. So it may happen that one of the last parts processed
constitutes too much work, leading to load imbalance. This is not the case for the cell part of
the algorithm. Here, once the sensor function has been calculated, the work load per part can be
computed. The parts are then ordered with respect to the workload, and the most heavily loaded
parts are processed first. If there are more parts than processors, quite a good load balance is
achieved, as can be seen in Figure 2: the best speedups (shown as dashed lines) are obtained when
more parts than processors are used. The reason for the decreasing efficiency for the cell part of
the algorithm is caused by the parallel overhead for the seria sections. These serial sections are
required for both the computation of the sensor function (if a cell neighbour lies on a different
part) and the ordering of the bucket values. The effect of the paralel overhead is most clearly
seen in the results of the smaller Test 1.

o

! ! ! ! ! ! ! 8 ! ! ! ! ! !

[l N w £ (6] (o] ~ (o]
T

| | | | | | | 1 | | | | | |

1 2 3 45 6 7 8 9 1 2 3 4 5 6 7 8

Fig. 2 Speedups for the cell and face parts of the adaptation algorithm, left Test 1, right Test 2. &
cells; + faces; — perfect speedup; - - - maximum speedup cells; - - - maximum speedup

faces. On the x-axis the number of processors, on the y-axis the speedup.

For Test 1 the partitioning a gorithm eventually takes as much time as the other two parts of the
adaptation algorithm. Hence a parallelization of the partitioning algorithm is advised. Thisis
feasible since the chosen local migration technique was selected for its parallelizability. When
comparing the execution times for the partitioning of the two tests, it is clear that the strategy of
reducing the problem size by partitioning the root cells instead of the active cellsis a good one.
Differences in the timings are caused by thefact that for the larger mesh more active cells haveto
be migrated from one part to another. The partitioning of the root cells takes the same amount of
time, but the update of the part data structures takes more time.

)
)=

-11 -
NLR-TP-97329

6 Parallel development

The flow solution part of the flow solver presently is parallelized using do-loop paralldization
without explicitly partitioning the mesh. A mesh partition alows for a different parallelization
of the entire flow solver. However, application of a mesh partition requires a significant change
in the data structures. Since the flow solver still isin development and also used for production
simulations, it is not feasible to perform the required modifications for the partition in one step.
Therefore it has been decided to perform the modifications step by step.

This step by step development of a parallelization strategy based on the mesh partition is feasible
on shared memory machines. Since al the data is located on a shared memory the flow solver
may forget the partition in certain parts of the algorithm, where the do-loop parallelization of Van
der Ven et d, Ref. 4, still isused.

Thisstrategy hasproventobefeasible. Inthree stepsthe adaptati on algorithm hasbeen parallelized
while keeping the functionality of the flow solver intact at each step. Moreover, during these steps
other parts of the flow solver have been modified by other developers.

It isimportant to notethat in thisway two parallelization strategies are applied side-by-sidein the
same code.

7 Conclusions

In this paper the grid adaptation agorithm of an unstructured, adaptive flow solver has been
paralldized using a dynamically obtained partition. Parallelization results are satisfying, but not
perfect due to load imbalance and parallel overhead. The adaptation agorithm is, however, no
longer the main limitation for improved parallel performance of the flow solver.

The partition is not used to parallelize the flow solver, as yet. The approach that two or more
paralldization strategies co-exist in one code is feasible on shared memory machines. Moreover,
shared memory machinesallow for gradual development of aparallel agorithm, whilemaintaining
code functionality.

Further parallelization of the algorithm using the partition will only be performed if aperformance
model predicts sufficient performance increase to make the effort worthwhile.

-12-
NLR-TP-97329

References

. C. Farhat and M. Lesoinne, Automatic partitioning of unstructured meshes for the paralel

solution of problemsin computational mechanics. Intern. J. Num. Methodsin Engrg. 36 (1993)
745-764.

. C. Ozturan, H.L. deCougny, M.S. Shephard, and FJ.E. Flaherty, Parallel adaptive mesh refine-

ment and redistribution on distributed memory computers. Comp. Methods Appl. Mech. Eng.
119 (1994) 123 — 137.

. JJW. van der Vegt and H. van der Ven, Discontinuous Galerkin finite element method with

anisotropiclocal grid refinement for inviscid compressi bleflows, submitted to J. Comp. Physics,
(1997), also available as NLR TP 97421.

. H. van der Ven and J.JW. van der Vegt, Experiences with advanced CFD agorithms on NEC

SX-4, inLaginhaM. Palmaand J. Dongarra, eds., VECPAR ' 96 selected paper s, L ecture Notes
of Computer Science, 1215, Springer, Berlin, 1997.

. H. van der Ven, A partitioning method for an adaptive unstructured flow solver on shared

memory machines. NLR TR 97029 L, National Aerospace Laboratory, Amsterdam, 1997.

