
Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laborator y NLR

NLR TP 97423

Query optimization to support data mining

Sunil Choenni and Arno Siebes

217-02

DOCUMENT CONTROL SHEET

ORIGINATOR'S REF. SECURITY CLASS.

 NLR TP 97423 U Unclassified

ORIGINATOR
National Aerospace Laboratory NLR, Amsterdam, The Netherlands

TITLE
Query optimization to support data mining.

PUBLISHED IN
Proc. DEXA '97 8th Int. Conference and Workshop on Database and Expert
Systems Applications, IEEE Computer Society Press, Los Almitos, CA, 1997.

AUTHORS DATE pp ref
Sunil Choenni
Arno Siebes

May, 1997 20 11

DESCRIPTORS
Associative processing (computers) Optimization
Data bases Search profiles
Genetic algorithms Searching
Heuristic methods Strategy
Information retrieval

ABSTRACT
In order to extract knowledge from databases, data mining algorithms
heavily query the databases. Inefficient processing of these queries will
inevitably have its impact on the performance of these algorithms, making
them less valuable. In this paper, we describe an optimization framework
for an efficient processing of queries generated by different data mining
algorithms. We show how to take advantage of the physical oranization of
the database, the operators and the control structures used in an
algorithm. Finally, we discuss how our framework fits into conventional
query optimization frameworks.

- 3 -
NLR-TP-97423

Summary

In order to extract knowledge from databases, data mining algorithms heavily query the databases.

Inefficient processing of these queries will inevitably have its impact on the performance of these

algorithms, making them less valuable. In this paper, we describe an optimization framework

for an efficient processing of queries generated by different data mining algorithms. We show

how to take advantage of the physical organization of the database, the operators and the control

structures used in an algorithm. Finally, we discuss how our framework fits into conventional

query optimization frameworks.

- 4 -
NLR-TP-97423

Contents

1 Introduction 5

2 Preliminaries & assumptions 7

3 Search strategies 8

4 Optimization 10

4.1 Physical schema 10

4.2 Operators 11

4.3 Algorithms 12

5 Framework 17

6 Conclusions & further research 19

4 Figures

(20 pages in total)

- 5 -
NLR-TP-97423

1 Introduction

Research and development in data mining evolves in several directions, such as association rules,

time series, and classification. The direction of association rules is focussed on the development

of algorithms to find frequently occurring patterns in a database, see among others [Ref 2, 8, 9]. In

time series databases, one tries to find all common patterns embedded in a database of sequences

of events [Ref 3]. The classification of tuples in a number of groups on the basis of common

characteristics and the derivation of rules from a group is another direction in data mining [Ref

1, 4, 6, 7].

Our interest lies in the last field. We are developing a system to classify tuples in groups and to

derive rules from these groups [Ref 11]. The architecture of our system is according to Figure 1.

A data mining system, equipped with several algorithms, generates queries and passes them to the

database system. The database system derives the answers of the queries and passes them to data

mining system. In Figure 1, the data mining system has as task to come up with strategies that limit

the number of queries and the database system has as task to process received queries efficiently.

The advantages of such an architecture in the field of association rules have been discussed in [Ref

8] and in the field of classification in [Ref 11]. However, although search strategies attempt to

Data Mining System

Database System

resultsqueries

Mining Algorithms

Fig. 1 An integrated mining and database systems

minimize the number of queries passed to a database system in order to extract knowledge, they

still generate a large number of queries. Consequently, the architecture of Figure 1 is only viable

if the data mining system receives the answers of queries within an acceptable amount of time.

This paper is devoted to the optimization of queries generated by different search strategies, which

may be present in a data mining system. We show that queries generated at later steps in a search

process are dependent of queries generated at earlier steps. As in [Ref 6, 7], queries are regarded

as conjunctions of predicates over a number of attributes. We assume that the number of tuples

satisfying queries are required for the search process and not the tuples self. We note that for many

data mining algorithms this assumption holds, see among others [Ref 4, 2, 7, 9]. We exploit these

- 6 -
NLR-TP-97423

properties and present a framework for query optimization that seamlessly fits into traditional

frameworks. We note that since aggregate predicates are significant for data mining queries,

much research is devoted to this type of predicates. Our research complements the research on

optimization of aggregate predicates. Results from the this field can be included in our framework.

For the time being, we have elaborated the framework for variants of three search strategies

namely, hill climber, simulated annealing, and genetic algorithms.

The optimization techniques in our framework exploit the following aspects: physical organization

of the database, the operators used in an algorithm, and the control structures of an algorithm.

We note that although some of the above-mentioned aspects have been exploited for query

processing in several data mining algorithms, these have neither been wrapped up in a general

optimization framework, nor have their roles been systematically analysed in the context of these

algorithms. The optimization framework can be used by each data mining algorithm that satisfies

above-mentioned properties. What distinguish our framework from conventional frameworks for

query optimization is that conventional ones do not benefit from the dependency between queries.

Conventional frameworks optimize a query in isolation of other queries [Ref 10].

The remainder of this paper is organized as follows. In Section 2, we outline some preliminaries.

In Section 3, we present a number of search strategies and the queries generated by them, in order

to discover knowledge. In Section 4, we discuss how to optimize the queries generated by these

strategies by storing and re-using intermediate results. Section 5 shows how the optimizing tech-

niques of the previous section can be incorporated in existing frameworks for query optimization.

Finally, Section 6 concludes the paper.

- 7 -
NLR-TP-97423

2 Preliminaries & assumptions

A database consists of a universal relation. The relation is defined over some attributes, such as,

att1; att2; :::; attn, and is a subset of the Cartesian product dom(att1)�dom(att2)�:::�dom(attn),

in which dom(attj) is the set of values that can be assumed by attribute attj . A tuple is an ordered

list of attribute values to which a unique identifier (tid) is associated. The content of the database

remains the same during the mining process.

An expression is used to derive a relation and is defined as a conjunction of predicates over some

attributes. The length of an expression is the number of attributes involved in the expression.

Expressions with length 1 are called elementary expressions. An example of an expression of

length 2 is < age 2 [19; 24]^ gender = ‘male’ >, representing the males who are older than 18

and younger than 25. An expression esub is a subexpression of e, if each elementary expression of

esub is contained in e and length(e) > length(esub).

We deal with search spaces that contain expressions. An expression e0 is an extension of e if e is a

subexpression of e0 and length(e0)� length(e) = 1. An expression e0 is a called a reduction of e if

e0 is a subexpression of e and length(e)� length(e0) = 1. An expression e0 is called a neighbour

of e if e0 is a extension of e or e0 is a reduction of e.

A generalization enlarges the range of an elementary expression, while a specialization reduces

this range. Examples of a generalization and specialization of < age 2 [19; 24] > are < age 2

[19; 30] > and < age 2 [19; 20]>, respectively.

Finally, we assume that the WHERE clause of a query consists of an expression, and that the

output is the number of tuples satisfying this expression. This type of queries is significant for

many data mining algorithms, see among others [Ref 1, 2, 4, 6, 7, 8, 9].

- 8 -
NLR-TP-97423

3 Search strategies

To be successful, search strategies impose a certain structure on a search space. For example, a

search strategy that is focussed on finding a local optimum in a search space that almost consists

of local optima will not be very useful.

Unfortunately, the search spaces that stem from data mining problems neither have a specific

structure nor the structure is known in advance. On the basis of evidence, one should choose for a

search strategy. Therefore, a mining tool should be equipped with several search strategies. In this

section, we discuss variants of a number of search strategies and we study the expected generation

pattern of queries by each strategy. The search strategies are equipped with one or more operators

that can be applied on expressions in the corresponding algorithm. We start the discussion with

a variant of a hill climber, and continue with a variant of simulated annealing and genetic algorithm.

Hill Climber The variant of the hill climber discussed in this section is equipped with the operator

extension, which takes as input an expression and computes an extension of it. The hill climber

starts with an initial expression e0. Then, it computes all extensions of e0 and their qualities, and

the extension with the best quality becomes the expression for further exploration. The whole

procedure will be repeated again until no improvements are possible, or some user defined criteria

are met. Searching according to a hill climber guarantees a local optimum. Variants of a hill

climber can be found in [Ref 6, 7]. 2

Simulated annealing The variant of simulated annealing is equipped with the operator neigh-

bour, which takes as input an expression and computes an neighbour of it. In contrary to the hill

climber, this strategy can choose with a certain probability an element for further exploration that

has a worse quality than the current element. This provides the possibility to escape from a local

optimum. As time progresses, this probability gradually decreases until it becomes zero, which is

the terminating criteria. 2

Genetic algorithm A genetic algorithm selects an initial population. Individuals in the population

are represented as strings of bits. Then, it computes the quality of all individuals. On the basis of

the quality, a selection of individuals is made. Some of the selected individuals undergo a minor

modification, called mutation. For some pairs of selected individuals a random point is selected,

and the substrings behind this random point are exchanged, called cross-over. The selected in-

dividuals form a new generation and the same procedure is repeated until no significantly better

population can be found. For mining purposes, a genetic algorithm has been tailored in [Ref 4].

2

- 9 -
NLR-TP-97423

From the above described strategies, we observe that expressions that will be evaluated in a

next step depends on the present step, and not on former steps. This is a well-known property of

a Markov process [Ref 5]. This indicates that stored results of the present step may be used for

the next step. For example, the tuples that satisfy an extension of an expression e will always be

a subset of e. Searching for tuples that satisfy an extension of e in the set of tuples satisfying e

will be, in general, cheaper than searching for those tuples in the database, since the database will

contain more tuples. What intermediate results to store and how to reuse them is the topic of the

next section.

- 10 -
NLR-TP-97423

4 Optimization

Query optimization is often performed in two phases, a so-called logical and physical optimization

phase [Ref 10]. In the logical optimization phase, it is determined in which order the involved

(basic) operations in a query should be processed. In the second phase, it is determined how the

basic operations can be efficiently performed. This depends on the way the data is stored, and is

described in a physical schema. If an inefficient physical schema is chosen for a database, this has

its impact on query optimization. In Section 4.1, we discuss an efficient way to store a relation for

data mining.

In the two-phased optimization process, it is assumed that queries are independent of each other,

i.e., no profit is taken from the arrival pattern of queries. As a consequence, no reuse of information

is made. We study how re-usability can be exploited to support query optimization. To what extent,

we may benefit from reusing intermediate results for query optimization depends on the operators

used in a search strategy and the algorithm. In Section 4.2, we discuss the role of the operators,

and in Section 4.3, we discuss the role of the algorithms.

4.1 Physical schema

A relation will be stored as a binary storage model. In a binary storage model, there exists a

separate table for each attribute, and each row in a table is a pair (attribute value, tid-list). The

advantage of storing a relation as a number of binary tables is that queries requiring the number

of tuples satisfying an expression can be efficiently processed. To determine the number of tuples

satisfying an elementary expression, att = ‘v’, we access the binary relation corresponding to att

with entry ‘v’ and count the number of tids in the tid-list. To determine the number of tuples

satisfying a non-elementary expression, in which m attributes are involved, we access each of the

m corresponding binary relations with the relevant entry, and save the tid-lists. Then, we intersect

these tid lists, and count the resulted tids. In this way, activities as searching and retrieving of

tuples are avoided

In commercial database management systems, the binary storage model can be simulated by

allocating an index to each attribute and sorting it on attribute value. An index can be regarded

as a table, in which each row is a pair (attribute value, tid list). We note that in a data mining

application there is no maintenance cost of indices, since queries are the only relevant type of

database operation.

- 11 -
NLR-TP-97423

4.2 Operators

We discuss what information should be stored in order to optimize the basic operators, extension,

reduction, generalization, specialization, and cross-over. We note that a neighbour can be regarded

as either an extension or reduction, and a mutation as either a generalization or specialization. In

the following, a list Lj
i contains the tuples identifiers (tids) satisfying the expression e

j
i .

extension and reduction Let us consider an extension, e, of expression< e
j
1^e

j
2^e

j
3^:::^e

j
n�1 >

with an expression < ejn >. By keeping track of of L1;2;3;:::;n�1, in which L1;2;3;::n�1 =

L
j
1 \ L

j
2 \ L

j
3 \ ::: \ L

j
n�1, the number of tuples satisfying the extension e can be computed

by L1;2;3;:::;n = L1;2;3;:::;n�1 \ Lj
n, and counting the elements in L1;2;3;:::;n.

In contrary to the extension operator, reuse of intermediate results is not straightforward in case of

the reduction operator. Consider the reduction e0 =< e1 ^ e2 ^ e3 ^ :::^ ej�1 ^ ej+1 ^ :::^ en >

of the expression e =< e1 ^ e2 ^ e3 ^ ::: ^ ej ^ ::: ^ en >. Then, the list of tids satisfying

e can not be used in computing e0, since the tuples satisfying e0 is not longer a subset of the

tuples satisfying e. However, if tids of tuples satisfying proper subexpression are stored, e.g.,

< e1 ^ e2 ^ e3 ^ ::: ^ ej�1 >, they can be used in computing the tuples satisfying a reduction.

Subexpressions with length n� 1 have the highest priority to be stored, since a reduction reduces

an expression with length one.

generalization and specialization Let us consider an expression e
j
i = atti 2 [vk; vp]. To

determine the number of tuples satisfying a generalization of eji , we apply the following proce-

dure. We determine the values that is added in the range [vk; vp]. For each value, we access the

corresponding entry in the binary relation corresponding to atti. Then, we take the union of the

tid-lists of these entries and L
j
i . The resulting number of tids due to this action is the number of

tuples that satisfies the generalized expression.

To determine the number of tuples satisfying a specialization of eji , we apply a similar procedure.

We determine the values that is discarded in the range [vk; vp]. For each value, we access the

corresponding entry in the binary relation corresponding to atti. Finally, we take the difference of

the tid-lists of these entries and L
j
i . The resulting number of tids due to this action is the number

of tuples that satisfies the specialized expression.

Cross-over A crossover operation takes as input 2 expressions, it selects a random point and the

subexpressions behind this point are exchanged. For example, a crossover on two expression e =<

ei1^e
i
2^e

i
3^:::^e

i
k�1^e

i
k^e

i
k+1^:::^e

i
n > and e0 =< e

j
1^e

j
2^e

j
3^:::^e

j
k�1^e

j
k^e

j
k+1^:::^e

j
n > at

- 12 -
NLR-TP-97423

point k results into two new expressions,namely e00 =< ei1^e
i
2^e

i
3^:::^e

i
k�1^e

i
k^e

j
k+1^:::^e

j
n >

and e000 =< e
j
1 ^ e

j
2 ^ e

j
3 ^ ::: ^ e

j

k�1 ^ e
j

k ^ eik+1 ^ ::: ^ ein >.

No optimization guidelines can be given for this operator because a cross-over operator randomly

jumps from one state to another state in the search space.

4.3 Algorithms

In Section 3, we have observed that the discussed search strategies choose from a current ex-

pression another expression for further exploration. They differ in the way the choice of the

expression for further exploration is made. We consider the following three cases. In the first

case, a hill climber and a simulated annealing algorithm are equipped with the extension operator,

and in the second case both types of algorithms are equipped with the neighbour operator. In

the third case, a genetic algorithm equipped with a mutation and cross-over operation is considered.

Case 1a: hill climber In Figure 2, we have depicted the search process of a hill climber.

The different elementary expressions in which atti is involved are distinguished by a superscript.

So, the expression e
j
i represents the j-th expression in which atti is involved. We assume that

the generation of elementary expressions has been done in a separate process. Techniques to

generate these expressions can be found in [Ref 9]. The hill climber starts with the evaluation

of all elementary expressions eji and chooses the expression with the highest quality. Then, it

computes the extensions of the chosen expression; choose the extension with the highest quality,

and the whole process is repeated again. So, the expressions that are considered in this process

are conjunctions of operations along a path.

Since each non elementary expression considered in this search process at a level i is an extension

of a certain expression e at level i� 1, we can use the optimization techniques for the extension

operator as described in Section 4.2.

It should be clear that if we store for each elementary expression the tids of tuples that satisfy the

expression and the tids of the tuples satisfying the expression whose extensions will be further

explored, the main activity in processing queries is reduced to the intersection of 2 tid lists.

In order to store the list of tids that satisfies the expression that will be further explored, one should

know this expression. Because this expression is not known at proper time, this may lead to the

storage of many lists of tids. For example, while computing the extensions of the expression

< e1
2 ^ e1

3 > in Figure 2, we do not know which of the extensions will be chosen for further

- 13 -
NLR-TP-97423

e
1
3 e

n3
3

e
n1
1e

2
1e

1
1

e
n2
2

...
e
nk
k

e
1
1 e

2
1 e

n1
1 e

1
2

e
1
3

level m

level 3

level 2

level 1

...

......

...

e
1
4

e
n3
3 e

nk
k

e
1
1 e

2
1 e

n1
1 e

nk
k

...
J
J
J

@
@
@

aaaaaaa

XXXXXXXXXXXX
�������

�����

�
�
�

...

��������

!!!!!!!

�
��

L
L

!!!!!!

"
"

""

b
b
bb

... ...

hhhhhhhhhhhh

�
��

b
b
bb

XXXXXXXXX

!!!!!
"

"
""

�
�

Fig. 2 Search process of a hill climber

exploration. Since we know that the hill climber will choose one of the extensions, we may decide

to store for each expression at level 3 the list of tids satisfying the expression.

In general, as long as we do not know which extension of an expression e at level i � 1 will

be chosen for further exploration, one can decide to store all extensions of e. We note that the

extensions of e are the expressions at level i. This means that if the number of branches at level

i are bi, we need extra storage space for bi lists of tids. We note that the maximal number of

branches is generated at level 1. Since we do not have to store tid lists satisfying elementary

expressions, the maximal number of tid lists that should be stored is generated at level 2. We

note that, in general, the longer the length of an expression will be, the shorter the list of tids will

be that satisfy the expression. This means that the longest lists will be also generated at level 2.

Furthermore, once we know which expression is chosen for further exploration at level i, the list

of tids concerning this level can be discarded.

Another alternative is not to store any of the lists of tids computed at level i, until we know

which expression will be further explored. This information is released at the moment when the

hill climber requires the evaluation of expressions at level i + 1. At that moment, it will ask to

compute queries with regard to the extensions of the selected expression at level i. Since we have

not stored any tid lists of tuples at level i, this means we have to compute the tid list of tuples that

satisfies to the selected expression at level i again.

Consider the expression < e1
2 ^ e1

3 > at level 2 in Figure 2. Suppose that for the first time a

query has an expression of length 4 in its WHERE clause. Let us assume that this expression is

< e1
2 ^ e1

3 ^ e
n1
1 ^ e1

5 >. Then, the selected expression at level 3 is < e1
2 ^ e1

3 ^ e
n1
1 >. Since

we have not stored any of the tid lists at level 3, we compute the following intersection again:

- 14 -
NLR-TP-97423

L2;3;1 = L2;3 \ L
n1
1 , in which L2;3 = L1

2 \ L1
3, and store the list L2;3;1. In this case, extra storage

space is only required for one list of tids, namely those tids that satisfy the expression whose

extensions will be further explored. On the other hand, this strategy requires one extra intersection

between 2 tid lists at each level of the search process. Whenever the intersection of tid lists appears

to be cheaper than temporary storing all the generated lists of tids at each level, the intersection of

tid lists is preferred. Otherwise, the storage of tid lists is preferred. 2

Case 1b: simulated annealing This algorithm randomly chooses an expression, selects an exten-

sion of this expression and decides immediately whether this extension will be chosen for further

exploration or not. If an extension is selected, this procedure is repeated. In Figure 3, a search

process of a simulated annealing is depicted. Since a simulated annealing algorithm immediately

determines whether an expression will be chosen or not, it is sufficient to store only one list of tids,

namely the tid list of tuples satisfying the expression whose extensions are currently explored. 2

Case 2: In this case, we assume that a hill climber and a simulated annealing algorithm are

equipped with the neighbour operation. As has been shown, the tid list of tuples satisfying an

extension of an expression e can be computed by using the tid list of tuples satisfying e. In case

of a reduction of e, the tid list of tuples satisfying e can not be used in computing the tid list of

tuples satisfying the reduction.

We note that a neighbour operator in combination with a hill climber algorithm offers the possibility

to leave an earlier chosen path and to explore a new one. Suppose that the application of the

reduction operator to < e1
2 ^ e1

3 ^ e
n1
1 > yields the expression < e1

3 ^ e
n1
1 >. Then, in Figure 2,

this concerns a path that starts at e1
3 at level 1.

+

+

+

+

+

+

+
+

Fig. 3 Search process of simulated annealing

In a simulated annealing algorithm as well as in a hill climber algorithm, it is possible that an

earlier visited expression will be visited again, or one of its extension will be visited. By storing

lists of tids of expressions that are computed earlier in the search process, the number of lists

of tids that should be intersected further on in the search process may be reduced. Consider the

following expression e =< e1 ^ e2 ^ e3 ^ ::: ^ ej ^ ::: ^ en >, and suppose that the reduction

- 15 -
NLR-TP-97423

e0 =< e1^e2^e3^ :::^ej�1^ej+1^ :::^en > is selected for further exploration. If e0 was visited

earlier and the corresponding tids satisfying e0 has been stored, this can be reused in processing

queries with e0 in their WHERE clause. If, for example, not e0 but e00 =< e1^e2^e3^ :::^ej�1 >

was visited earlier, then the list of tids satisfying e00 can be used in computing the tid list satisfying

e0 (Le0), namely Le0 = Le00 \ Lj+1 \ :::\ Ln.

It should be clear, the more of the computed tid lists during the search process are stored, the

better the chances are that the number of lists that should be intersected can be reduced. However,

since the available amount of storage space will be limited, it will be not possible to store all

computed tid lists during the search process. A possible heuristic is to delete lists of tids of tuples

that satisfy expressions that are not a subexpression of the expression that will be further explored.

The rationale behind this heuristic is that if neighbours of an expression e become shorter, the

tid lists of tuples that satisfy subexpressions of e can be used in computing queries having these

neighbour expressions in their WHERE clause. If neighbours of e become longer, the tid lists of

tuples that satisfy e can be used in computing queries having these neighbour expressions in their

WHERE clause.

Another heuristic to discard tid lists if the available storage space is limited, is based on the length

of tid lists. Tid lists with relatively few number of tids or a large number of tids in comparison with

the cardinality of the database can be discarded. The rationale behind this heuristic is based on the

fact that the quality of an expression is based on the number of tuples satisfying the expression.

An expression to which only a few tuples satisfy will be in general not interesting, and, therefore,

it will have a low quality. The same holds for expressions that yield almost the whole database.

2.

Case 3: A genetic algorithm starts with an initial population, i.e., a number of expressions

in our terminology. It evaluates all expressions of the population and selects some of the expres-

sions on which the mutation or the crossover operation is applied, yielding a new population. For

each expression in a new generation holds; the expression is the same as in the previous generation

or the expression is modified due to a crossover or a mutation.

It should be clear to store the list of tids satisfying expressions of the present generation. A number

of these expressions will remain the same in the next generation. So, we can reuse these tid lists

in processing queries that have expressions in their WHERE clause which remain the same in two

consecutive generation.

- 16 -
NLR-TP-97423

The optimization techniques discussed in Section 4.2 with regard to generalization and specializa-

tion can be applied whenever expressions undergo a mutation. To speed up queries which regard

to expressions that are due to a cross-over, no general guidelines can be given. One can store tid

lists that satisfy to subexpressions of an expression that appear in a present generation. Then, these

tid lists may be used in the same way as in Case 2. To control the storage space, the guidelines of

Case 2 can be used. 2

We have analysed the role of a physical schema, the operators, and the algorithms in the op-

timization of queries generated by different search strategies. We have suggested to store a

relation according to the binary storage model or to allocate a sorted index to each attribute. We

have argued that the processing of queries may be accelerated by storing proper lists of tids. The

amount of extra storage space required to store tid lists depends on the algorithm and opera-

tors used, e.g., hardly extra storage space is required for a simulated annealing algorithm that is

equipped with an extension operator. In the case of a limited amount of storage space, we have

introduced two heuristics to control the storage space.

In the next section, we discuss a framework of an optimization module in which above mentioned

techniques are embedded.

- 17 -
NLR-TP-97423

Hill Climber
Algorithm

Genetic . . .

query

code

Translator

set of queries search strategy

Annealing

Code generator

Dispatcher

query query

Simulated

database requestsresults

DBMS

. . .

Fig. 4 Diagram of the optimization framework

5 Framework

We present a framework of an optimization module for query optimization to support data mining.

Furthermore, we show how the framework can be related to current database management systems.

The optimization module is depicted in Figure 4. The module receives as input a set of queries

and the search strategy that generates the queries. A dispatcher passes the queries to an optimizing

submodule depending on the search strategy. The optimizing submodule generates a piece of

intermediate code for each query q. This module checks whether stored lists of tids can be used in

computing the results of q, and determines which parts of the results should be stored. Furthermore,

it also invokes heuristics to discard lists of tids whenever there is a shortage of storage space.

The intermediate code is passed to a translator that translates the code in a language that is

understood by the underlying database management system (dbms), and the query is passed to the

dbms. The query optimizer of the dbms generate an efficient query execution plan. The result

produced by the dbms is passed to the optimizing module, which passes it on its turn to the search

strategy.

Let us illustrate the working of the optimization module by means of an example. Consider the

- 18 -
NLR-TP-97423

earlier mentioned insurance database in Section 2. The database is stored according the binary

storage model, and consists of, among others, the binary relations age, gender, and accident.

Suppose that a simulated annealing search strategy passes the queries: count the tuples satisfying

the expression e1 =< age2 [19; 24] ^ gender = ‘female’ > and count the tuples satisfying the

expression e2 =< age2 [19; 24]^ gender = ‘female’^ accident = ‘true’ >. Then, the dispatcher

passes these queries to the submodule simulated annealing. This submodule checks whether it

can accelerate the processing of these queries by earlier stored intermediate results, and generates

a piece of code. Since no results are stored yet, the submodule simulated annealing generates the

following intermediate code for the first query:

(1) L1 = age.select(19; 24);

(2) L2 = gender.select(‘male’);

(3) Le1 = intersect(L1; L2);

(4) pass(count(Le1));

(5) store(Le1);

Since the listLe1 has been stored and it can be used in processing the second query, the submodule

simulated annealing generates the following code:

(6) L3 = accident.select(‘true’);

(7) Le2 = intersect(L3; Le1);

(8) pass(count(Le2));

(9) store(Le2);

We note that the statements (1), (2), and (6) can be done in parallel. Once L3 has been computed,

statements (4) and (8) can be done in parallel too.

Depending on the underlying database management system, the translator translates the interme-

diate code in a language that is understood by the database management system, e.g., SQL queries.

These queries are offered to the dbms, which selects an efficient execution plan for them. In this

way, we combine the optimizing techniques used by an optimizer and techniques based on reuse

of information.

- 19 -
NLR-TP-97423

6 Conclusions & further research

Many data mining problems can be characterized as the search for specific expressions among an

enormous number of expressions, making an exhaustive search infeasible. The evaluation of each

expression leads to a number of queries to the database to be mined. Although efficient search

strategies attempt to minimize the number of queries to be evaluated, still many queries have to be

evaluated to find the specified expression(s). Inefficient evaluation of these queries will have its

impact on the performance of a whole data mining system, making such a system less valuable.

Since queries generated in a future step in a search process are dependent of queries generated at

the present step, exploiting the dependencies between queries in a data mining session promises a

considerable speed-up of the discovery process. In this paper, we have argued how such a speed-up

can be achieved for the cost of some extra storage for five cases. Generalizing from these cases,

we propose an optimization framework in which the “browsing optimization” seamlessly fits in

the traditional query optimizing strategy.

A topic for the near future is the implementation of the framework and the connection of the module

to commercial database systems as well as to experimental database management systems.

- 20 -
NLR-TP-97423

References

1. Agrawal, R., Ghosh, S., Imielinski, T., Iyer, B., Swami, A., An Interval Classifier for Database

Mining Applications, Proc. of the 18th VLDB Conf., 1992, pp. 560-573.

2. Agrawal, R., Srikant, R., Fast Algorithms for Mining Association Rules, Proc. Int. VLDB

Conf. 1994, pp 487-499.

3. Agrawal, R., Srikant, R., Mining Sequential Patterns, Proc. 11th Int. Conf. on Data Engineer-

ing, 1995 pp. 3-14.

4. Augier, S., Venturini, G., Kodratoff, Y., Learning First Order Logic Rules with a Genetic

Algorithm, Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining, pp. 21-26.

5. Grimmet, G.R., Stirzaker, D.R., Probability and Random Processes, Oxford Science Publica-

tions, Oxford University Press, New York, USA.

6. Han, J., Cai, Y., Cerone, N., Knowledge Discovery in Databases: An Attribute-Oriented

Approach, Proc. of the 18th VLDB Conf., 1992, pp. 547-559.

7. Holsheimer, M., Kersten, M.L., Architectural Support for Data Mining, Proc. AAAI-94

Workshop on Knowledge Discovery, pp. 217-228.

8. Houtsma, M., Swami, A., Set-Oriented Mining for Association Rules in Relational Databases,

Proc. 11th Int. Conf. on Data Engineering, 1995, pp. 25-33.

9. Srikant, R., Agrawal, R., Mining Quantitative Association Rules in Large Relational Tables,

Proc. ACM SIGMOD ’96 Int. Conf. on Management of Data.

10. Ullman, J., Principles of Database and Knowledge-Base Systems, Vol.2: The New Technolo-

gies, Computer Science Press, New York, USA, 1989.

11. Wrobel, S., Wettschereck, D., Verkamo, I., Siebes, A., Mannila, H., Kwakkel, F., Kloesgen,

W., User Interactivity in Very Large Scale Data Mining, to appear.

