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Abstract 

Bared on a general Weighted Least Squares formulation a family of grid adaptation equations is 
defined. Some methods from the literature are reviewed within this WLS frame work. To satisfy 
a number four formulated requirements a compound WLS approach is presented. This part d the 
lecture is based on references [I], [3], [3], and [4]. The adaptation algorithm is applied to an airfoil 
and a wing in transonic flow. 



1 Weighted Least Squares (WLS) Formulation 

1.1 Introduction 

The present section aims a t  extending the principles presented in Part 1 of this lecture towards a formu- 
lation that is suitable for three-dimensional problems. The objective in Part 1 was to map the interval 
[0, L] c R to the unit interval [0, 11 C R, whereas in this section the objective is to map the three 
dimensional physical domain R c R3 to the unit cube [O, 113 c R3. Once such a map is constructed, say 
E(z), the inverse of that map, z(f), can be used to map a uniform rectangular grid in the unit cube to a 
curvilinear grid in the physical domain Q. 

As a preparation it is first described how the physical domain R C R3 is mapped to the unit interval. 
This map is based on a weighted least squares (WLS) formulation. Then it is derived how the map of R to 
the unit cube is constructed by combinationof three separate mapsfromo to the unit interval. In section 
1.3 a number of examples from the literature is discussed cast within the presented WLS formulation. 

1.2 Map of 0 C R3 to  the  unit interval 

The objective is to construct a map d(z) from R C R3 to the unit interval: 

such that iso-surfaces can be used as one family of coordinate surfaces belonging to a map from R C R3 
to the unit cube. 

Let the functional I<[+] be defined on a bounded domain R C R3 with Cartesian coordinates x = 
(z,  Y, zIT: 

where the Einstein summation convention is applied and hj(x) E R3( j  = 1,2,3) and V = (&, &, 6). 
In (2) w j  (j  = 1,2,3) are bounded strictly positive functions of the physical coordinates: 

and it is assumed that the h j (x)  are nonzero and independent. 
Functional I< in (2) can be considered as an extension of the equidistribution principle for ID problems, 

see functional ( l l ) ,  Part 1, which incorporates the derivative of the object funtion, E(z), with respect 
to the physical coordinate z. As an extension, functional If given by (2) incorporates three different 
components of the gradient of the object function d determined by the vector functions h j (x) ,  j = 1,2,3. 
In addition, the single weight function w(z) incorporated in functional (II) ,  Part 1, is replaced by three 
separate weight functions wj(x), j = 1,2,3,  in functional I< given by (2) to enable anisotropic weighting 
of the components of the gradient of 4. 

I< can be rewritten in matrix vector notation: 

where M is a symmetric 3x3 matrix: 

From (2) and the assumption that the 1lj(x) are nonzero and independent it follows that the integrand 
of I< is positive for any Vd # 0. Because M is real and symmetric it follows that M is positive definite 
(see e.g. ref. [5]). 

Let on a part anD c an the function 4 be specified: 

= 40, x E a n D ,  

then we will consider the following variational problem: 



Varia t ional  P r o b l e m  1.1 Find a function $(x) : R c R3 t--r R with $(x) = &(x) fo rx  E aRD C aQ 
such that the funciionol I<[d] given by (4) is minimized. 

Although we could refer to [6] and immediately state the equations that have to be satisfied by the 
function 4 to extremize functional K[W given by (4), we prefer to present a derivation of these equations 
to direct attention to the fact that not only the Euler-Lagrange (EL) equation has to be satisfied but 
also the associated n a t u r a l  b o u n d a r y  condit ion.  

Let 4 be an arbitrary function within the class of admissible perturbation functions of the solution 4. 
Then: 

The term that is linear in E is the first variation of I< that can be evaluated using the Divergence Theorem: 

If I< is minimized by the function 4 then the condition 

arc 
-(E = 0) = 0, at 

must be satisfied, hence the first variation (8) must be zero. Since both integrals a t  the right hand 
side of (8) involve the arbitrary function 4, both integrals must be zero. The first integral a t  the right 
hand side of (8) is zero for all admissible functions 4 if and only if its integrand is zero, resulting in the 
Euler-Lagrange (EL) equation (ref. [6 ] ) :  

Equation (10) is a second-order linear partial differential equation (PDE) which is elliptic since M is 
positive definite. If the smallest eigenvalue of M has a lower positive bound in R, the EL equation is 
even uniformily elliptic and the extremum principle of Hop€ is valid (refs. [5],[7]). 

The  second integral a t  the right hand side of (8) is also zero for all admissible functions 4 if and only 
if its integrand is zero. On the part aRD ofJhe boundary where 4 is specified 6 must be identically 
zero such that the compound function 4 + €4 satisfies the same specification. On the remaining part 
{aR \ a R D }  4 is not neccesarily zero resulting in the sc-called natural boundary condilion (ref. [6]): 

( M V ~ )  = 0, E {an \ a n D } ,  (11) 

where n E R3 denotes the outward unit normal on an. The combined conditions (10) and (11) are 
sufficient to extremize the functional K.  Since M is positive definite the term in (7) that is quadratic in 
E is non-negative. Hence: 

with equality if and only if E = 0. This proves that the stationary point of K is unique and consists of a 
minimum. 

To relate the present analysis to formulations found in the literature the question arises whether it 
is possible to formulate functional I< as a WLS functional in case M is a arbitrary positive definite 
matrix. Since M is real and symmetric there exists an orthogonal matrix R such that A = R-' M R is a 
diagonal matrix and the column vectors rj ( j . =  1,2,3) of R form an orthogonal set of eigenvectors of M 
(ref. [5]). Because R is orthogonal R-I z R~ and the eigenvectors are orthonormal: 



where 6'j is the Kronecker delta. With these relations M can be decomposed: 

where X j  (j  = 1,2,3) are the eigenvalues of M which are real and positive because M is positive definite. 
Hence the following WLS formulation is always possible: 

A key element of the present problem formulation is the required compatibility of the natural boundary 
condition ( 1 1 )  with the frequently applied generalized Neumann boundary condition: 

T . V B = O ,  Z ~ { a n \ a n D ] ,  (16)  

where r is a vector with a non-zero component in the direction of the unit outward normal: 

r .n#O,  (17) 

If ( 1 6 )  is applied it must be equivalent with ( 1 1 )  to make the functional I: stationary. Because M is 
symmetric 

n . (MV4) = (Mn)  . V4 ( 1 8 )  

leading to the following compatibility condition: 

In the special case that r is identical t o n ,  then n must be an eigenvector of M on {aR\aRD]. Condition 
(19)  imposes important restrictions on the construction of candidates for M. 

1.3 Applications from the literature 

1.3.1 Laplace m a p s  

Brackhill and Saltzmann (ref. [ a ] )  used a compound functional within a variational problem formulation 
for adaptive grid generation consisting of three functionals: one for smoothness, one for orthogonality 
and one for adaptation. In this section we will discuss only the smoothness functional: 

This functional can be written in WLS format (4) as: 

Is[(, 11, C1 = I([<] + I:[?] + [ ( [ C I ,  

with 

The EL equations ( 1 0 )  result in the Laplace equation for each of the computational coordinates (, v and 
C : 

V . ( v ( ) = O ,  V . ( V ? ) = o ,  v . (VC)=O, X E R .  (23) 



1.3.2 Isotropic diffusion ( ID)  m a p s  

Winslow (ref. [9]) introduced a single weight function into the smoothness functional of Brackbill and 
Saltzmann to account for smoothness as well as for adaptation. The functional is: 

This functional can he written in WLS format (4) as: 

I[F,?,CI = I([C;wl+ IC[q;wl+ I([C;wI, 

with 

(MVQ) .VQdn, M = 
0 0 1  

The EL equations (10) consist of identical isotropic diffusion equations for each of the computational 
coordinates <, 7 and C: 

1.3.3 Weakly r e l a t ed  i so t rop ic  diffusion (WFLID) m a p s  

Eiseman [lo] introduced an interesting extension to the approach of Winslow [9] by using different weight 
functions wj(x), j = 1,2,3, one for each coordinate direction, to enable anisotropic grid adaptation. The 
functional is: 

This functional can be written in WLS format (4) as: 

I[(, 7,  C] = I < [ ~ ; w I ] +  I<[?; wz] + I<[C; w3], (29) 

with I<[$; w] defined by (26). The EL equations (10) consist of weakly related isotropic diffusion equations, 
one for each of the computational coordinates f, 7 and C: 

these equations are weakly related by the assumption that the weight functions wj(x), j = 1,2,3, are 
different though all derived from the same scalar or vector function (e.g. an initial guess of the flow 
solution). 

1.3.4 Harmonic  m a p s  

Harmonic maps with user-specified metric tensors for grid adaptation have been introduced by Dvinsky 
(ref. [Ill) and reviewed by Brackbill (ref. [IZJ). In the present section harmonic maps are discussed 
within the frame work of the WLS formulation. 

Let the functional EO be defined as: 

where dij is the user-specified symmetric contravariant metric tensor in the coordinates x and d = 
det{dij} > 0. The covariant metric tensor of the Eucledian coordinates in the unit cube is the identity 



matrix and hence does not show up in the functional Eo. Eo can be rewritten in the matrixvector format 
(4): 

The generation of an adaptive grid in fl can be considered as a map from a three-dimensional Rie- 
mannian manifold in R4 described by the local coordinates x to the unit cube. The additional dimension 
with respect to R c R3 can be obtained by defining a function Q on R to which the grid must be adapted 
(ref. [13]): 

The Jacobian of the map (33) is: 

and hence the covariant tensor dij is: 

aQ aQ dij = (JQJOT) ' j  = 6'' + --, d = det{dij} = 1 + IIVQI12. 
azi  a d  (35) 

The characteristic equation for the eigenvalues of dij is: 

( X  - d)(X - 1 ) 2  = 0 ,  (36) 

with solutions it = d and i2 = 1 respectively. The eigenspace belonging to X I  is one-dimensional and is 
spanned by V Q ,  the gradient of Q. The eigenspace belonging to A2 is tw-dimensional and consists of all 
vectors in three-dimensional space that, are normal tq V Q .  Hence, the metric tensor d d i j  has the same 
eigenspaces with eigenvalues At = d-r and A2 = dr respectively. Written in terms of the eigenvalues 
and eigenspaces of the matrix M the WLS formulation of Eo is: 

1 I 
Eo[d] = 5 / - (r ,Od) '+ &{(rz.vd)' + (r3.V4)')  dfl, 

n d  
(37) 

where the eigenvectors ri (i = 1,2,3) form an orthonormal set and rl = a. 
The harmonic map is established by minimizing the 'total energy' functional: 

E f t ,  7), C1 = Eo[El+ Eo[d + Eo[CI, 

The EL equations associated with the minimization of E[<,v,C] are: 

LLB(E) = 0, L L B ( ~ ) )  = 0, L L B ( ~  = 0, 

where LLB is the Laplace-Beltrami operator. 

1.3.5 Discuss ion 

Westate the following requirements to be fulfilled by any adaptation method based on WLS formulation: 

1. The three PDE's lhal are derived Jrom lhe chosen junclional musl be idenlical. The regularity 
theorem that  is presented in section 2.5 is based on the assumption that the PDE's for each of the 
computational coordinates are identical. Since the regularity of a map from R C R3 to the unit 
cube depends on the relationship between the three computational coordinates it seems inevitable 
to require that  the three PDE's be identical. 

2. the PDE's must resemble anisolropic adaplalion. To enable an effective and efficient grid adaptation 
algorithm it should be possible to stretch cells differently in different directions. 



3. The matriz M must be a function of z only. If the matrix M is not a function of z alone but also a 
function of ( then the PDE's derived in the previous sections are not the EL-equations associated 
with the formulated variational problems. 

4.  The compaiibility condition (19) must be satisfied. To impose ordinary Neumann conditions and 
simultaneously minimise the chosen functional, the compatibility condition must be satisfied. 

The various maps presented in sections 1.3.1 to 1.3.4 can be discussed in view of the above formulated 
four requirements. 

Laplace maps .  The PDE's that are derived from the smoothness functional in section 1.3.1 are 
all identical Laplace equations and are hence isotropic. The matrix M is the identity matrix and the 
compatibility condition (19) is satisfied. 

Isotropic diffusion maps .  The PDE's that are derived from the functional formulated by Winslow, 
see section 1.3.2, are identical isotropic diffusion equations. The matrix M is the identity matrix multi- 
plied by a scalar function w ,  hence the compatibility condition (19) is satisfied. Requirement 3) can be 
satisfied by definition of w as a function of x only. 

Weakly r e l a t ed  Isot ropic  diffusion maps .  The PDE's that are derived from the functional 
formulated by Eiseman, see section 1.3.3, are not identical isotropic diffusion equations. The three 
matrices are identity matrices multiplied by the scalar functions w;,  i = 1 ,2 ,3 ,  hence the compatibility 
condition (19) is satisfied. Looking a t  expression (28) for the functional to be minimized, the weight 
functions w;,  i = 1 , 2 , 3 ,  are used to weigh the gradients IIvE'II. i = 1 ,2 ,3 .  hence it is natural to choose 
the weight functions as a norm of the gradient component of some function, e.g. the flow solution, in the 
direction of p. This implies , however, that the weight functions wi, i = 1 , 2 , 3 ,  are not functions of x 
only but are also functions of (, the solution of the variational problem. As a consequence equations (30) 
are not the EL-equations associated with functional (28). 

Harmonic  maps .  The PDE's that are derived from the functional formulated by Dvinsky, see section 
1.3.4, are anisotropic and identical. The matrix is well-defined and expression (37) for the functional to 
be minimized enables a clear interpretation. 

The component of V+ in the direction VQ a t  one hand and the components of V+ normal to VQ 
at  the other hand are weighted with inversely proportional weights. These are consequences of the 
objective to generate a smooth grid in the Riemannian manifold formed by the four-dimensional vector 
field (2, Y,Z, QIT. 

A complete extension to multiple functions Q j ,  i = 1,2 ,  .., N can be derived in a similar manner (ref. 
1131). However, there is an important drawback: the compatibility condition (19) is not satisfied by the 
metric tensor d d i j  for arbitrarily chosen functions Q. Hence if Neumann conditions are imposed along 
the domain boundary the functional E is not minimized and the claim to generate the smoothest possible 
map on the monitor surface can not be substantiated. 

Table 1: Comparison of WLS maps used in the literature 

The satisfaction of requirements 1) to 4) formulated above, is summarized in table 1. The conclusion 
is that none of the discussed WLS functionals presented in the literature satisfy all of the requirements 
I) to 4). This is the motivation for the work presented in the next section; the construction of a WLS 
functional that satisfies all four requirements.formulated above. 

Maps 
Laplace 
ID 
WRID 
Harmonic 

Anisotropic? 
no 
no 
Yes 
Yes 

Compatiblity? 
yes 
Y e s  
Yes 
no 

M clear? 
yes 
Yes 
no 
yes 

Identical PDE's? 
yes 
yes 
no 
yes 



2 Compound WLS maps 

2.1 Objective 

The  objective of the present section is to construct a compound WLS functional that satisfies all of the 
four requirements formulated in section 1.3.5. The idea is to map the physical domain to the unit cube 
by means of an auxiliary parametric map resulting in a parametrisation of the physical space R. The 
resulting parametric map can be chosen such that the compatibility condition (19) is satisfied. 

Subsequently the auxiliary parametric domain, say Q,, is mapped by a WLS map to another unit cube 
which is the computational domain Q,. Hence, the map from the physical domain R to the computational 
domain R, is constructed as a compound map consisting of two underlying maps, see Fig. 1. 

The compound WLS map has the following prospects: 

1. If some map from the physical domain Q to the unit cuhe is already available it can directly he 
used as the auxiliary map. This is the usual situation for grid adaptation; the existing grid that 
has to be adapted implicitly defines the auxiliary map to the unit cuhe. 

2. Since the WLS map to be constructed maps the unit cube onto itself, the matrix in the WLS 
functional can conveniently he chosen as a diagonal matrix. 

3. If Neumann boundary conditions are imposed on the boundary of the parametric domain, and if the 
WLS map between the parametric domain and the computational domain is described by a WLS 
functional involving a diagonal matrix, the compatibility condition is satisfied. This is explained in 
the next section. 

One of the benefits of the variational formulation is the ability to interpret the resulting PDE's. In 
section 2.3 it is described how the compound WLS functional can be rewritten to resemble the Equid- 
sribution Principle for multi-dimensional problems. In addition it is shown in section 2.4 that the EL 
equations associated with the compound WLS functional can be written as averaged 1D Equidistribution 
Principles. Finally, section 2.5 describes an invertibility theorem for 2D problems. 

2.2 General formulation 

We start  by formulating the WLS functional that upon minimization defines the WLS map between the 
parametric domain R, and the computational domain R,. Let the functional I<[W be defined as: 

where W is a 3x3 diagonal matrix with strictly positive diagonal elements w;,  i = 1,2,3. With this 
functional the following variational problem is defined: 

WLS map Auxiliary map 

Com~utational Parametric 

domain domain 
Physical \ 
domain 

Figure 1: Schematic visualisation of compound WLS map. 



Varia t ional  P r o b l e m  2.1 Find a fvncfion Q(p) : Clp C R3 c R with d(p) = 40(p) for p E an: C 
anp such thaf the functional I<[d] given by (40) is minimized. 

From section 1.2 we know that problem 2.1 is solved if the EL-equation 

v, . ( w - 1 ~ ~ 4 )  = 0, P E n,, 
is solved while on that part of the boundary where no Dirichlet conditions are imposed the associated 
natural boundary conditions are imposed: 

UP. ( w - l v p 4 )  = O, p E {anp \ anpD}, (42) 

where up E R, denotes the outward unit normal on aRp. Since W is a diagonal matrix the EGequation 
does not contain mixed partial derivatives. Since that np is a unit cube this enables a clear interpretation 
of the functional I<[$], see sections 2.3 and 2.4. 

It is further noted that because W is a diagonal matrix the natural boundary condition (42) is 
compatible with the ordinary Neumann condition since the compatibility condition (19) is satisfied on 
the complete boundary ailp: 

where X = w;' on boundaries p = 0 and p = 1, X = wyl on boundaries q = 0 and q = 1, and X = w; 1 

on boundaries r = 0 and r = 1. Hence, the natural boundary condition may be replaced by the ordinary 
Neumann condition: 

n, . v,+ = 0, P E {an, \ an:}. (44) 

For the physical domain this means that the compatibility condition (19) is satisfied ifone of the column 
vectors of J = ( X , , X ~ , X ~ ) ~  that is not coinciding with an is used to specify the generalized Neumann 
condition (16): 

In other words, the natural boundary condition associated with the variational problem in the physical 
domain is fully determined by the auxiliary map x(p). So the construction of the map x(p) can be 
used to control the generalized Neumann conditions that are compatible with these natural boundary 
conditions. 

Before formulating the complete boundary value problem that governs grid adaptation it is useful to 
note that functional I< given by (40) can be expressed in the physical domain as: 

This form explicitily reveals the WLS character since the components of the gradient of 4 in the directions 
of iso-parametric curves of the auxiliary parametric map are weighted with separate weight functions. 
From this observation it followsd that the obvious choice is to take the weight functions in terms of 
derivatives of the monitor function(s) along the iso-parametric curves. 

It is also noted that the functional I< given by (40) can be expressed in the parametric domain Qp in 
the compact form: 

The complete boundary value problem formulation for adaptive grid generation can conveniently be 
formulated in the parametric domain R,, based on minimization of the compound functional: 

ICWLS[~ ,  %C1 = [<[<I + I<[ol + Ii[CIs (48) 



with Dirichlet boundary conditions 

To solve this variational problem the associated EL equations 

must be solved subjected to a set of additional natural boundary conditions: 

Hence the objective to satisfy all of the conditions discussed in section 1.3.5 is met: . The PDE's are anisotropic, . The formulation of the matrix M is clear, . The compatibility condition is satisfied, and . The PDE's are identical. 

2.3 Multiple 1D equidistribution interpretation in 0, 

To demonstrate the connection between the variational problem formulated in section 2.2 and the Equidis- 
iribulion Principle presented in Part 1  of this lecture we will show that there exists an  equivalent varia- 
tional problem that involves functionals that explicitly express the Equidislribulion Principle. 

Consider the following functional: 

with c  E R3 constant. If we express it in scalar notation: 

the connection to the Equidislribulion Principle is revealed. 
Without proof we state that  the EL equation is: 

Q, . ( W - L v p 6  - c)  = 0 ,  p E np 
and the expression for the natural boundary condition is: 

n. (W-'Q,( - c )  = 0 ,  p E 052, \ aR:, 

see also section 1.2. Because c  is a constant the EL-equation (54) associated with functional I? is 
equivalent with the EL-equation (41) associated with functional I<. To obtain equivalence of the natural 
boundary conditions (55)  and (52)  it is required that the following condition be satisfied: 

n . c = 0 ,  p E asp \ aQ:. ( 5 6 )  

For the problem formulation for the first computational coordinate ( = ( ( I )  condition (56 )  is satisfied if 
we take c  of the form c  = ( c l ,  0 ,  o ) ~ .  For the problem formulations for q and C similar expressions can 
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be derived such that we are in a position to formulate the complete equivalent problem with respect to 
the functional IcwLs (48) and boundary conditions (49). Retaining the boundary conditions (49) we 
replace I c w ~ s  by f c w ~ s  defined as: 

As shown above this functional has the same EL-equations (50) and natural boundary conditions (51) as 
the original functional ICwL8 in (48). TO interpret the new functional fcw's we evaluate it to: 

This expression revealsthe multiple equidistribution character of the problem formulation because mini- 
mization of functional icwLs means that all terms in the integrand will be small in some optimal sence, 
with a tendency towards: 

& - c I ,  F q - + O I  F r - 0 ,  
WI 

Hence the variational problem formulated in section 2.2 tends to satisfy three separate 1D equidistrbution 
principles where each of the three computational coordinates (, 'I and C are preferably adapted separately. 

2.4 Averaged 1D equidistribution interpretation in n, 
Another way to show the connection between the 1D Equidistribution Principle and the variational 
problem formulated in section 2.2 is to integrate the EL-equations (50) over q and r (k = I), over p and 
r (k = 2) and over p and q (k = 3) by using the natural boundary conditions (51). The result consists of 
three expressions: 

These expressions directly reveal the ID Equidistribution Principle connection 

2.5 Invertibility theorem for 2D problems 

A critical aspect of grid generation and grid adaptation is the ability of the applied algorithm to provide 
grids that only incorporate cells with positive volumes. In other words the map from the computational 
domain to the physical domain must be one-to-one and have a Jacobian that is strictly positive everywhere 
execpt for a finite number ofpoints where it may be zero. Assuming that these conditions are met by the 
map between the parametric domain and the physical domain it remains to be shown that the adaptive 
map between the computational domain and the parametric domain also satisfies these conditions. For the 
2D case where the computational and parametric domains both consist of the unit square it can be proven 
that for a large class of elliptic partial differential equations with appropriate boundary conditions the 



map is invertible. The relevant theorem has recently been developed by Clement, Hagmeijer and Sweers 
[14] within the frame work of grid adaptation research and is explicitly listed here. 

Let the open unit square ( 0 , l )  x ( 0 , l )  in R2 be denoted by S and the sides by rl to r4 in the following 
way: 

Consider the problem: 

where we are looking for a solution ( u ,  v)  E W 2 * ~ ( S )  x w2.p(S) with p E ( 2 , ~ ) .  For a domain in R2 
with a Lipschitz boundary one has W2J'(S) C C 1 ( S )  p > 2,  see Theorem 7.26 of [15]. 

The operator L in (63) is given by: 

where the coefficients satisfy for some c > 0 and 7 E ( 0 , l )  

and 

Theorem 1 Problem 63 possesses eznclly one solulion ( u ,  v) E C 2 ( S )  Moreover ( u , v )  is a bijection 
from S (resp. S )  onto itself and 

d l  ( ) > 0 on 3. 

The proof of theorem 1 is several pages long [14] and is not repeated here. The main fundament of 
the proof is the use of the Carleman-Hartman-Wintner (CHW) Theorem (see [16]) which describes the 
structure of a solution to second order PDE's in the neighbourhood of critical points. Mainly because 
there is no straightforward higher dimensional extension of the CHW-Theorem it is not expected that 
theorem 1 can be extended to hold for the three dimensional cube. 

3 Applications 

3.1 Modified equations in the parametric domain: 2D 
A disadvantage of grid adaptation in the parametric domain is the possible generation of excessive skew 
cells in the physical domain when the initial grid contains cells with aspect ratios that are much smaller 
or larger than one. To illustrate this, let Q be the angle between two lines of the adapted grid in the 
physical domain f2 with constant ( and 7,  respectively, and let the initial grid in R be orthogonal: 

The angle Q can be expressed in terms of derivatives with respect to the computational coordinates ( 
and 7:  



which upon substitution of the functions p((, 7) and q(f, 7) can be written as 

where a is proportional to the local aspect ratio of the initial grid: 

From (69) it can be deduced that when the adapted grid in the parametric domain Q p  is nearly ortogonal, 
i.e., 

PC . P, = PCP, +PCP? a JmJM= IIP~II I I P ~ I I ~  (71) 

the adapted grid in R is also nearly orthogonal when a = 1. However, when a 1 or a >> 1 Eq. (69) 
shows that 4 o 0 when p~ p, # 0 or qc q, # 0 respectively; i.e., the adapted grid in R is collapsed. Cells 
of large or small aspect ratios within the field of CFD occur commonly in boundary layers. Most Navier- 
Stokes solvers need orthogonal grids in boundary layers; i.e., grid lines are required to originate from 
solid surfaces in the uormal direction. Moreover, gradients in the normal direction are much larger than 
gradients in the tangential direction. Hence it is desirable that the grid in the boundary layer is primarily 
adapted in the normal direction and that the adaptation in the tangential direction is constrained by the 
orthogonality requirement. To obtain this property of the adaptation algorithm, the adaptation equations 
(50) are modified: 

where XI and X2 are functions of p and q which are taken proportionally to the squares of the local 
spacings of the initial grid in R: 

1 - llxql12 X z  - llxp1I2. (74) 

With this choice the ratio X1/X2  is proportional to the square of the cell aspect ratio: 

X I / X ~  - a'. (75) 

To illustrate the effect of the modification let the edge q = 0 in the parametric domain Rp represent a 
solid wall in R and let the cells of the initial grid along the wall be orthogonal and have very smallaspect 
ratios, i.e., a a 1. As a consequence XI < h a  and the modified equations can be approximated as 

Since Neumann boundary conditions are applied we have Cq(p,O) = 0 and consequently (, = 0 for 
increasing q as long as approximation (76) is valid, i.e., as long as XI *: Xz.  hence the adapted grid 
in the boundary layer is nearly orthogonal. A second implication of approximation (72) is that the 
equation for 7 (the second equation of (72)) is similar to Eq. (3), Part 1, which shows that the grid in the 
boundary layer is adapted in normal direction by one-dimensional equidistribution in normal direction 
of the product w;'qq. 

3.2 Modified equations in the parametric domain: 3D 

Following the skewness analysis of section 3.1 we introduce modification functions A;, i = 1,2,3,  to 
provide orthogonal grids in boundary layers: 



where XI, Xz and Xg are functions of p,q and r which are taken proportionally to the squares of the local 
spacings of the initial grid in R: 

To illustrate the effect of the modification functions Xi let the edge r = 0 in the parametric domain R, 
represent a solid wall in R and let the cells of the initial grid along the wall he orthogonal and have very 
small aspect ratios, i.e., 

This situation is illustrated in Fig. 2a. As a consequence XI < A3 and Xz a XJ and the modified 
equations can he approximated as 

Since Neumann boundary conditions are applied we have (,(p,q,O) = 0 and consequently cr = 0 for 
increasing r as long as approximation (82) is valid, i.e., as long as XI A3 and A2 < X3. The same 
applies for %. Hence the adapted grid in the boundary layer is nearly orthogonal. A second implication 
of approximation (82) is that the equation for C (the third equation of (82)) is similar to Eq. (3), Part 
1, which shows that the grid in the boundary layer is adapted in normal direction by one-dimensional 
equidistribution in normal ditection of the product w;lcr. 

So far the assymptotic behaviour near solid walls with boundary layers is completely similar to the 
2D developments. In 3D, however, we have the additional possibility of intersecting solid walls with 
boundary layers. Suppose that two boundary layers along the boundaries p = 0 and r = 0 are present, 
see Fig. 2b. Then in the neighbourhood of the vertex p = 0, r = 0 we have 

As a consequence Xz < X I  and X2 a A3 and the modified equations can he approximated as 

Hence only one term per equation can be neglected instead of two terms in the previous case of a single 
boundary layer. Now the question is: will the adapted grid near the vertex be sufficiently orthogonal? 
This question can only be answered in a qualitative sense since the local solution of the grid adaptation 
equations depends on the global solution due to the ellipticity of the equations. 

To assess the orthogonality question it is convenient to observe the solutions ((p,q, r), q(p,q, r )  and 
C(p, q, r). As a reference we note that if upon adaptation planes of p = constant are mapped to planes of 
E = constant, planes of q = conslanl are mapped to planes of 71 = constant, and planes of r = co71stant 
are mapped to planes of C = constant, then all angles of the initial grid in the physical domain are 
conserved within the adapted grid. For the the plane q = consla71t depicted in Fig. 2b we note that 
in the neighbourhood of the vertex cells have aspect ratios that are in the order of unity and hence do 
not differ too much from the corresponding cells in the parametric domain. IIence, if it is assumed that 
the is*( and is-C surfaces are close to planes of p 2 constant and r = constant respectively, angles of 
the initial grid in the physical domain are locally conserved within the adapted grid. Then the question 



n n 
a) Single boundary layer. b) Two intersecting boundary Layers. 

Figure 2: Schematic impression of single boundary layer and two intersecting boundary layers in an is-q 
plane. 

remains whether the image of the plane q = constant near the vertex under the adaptive map will be 
sufficiently close to a plane 7 = constant. To answer this question we assume that some distance away 
from the vertex in the parametric domain, see Fig. 2b, there exists lines in the iso-q plane ofp  = > 0 and 
r = i > 0 respectively along which approximations similar to (82) are valid such that 7 is approximately 
constant along these lines. Since along curves p = 0 and r = 0 we have Neumann conditions for 71, 

application of the maximum principle to the enclosed area between these four curves learns that 11 indeed 
is approximately constant on the area. 

3.3 Discretisation and solution 

The differential operator Lp defined by (77) can be approximated by a second-order accurate difference 
operator L j  by replacing derivatives by central differences. In an interior grid point (i, j ,  k) L! is defined 
as: 

L;[.l = P < e " t 7 e ( . ) i , j , k + P c m s t ( . ) i + l , j , k  +flwesc(.)i-l,j,k 

+ Pbosk(.)i,j+l,k +Plr~nr(.)i,j-1,k + Pnorrh(.)i.j.k+l +P~outh(.)i.j,k-1, (87) 

with 

where the subscripts and superscripts i, j, k indicate a t  which node the functions are evaluated, with Ap, 
Aq and Ar the mesh sizes of the uniform grid in the parametric domain. The normal derivatives a t  the 
boundary BQ, are approximated by first order accurate one-sided differences. 



a) Initial grid. b) Grid after one adaptation. c) Grid after two adaptations. 

d) Grid after ten adaptations. 

Figure 3: Initial grid and adapted grids for oblique-shock boundarylayer simulation 

The above described large linear system is solved by means of GMRES relaxation [17]. The specific 
GMRES algorithm has been taken from the netlib.linalg1ibrary (ftp address: netlib2.cs.utk.edu) provided 
by the University of Tennessee and Oak Ridge National Laboratory. A correction storage multi-grid 
technique (181 with fixed V-cycles is used to increase the rate of convergence. 

Solution of the MAD equations results in the inverse adaptation map ((p). To re-invert this map to 
the adaptation map p(() each of the rectangular cells in the uniform 3D grid in the parametric domain 
R, is subdivided into six tetrahedra. Then in a loop over these tetrahedra the values of c ,  q and C are 
examined a t  the vertices resulting in a number of candidate new grid points that may be present in the 
specific tetrahedron. The final presence check only involves some basic linear algebra if all functions on 
the tetrahedron are linearly approximated. 

3.4 Application to a model problem 

As a first example, the adaptation algorithm described in the previous section is applied to a model 
problem that simulates the interaction of an oblique shock and a boundary layer represented by a single 
scalar function u(z, y), 

on the rectangular domain 0 < z 5 4, 0 < y 5 2. The weight functions employed are: 

The modification functions employed are: 

2 2 Xi = llxqll , A2 = IIxpll . (91) 

The initial grid of 32x16 cells and a surface plot of the function u are shown in Fig. 3.a. Figures 
3.b-3.d show the grid after 1.2, and 10 adaptations, respectively, where the first adapted grid is taken 
as the initial grid for the second adaptation, the second adapted grid is taken as the initial grid for the 
third adaptation and so on. The first adapted grid shows the cell concentration a t  both the "shock" and 
the "boundary layer". The effects of piecewise bilinear interpolation can be observed in the boundary 
layer and some wiggles seem to be present which may be caused by even-odd decoupling of the discrete 



a)  Initial solution. b) After one adaptation. c) After two adaptations. 

d) After ten adaptations. 

Figure 4: Scalar monitor function u ( r ,  y) in the computational domains associated with the initial and 
adapted grids for oblique-shock boundarylayer simulation. 

differential equations. These are minor drawbacks, however, and the adapted grid is acceptable. More 
adaptation cycles result in stronger cell concentrations and skew cells a t  the "shock", but they also show 
the robustness of the algorithm since the last adapted grid (Fig. 3.d) is still a regular non-overlapping 
grid. Figures 4.a-4.d show the function u in the computational domains associated with the initial grid 
and the grids after 1,2, and 10 adaptations, respectively. Already after one adaptation the gradient 
of u in the computational domain decreases significantly, and after 10 adaptations the "shock" and the 
"boundary layer" almost disappear. Finally it may be noted that the first adaptation is the most effective 
one, see Figs. 4.a-4.d, while the following adaptations show less dramatic effects. 

3.5 Application to a 2D aerodynamic problem: RAE2822 airfoil 

The present section presents the adaptation of a Gtopology grid around the RAE2822 airfoil suitable for 
solution of the Reynolds-Averaged Navier-Stokes equations. The flow conditions are transonic: M, = 
0.725, Re, = 6.5 x lo6, a = 2.44'. The  structured Gtopology grid consists of 352 x 64 cells with 256 
along the airfoil, 48 cells a t  both sides of the wake line, and 64 cells in the normal direction to both the 
airfoil and the wake line. The flow equations are solved with a vertex-based central-difference scheme 
combined with a modified Baldwin-Lomax turbulence model, described by Brandsma [19]. The weight 
functions employed are: 

w , =  Jl+llQ,112, w2 = dGiEj?, (92) 

where Q is the state vector of flow variables: 

Q = (P, PU, PU, pQT, (93) 

Preliminary to a discussion of the adaptation results westart by choosing the appropriate form of the 
modification functions X i ,  i = 1,2, that control the adaptation equations in the boundary layer (see (72). 
Fig. 5ashows the initial grid around the nose of the RAE2822 airfoilshowing the initially highly stretched 
grid a t  the location where the boundary layer is expected to develop. Fig. 5b shows the adapted grid 
using X, G 1, X2 = 1.. It can be observed that the grid indeed is strongly adapted to the expansion region 
on top of the nose, but is associated with highly skewed cells. This is in agreement with the analysis of 
section 3.1. 



a) Initial grid. b) Adapted grid, c) Adapted grid, 
A, 1, A2 = 1. A 1  = IIxqII, A2 = IIxpll. 

r I 

d) Adapted grid, e) Adapted grid, f )  Adapted grid, close-up show- 
AI = IIxqIIZ, A z  = l l ~ ~ 1 1 ~ .  X i  = w:llxqll, A z  = w:llxpll ing orthogonality. 

Figure 5: Initial and adapted grids around nose of RAE2822 airfoil using different modeling of the 
modification functions. 

a) Initial grid (352 x 64 cells). b) Adapted grid (352 x 64 
cells). 

Figure 6: Initial and adapted grid around RAE2822 airfoil (transonic flow conditions: M = 0.725, 
Re = 6.5 x lo6, cr = 2.44'). 
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Figure 7: Pressure distributions calculated on initial and adapted grid around RAE2822 airfoil (transonic 
flow conditions: M = 0.725, Re = 6.5 x lo6, a = 2.44'). 

a )  On initial grid (352 x 64 b) On adapted grid (352 x 64 

a) On initial grid (352 x 64 b) On adapted grid (352 x 64 
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Figure 8: Mach number distributions calculated on initial and adapted grid around RAE2822 airfoil 
(transonic flow conditions: M = 0.725, Re = 6.5 x lo6, a = 2.44'). 
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I 
a) Initial grid (352 x 64 cells). b) Adapted grid (352 x 64 

cells). 

Figure 9: Shock-region close-up of initial and adapted grid around RAE2822 airfoil (transonic flow 
conditions: M = 0.725, Re = 6.5 x lo6, a = 2.44'). 

a) On initial grid (352 x 64 b) On adapted grid (352 x 64 
cells). cells). 

Figure 10: Mach number distributions in the computational domain calculated on initial and adapted 
grid around RAE2822 airfoil (transonic flow conditions: M = 0.725, Re = 6.5 x lo6, cl = 2.44'). 

a) On initial grid (352 x 64 b) On adapted grid (352 x 64 
cells). cells) 

Figure 11: Pressure distributions in the computational domain calculated on initial and adapted grid 
around RAE2822 airfoil (transonic flow conditions: M = 0.725, Re = 6.5 x lo6, cl = 2.44). 



When A 1  = IIxq11, A z  = [Ixpll is chosen, see Fig. 5c, the adapted grid outside the houndary layer 
region is improved significantly with respect to skewness; however, inside the boundary layer (not shown) 
the grid is still skew. When A1 = llxq112, A2 = I / ~ ~ 1 1 ~  is chosen, see Fig. 5d the adapted grid is also 
orthogonal inside the houndary layer region (not shown) while the grid adaptation in normal direction 
to the airfoil dominates. But this unfortunately results in excessive depletion of cells in the tangential 
direction; compare Figs. 5a, 5b and 5d. In order to obtain both one-dimensional equidistribution in 
the normal direction inside the boundary layer region as well as adaptation in the tangential direction 
controlled by the outer flow at the edge of the boundary layer, the following choice for the modifications 
is proposed: 

A1 = w:llx,/12, A2 = w,211xplI2. (94) 

Because just outside the boundary layer the component of the flow solution gradient in normal direction is 
much smaller than the flow solution gradient in tangential direction (wz a wl), the tangential adaptation 
dominates over the normal adaptation when llx,ll/llxpll is not too small. The resulting adapted grid is 
depicted in Fig. 5e, which shows that grid lines normal to the airfoil enter the boundary layer region 
orthogonally while around the leading edge the grid is also significantly refined in the tangential direction, 
compare Figs. 5a and 5e. Inside the boundary layer region the adapted grid is also orthogonal, see Fig. 
5f. Hence choice (94) for the modification functions is used in the remainder of this section. Large 
parts of the initial and adapted grid are shown in Fig. 6. The execution time needed to solve the 
adaptation equations and to invert the inverse adaptation map amounts about 75 CP seconds on the 
NEC SX-3 supercomputer (single processor), used for 1254 V-cycles on the &equation, 974 V-cycles on 
the q-equation, and 961 iterations on the inversion equations to decrease the maximum residuals 11, 12, 
and 14 orders of magnitude, respectively. The pressure distrihutions along the airfoil surface are shown 
in Figs. 7a-b , and the Mach number contours are given in Figs. 8a-h. A close-up of the grid in the shock 
region near the airfoil is presented in Fig. 9. Both the shock and the leading edge expansion are better 
resolved on the adapted grid. Behind the shock the probably spurious kink in the pressure distribution 
has disapeared. The  Mach number distribution just outside the boundary layer has become more uniform 
in the normal direction. The lift coefficient changed from 0.7714 to 0.7926 (2.7%), the drag coefficient 
changed from 0.01259 to 0.01248 ( I  count), and the pitching coefficient changed from-0.09125 to -0.09399 
(3%). 

Finally it is interesting to see how the the flow solution in the computational domain changes due to 
adaptation of the grid and recalculation of the flow. In Figs. 10a-10b the Mach number distribution is 
depicted in the computational domain. Both the expansion region a t  the leading edge and the boundary 
layer are more smoothly distributed in the adapted case (Fig. lob). The shock has smeared out and the 
shock in the inviscid outer flow has been regenerated by recalculation of the flow. An exception is the 
trailing edge region where the gradients in the computational domain are increased upon grid adaptation 
in the lowest part of the boundary layer. This is probably caused by the modification function A t ,  which 
is less sensitive for the flow gradient component in tangential direction when the grid has locally very 
high cell aspect ratios while outside the boundary layer the flow gradient is relatively small. In Figs. 
I l a - l lb  the pressure-coefficient distrihutions in the computational domain is depicted. The same effects 
as for the Mach number distributions can be ohserved. 

3.6 Application to a 3D aerodynamic problem: ONERA M6 wing 

To illustrate the grid adaptation algorithm we present calculations for the ONERA M6 wing under 
transonic flow conditions 1201. We have performed calculations on both non-adapted and adapted grids, 
medium and fine grids, and for three different Reynolds numbers, see table 2. For all calculations we 

Table 2: Calculated cases for ONERA M6 wing (n=non-adapted, a=adapted). 

medium 1 128x24~32 1 n+a I n i a  I n+a 
[ fine 1 256x48~64 1 n n n I 



EULER I NAVIER-STOKES 
FLOW CALCULATION SYSTEM 

Figure 12: The NLR ENFLOW system 

have used the NLR flow simulation system ENFLOW, [21],[22],[23], to calculate the flow solutions on 
the various grids, or to generate an initial grid. A schematic overview of the NLR ENFLOW system is 
presented in Fig. 12. The weight functions employed are: 

where Q is the state vector of flow variables: 

Q = (P,PU, PV,  P W ,  pIT, (96) 

Fig. 13 shows the mediumgrid (Fig. 13a) and the adapted medium grid (Fig. 13b) and the calculated 
pressure coefficient (Cp) distributions (Fig. 13c and 13d). Adaption a t  the leading edge, trailing edge, 
shock position and tip are visible resulting in a more pronounced shock. Details of the adaptation near 
the nose a t  the symmetry plane (Fig. 13e and 13f) show concentration a t  the boundary layer with a 
non-smooth transition to the outer flow. 

The Cp distributions a t  the upper side of various cross sections of the wing are depicted in more 
detail in Fig. 14 and compared to the fine grid result and experimental data. The suction peak a t  the 
leading edge and the down stream expansion zone from the fine grid result and the experimental data is 
completely recovered by the adapted mediumgrid result, while the non-adapted medium grid result fails 
in this respect. The lower side distributions (not shown) show the same features. 

The skin-friction (C,) distributions a t  the upper side of various cross sections of the wing are depicted 
in Fig. 15 for the Re, = 48 . lo6 calculation. Along the complete upper side adaptation results in 
significant improvements. Also it is visible how the laminar-turbulent transition line has  shifted upstream 
upon adaptation due the fact that the flow solver uses grid line indices for transition indication. 

The influence of grid adaptation on the boundary layer resolution is explicitly demonstrated in Fig. 
16 showing the 'Law-of-the-wall' coordinate Y +  of the first grid point above the wing surface a t  the 
65% span cross section. For the Re, = 11.7. 10' case the Y+ distribution over the grid is significantly 
improved upon adaptation compared to the fine grid result. For the Re, = 48. lo6 case the improvement 



a)  non-adapted grid b) adapted grid 

c) Cp on non-adapted grid d) Cp on adapted grid 

Figure 13: Non-dapted and adapted medium grid (a),(b), and Cp-distributions (c) and (d) on wing upper 
surface, and close-ups of non-adapted and adapted grid near the leading edge in the symmetry plane, 
Re, = 11.7. lo6. 



Figure 14: Pressure distributions (Cp) on non-adapted and adapted grids compared to fine grid result 
and experimental data,  Re, = 11.7.10'. 

is even stronger: the adapted medium grid resolves the boundary layer better than the fine grid and the 
Y+ values are roughly reduced by 30%. The stronger effect for the high Reynolds number case is not 
unexpected since the initial grids have been generated for the Re, = 11.7. 10' case by CFD experts with 
a state-of-the-art elliptic grid generator. From Fig. 16a we learn that even such a special purpose grid 
can be automatically modified to improve the Y +  resolution by roughly 50%. 

The influence of grid adaptation on the aerodynamic coefficients is shown in Fig. 17 which shows 
the lift (CL), drag (CD), friction drag (CD f ) ,  and pitching moment (CM) coefficients respectively as 
calculated on the non-adapted and adapted medium grids, and on the fine grid, for three different 
Reynolds numbers. Globally grid adaptation results in improvement of the coefficient predictions if 
compared to the fine grid results. More specifically the drag coefficient, see Fig. 17b, is strongly improved: 
the gap of 25 counts between the medium and fine grid results is reduced to 6 counts upon grid adaptation. 
This is still too large for practical problems but it should be reminded that the medium grid only consists 
of about 100,000 points. Especially the friction drag is improved upon grid adaptation, see Fig. 17c, 
and only differs by one count from the fine grid result. Besides the absolute values of the predictions it 
is remarkable that the adapted medium grid results and the fine grid results have the same dependency 
on the Reynolds number and only differ by a constant for all four coefficients. This is not true for tile 
non-adapted medium grid result. 

3.7 Conclusions 

A number of grid adaptation methods from the literature have been discussed in the frame work of 
Weighted Least Squares formulations. The presented compound WLS formulation satisfies all of four 
formulated requirements including that the natural boundary condition be satisfied. Also a complete 
interpretation of the functional associated with 3D problems is given which shows that  one-dimensional 
equidistribution is the underlying principle. Application to high Reynolds-number flow calculation re- 
quires that the PDE's he modified to explicitely account for orthogonality in houndarylayers, meaning 
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Figure 15: Skin-friction distribution on non-adapted and adapted grids compared to fine grid result, 
Re, = 48.10' 

that  the functional is not strictly minimised anymore. 
Application to 2D and 3D aerodynamic problems consisting of an airfoil and a wing in transonic flow 

has been demonstrated. Three main conclusions can be drawn: 

1. The grid adaptation algorithm enables flow calculations with improved accuracy, 

2. The grid adaptation algorithm enables automatic construction of a suitable grid for a wide range 
of Reynolds numbers, 

3. The grid adaptation algorithm enables an improved estimate of the influence of Reynolds number 
variations on the aerodynamic coefficients. 
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Figure 17: Force coefficients as function of Reynolds number calculated on non-adapted and adapted 
medium grids, and calculated on fine grid. 
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