Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

e

RIE

=

NLR TP 97423

Query optimization to support data mining

Sunil Choenni and Arno Siebes

DOCUMENT CONTROL SHEET

ORIGINATOR'S REF.
NLR TP 974p3 U Undlassified

A

SECURITY CLASS.

ORIGINATOR
National Aerospace Laboratory NLR, Amsterdam, The Netherlands

TITLE o
Query optimization to support data mining.

PUBLISHED IN
Proc. DEXA '97 8th Int. Conference and Workshop on Database and Expert

Systems Applications, IEEE Computer Society Press, Los Almitos, CA, 1997.

AUTHORS DATE
Sunil Choenni May, 1997
Arno Siebes

pp ref
20 11

DESCRIPTORS

Associative processing (computers) Optimization

Data bases Search profiles
Genetic algorithms Searching
Heuristic methods Strategy

Information retrieval

ABSTRACT

In order to extract knowledge from databases, data mining algorithms
heavily query the databases. Inefficient processing of these queries will
inevitably have its impact on the performance of these algorithms, making
them less valuable. In this paper, we describe an optimization framework
for an efficient processing of queries generated by different data mining
algorithms. We show how to take advantage of the physical oranization of
the database, the operators and the control structures used in an
algorithm. Finally, we discuss how our framework fits into conventional
query optimization frameworks.

217-02

-3-
NLR-TP-97423

Summary

In order to extract knowledge from databases, data mining a gorithmsheavily query the databases.
Inefficient processing of these querieswill inevitably haveits impact on the performance of these
algorithms, making them less vauable. In this paper, we describe an optimization framework
for an efficient processing of queries generated by different data mining algorithms. We show
how to take advantage of the physical organization of the database, the operators and the control
structures used in an agorithm. Finaly, we discuss how our framework fits into conventional

guery optimization frameworks.

-4-
NLR-TP-97423

Contents

1 Introduction

2 Preiminaries & assumptions

3 Search strategies

4 Optimization

41 Physical schema
4.2 Operators
43 Algorithms

5 Framework

6 Conclusions & further research

4 Figures

(20 pagesin total)

10
10
11
12

17

19

)
)=

-5-
NLR-TP-97423

1 Introduction

Research and development in datamining evolvesin severa directions, such as association rules,
time series, and classification. The direction of association rulesis focussed on the devel opment
of agorithmsto find frequently occurring patternsin a database, see among others[Ref 2, 8, 9]. In
time series databases, one triesto find all common patterns embedded in a database of sequences
of events [Ref 3]. The classification of tuples in a number of groups on the basis of common
characteristics and the derivation of rules from a group is another direction in data mining [Ref
1,4,6,7].

Our interest liesin the last field. We are developing a system to classify tuplesin groups and to
derive rules from these groups [Ref 11]. The architecture of our system is according to Figure 1.
A data mining system, equipped with several agorithms, generates queries and passesthem to the
database system. The database system derives the answers of the queries and passes them to data
mining system. In Figure 1, the datamining system has astask to come up with strategiesthat limit
the number of queries and the database system has as task to process received queries efficiently.
The advantages of such an architecturein thefield of association rules have been discussed in [Ref
8] and in the field of classification in [Ref 11]. However, although search strategies attempt to

Data Mining System

Mining Algorithms

queries results

Database System

Fig. 1 An integrated mining and database systems

minimize the number of queries passed to a database system in order to extract knowledge, they
still generate alarge number of queries. Consequently, the architecture of Figure 1 isonly viable
if the data mining system receives the answers of queries within an acceptable amount of time.

This paper isdevoted to the optimization of queries generated by different search strategies, which
may be present in a data mining system. We show that queries generated at later stepsin a search
process are dependent of queries generated at earlier steps. Asin[Ref 6, 7], queries are regarded
as conjunctions of predicates over a number of attributes. We assume that the number of tuples
satisfying queries are required for the search process and not the tuples self. We notethat for many
data mining agorithmsthis assumption holds, see among others[Ref 4, 2, 7, 9]. We expl it these

-6-
NLR-TP-97423

properties and present a framework for query optimization that seamlessly fits into traditional
frameworks. We note that since aggregate predicates are significant for data mining queries,
much research is devoted to this type of predicates. Our research complements the research on
optimization of aggregate predicates. Resultsfromthethisfield can beincluded in our framework.

For the time being, we have elaborated the framework for variants of three search strategies
namely, hill climber, simulated annealing, and genetic a gorithms.

Theoptimization techniquesin our framework exploit thefollowing aspects: physical organization
of the database, the operators used in an algorithm, and the control structures of an agorithm.

We note that athough some of the above-mentioned aspects have been exploited for query
processing in several data mining agorithms, these have neither been wrapped up in a generd
optimization framework, nor have their roles been systematically analysed in the context of these
algorithms. The optimization framework can be used by each data mining agorithm that satisfies
above-mentioned properties. What distinguish our framework from conventional frameworks for
guery optimizationisthat conventional ones do not benefit from the dependency between queries.
Conventional frameworks optimize aquery in isolation of other queries [Ref 10].

The remainder of this paper is organized as follows. In Section 2, we outline some preliminaries.
In Section 3, we present anumber of search strategies and the queries generated by them, in order
to discover knowledge. In Section 4, we discuss how to optimize the queries generated by these
strategies by storing and re-using intermediate results. Section 5 shows how the optimizing tech-
niques of the previous section can be incorporated in existing frameworks for query optimization.
Finally, Section 6 concludes the paper.

)
)=

-7-
NLR-TP-97423

2 Preliminaries & assumptions

A database consists of auniversa relation. The relation is defined over some attributes, such as,
atts, attp, ..., att,, andisasubset of the Cartesian product dom(att;) x dom(atty) x ... x dom(att,,),
inwhich dom(att;) isthe set of valuesthat can be assumed by attribute att;. A tupleisan ordered
list of attribute values to which auniqueidentifier (tid) isassociated. The content of the database
remains the same during the mining process.

An expression is used to derive arelation and is defined as a conjunction of predicates over some
atributes. The length of an expression is the number of attributes involved in the expression.
Expressions with length 1 are called elementary expressions. An example of an expression of
length 2is < age € [19, 24] A gender = ‘mal€’ >, representing the males who are older than 18
and younger than 25. An expression egq,p, iSasubexpression of g, if each elementary expression of
esub IScontained in e and length(e) > length(egp).

We deal with search spaces that contain expressions. An expression ¢’ isan extension of e if e isa
subexpression of ¢’ and length(e’) — length(e) = 1. Anexpression ¢’ isacalled areduction of e if
¢’ isasubexpression of e and length(e) — length(e’) = 1. An expression ¢’ is called a neighbour
of e if ¢’ isaextension of e or ¢’ isareduction of e.

A generalization enlarges the range of an elementary expression, while a specialization reduces
this range. Examples of a generdization and specidization of < age € [19,24] > are < age €
[19,30] > and < age € [19, 20] >, respectively.

Finally, we assume that the WHERE clause of a query consists of an expression, and that the
output is the number of tuples satisfying this expression. This type of queriesis significant for
many data mining algorithms, see among others[Ref 1, 2, 4, 6, 7, 8, 9].

)
=

-8-
NLR-TP-97423

3 Search strategies

To be successful, search strategies impose a certain structure on a search space. For example, a
search strategy that is focussed on finding alocal optimum in a search space that almost consists
of local optimawill not be very useful.

Unfortunately, the search spaces that stem from data mining problems neither have a specific
structure nor the structure is known in advance. On the basis of evidence, one should choosefor a
search strategy. Therefore, aminingtool should be equipped with several search strategies. Inthis
section, we discuss variants of anumber of search strategies and we study the expected generation
pattern of queries by each strategy. The search strategies are equipped with one or more operators
that can be applied on expressions in the corresponding algorithm. We start the discussion with
avariant of ahill climber, and continuewith avariant of simulated annealing and genetic algorithm.

Hill Climber Thevariant of the hill climber discussed in this sectionis equipped with the operator
extension, which takes as input an expression and computes an extension of it. The hill climber
startswith an initial expression eg. Then, it computes all extensions of ¢g and their qualities, and
the extension with the best quality becomes the expression for further exploration. The whole
procedure will be repeated again until no improvementsare possible, or some user defined criteria
are met. Searching according to a hill climber guarantees a local optimum. Variants of a hill
climber can befound in [Ref 6, 7]. O

Simulated annealing The variant of simulated annealing is equipped with the operator neigh-
bour, which takes as input an expression and computes an neighbour of it. In contrary to the hill
climber, thisstrategy can choose with a certain probability an el ement for further exploration that
has aworse quality than the current element. This provides the possibility to escape from alocal
optimum. Astime progresses, this probability gradually decreases until it becomes zero, whichis
the terminating criteria. O

Genetic algorithm A genetic algorithm selectsan initial population. Individualsin the population
are represented as strings of bits. Then, it computes the quality of all individuas. On the basis of
the quality, a selection of individuasis made. Some of the selected individuals undergo a minor
maodification, called mutation. For some pairs of selected individuals a random point is selected,
and the substrings behind this random point are exchanged, caled cross-over. The selected in-
dividuals form a new generation and the same procedure is repeated until no significantly better
population can be found. For mining purposes, a genetic agorithm has been tailored in [Ref 4].
0

-9-
NLR-TP-97423

From the above described strategies, we observe that expressions that will be evaluated in a
next step depends on the present step, and not on former steps. Thisis awell-known property of
aMarkov process [Ref 5]. Thisindicates that stored results of the present step may be used for
the next step. For example, the tuples that satisfy an extension of an expression e will always be
asubset of e. Searching for tuplesthat satisfy an extension of e in the set of tuples satisfying e
will be, in general, cheaper than searching for those tuplesin the database, since the database will
contain more tuples. What intermediate results to store and how to reuse them is the topic of the

next section.

)
=

-10-
NLR-TP-97423

4 Optimization

Query optimizationis often performed in two phases, aso-called logica and physical optimization
phase [Ref 10]. In the logica optimization phase, it is determined in which order the involved
(basic) operations in a query should be processed. In the second phase, it is determined how the
basic operations can be efficiently performed. This depends on the way the datais stored, and is
described in aphysical schema. If aninefficient physical schemais chosen for adatabase, thishas
itsimpact on query optimization. In Section 4.1, we discuss an efficient way to store arelation for
data mining.

In the two-phased optimization process, it is assumed that queries are independent of each other,
i.e., noprofitistakenfromthearrival pattern of queries. Asaconsequence, no reuse of information
ismade. We study how re-usability can be exploited to support query optimization. Towhat extent,
we may benefit from reusing intermediate resultsfor query optimization depends on the operators
used in a search strategy and the algorithm. In Section 4.2, we discuss the role of the operators,
and in Section 4.3, we discussthe role of the agorithms.

4.1 Physical schema

A relation will be stored as a binary storage model. In a binary storage model, there exists a
separate table for each attribute, and each row in atable is a pair (attribute vaue, tid-list). The
advantage of storing arelation as a number of binary tables is that queries requiring the number
of tuples satisfying an expression can be efficiently processed. To determine the number of tuples
satisfying an elementary expression, att = ‘v, we access the binary relation corresponding to att
with entry ‘v’ and count the number of tids in the tid-list. To determine the number of tuples
satisfying anon-elementary expression, in which m attributes are involved, we access each of the
m corresponding binary relations with the relevant entry, and save thetid-lists. Then, weintersect
these tid lists, and count the resulted tids. In this way, activities as searching and retrieving of
tuples are avoided

In commercial database management systems, the binary storage model can be simulated by
alocating an index to each attribute and sorting it on attribute value. An index can be regarded
as a table, in which each row is a pair (attribute value, tid list). We note that in a data mining
application there is no maintenance cost of indices, since queries are the only relevant type of
database operation.

-11 -
NLR-TP-97423

4.2 Operators

We discuss what information should be stored in order to optimize the basic operators, extension,
reduction, generalization, specialization, and cross-over. We notethat aneighbour can beregarded
as either an extension or reduction, and a mutation as either a generalization or specialization. In
thefollowing, alist LZ contains the tuples identifiers (tids) satisfying the expression ef .

extension and reduction Let usconsider an extension, e, of expression < e{/\eé/\eé/\.../\ei_l >
with an expression < e% >. By keeping track of of L1723 . ,—1, in Which Li23 ,-1 =
LinLynLin..n L, the number of tuples satisfying the extension ¢ can be computed
by L123. = L123..,-1N L, and counting the elementsin L1 23 ..

In contrary to the extension operator, reuse of intermediate resultsis not straightforward in case of
the reduction operator. Consider thereductione’ =< eg Aea AesA...Aej_1Aejr1 A Ae, >
of the expression e =< eg Aea Aez A ... Aej A ... Ae, >. Then, thelist of tids satisfying
e can not be used in computing €', since the tuples satisfying ¢’ is not longer a subset of the
tuples satisfying e. However, if tids of tuples satisfying proper subexpression are stored, e.g.,
<erNexANez ... Ae;_1 >, they can be used in computing the tuples satisfying a reduction.
Subexpressionswith length n — 1 have the highest priority to be stored, since areduction reduces
an expression with length one.

generalization and specialization Let us consider an expression ef = att; € [vg,vy]. TO
determine the number of tuples satisfying a generalization of eff , we apply the following proce-
dure. We determine the valuesthat is added in the range [vy, v,,]. For each value, we access the
corresponding entry in the binary relation corresponding to att;. Then, we take the union of the
tid-lists of these entries and L{ The resulting number of tids due to this action is the number of
tuples that satisfies the generalized expression.

To determine the number of tuples satisfying a specialization of ef , we apply asimilar procedure.
We determine the values that is discarded in the range [vx, v,]. For each value, we access the
corresponding entry in the binary relation corresponding to att;. Finaly, we take the difference of
the tid-lists of these entriesand L{ The resulting number of tids due to this action is the number
of tuplesthat satisfies the specialized expression.

Cross-over A crossover operation takes as input 2 expressions, it selects a random point and the
subexpressionsbehind thispoint are exchanged. For example, acrossover ontwo expression e =<
EINEHNERA L AE_jAekAel A Aeh > ande’ =< efAebAEsA L AEL_ Al Ael ANl > at

-12-
NLR-TP-97423

point & resultsintotwo new expressions, namely ¢ =< eiAebAesA... A ef_iAehAel A Ael >
and e” =< eg Ay NN Nel_gAef Nefiq A Al >

No optimization guidelines can be given for thisoperator because a cross-over operator randomly
jumps from one state to another state in the search space.

4.3 Algorithms

In Section 3, we have observed that the discussed search strategies choose from a current ex-
pression another expression for further exploration. They differ in the way the choice of the
expression for further exploration is made. We consider the following three cases. In the first
case, ahill climber and a simulated annealing algorithm are equipped with the extension operator,
and in the second case both types of agorithms are equipped with the neighbour operator. In
thethird case, agenetic algorithm equipped with amutationand cross-over operationisconsidered.

Case la: hill climber In Figure 2, we have depicted the search process of a hill climber.
The different elementary expressionsin which att; isinvolved are distinguished by a superscript.

So, the expression ¢! represents the j-th expression in which att; is involved. We assume that
the generation of elementary expressions has been done in a separate process. Techniques to
generate these expressions can be found in [Ref 9]. The hill climber starts with the evaluation
of al elementary expressions ef and chooses the expression with the highest quality. Then, it
computes the extensions of the chosen expression; choose the extension with the highest quality,
and the whole process is repeated again. So, the expressions that are considered in this process

are conjunctions of operations aong a path.

Since each non elementary expression considered in thissearch process at alevel ¢ isan extension
of acertain expression e at level i — 1, we can use the optimization techniques for the extension
operator as described in Section 4.2.

It should be clear that if we store for each elementary expression the tids of tuples that satisfy the
expression and the tids of the tuples satisfying the expression whose extensions will be further
explored, the main activity in processing queriesis reduced to the intersection of 2 tid lists.

In order to storethelist of tidsthat satisfiesthe expression that will be further explored, one should
know this expression. Because this expression is not known at proper time, thismay lead to the
storage of many lists of tids. For example, while computing the extensions of the expression
< e} A el > in Figure 2, we do not know which of the extensions will be chosen for further

-13-
NLR-TP-97423

2

level1 ¢1 €2 ef'es ey ed 3?

levl 2 €1 €7 epted €3 e,

T TN APERETY oy
level3 ej€e7 e;ey €L

level m /--\

Fig. 2 Search process of a hill climber

exploration. Since we know that the hill climber will choose one of the extensions, we may decide
to store for each expression at level 3 thelist of tids satisfying the expression.

In generd, as long as we do not know which extension of an expression ¢ at level i — 1 will
be chosen for further exploration, one can decide to store al extensions of e. We note that the
extensions of e are the expressions at level i. This meansthat if the number of branches at level
: are b;, we need extra storage space for b; lists of tids. We note that the maximal number of
branches is generated at level 1. Since we do not have to store tid lists satisfying elementary
expressions, the maxima number of tid lists that should be stored is generated at level 2. We
note that, in general, the longer the length of an expression will be, the shorter the list of tidswill
be that satisfy the expression. This means that the longest lists will be also generated at level 2.
Furthermore, once we know which expression is chosen for further exploration at level ¢, the list
of tids concerning thislevel can be discarded.

Another alternative is not to store any of the lists of tids computed at level ¢, until we know
which expression will be further explored. Thisinformation isreleased at the moment when the
hill climber requires the evaluation of expressions at level ¢ + 1. At that moment, it will ask to
compute queries with regard to the extensions of the selected expression at level :. Sincewe have
not stored any tid listsof tuplesat level ¢, thismeans we have to computethetid list of tuplesthat
satisfies to the selected expression at level ¢ again.

Consider the expression < e} A e} > at level 2 in Figure 2. Suppose that for the first time a
guery has an expression of length 4 in its WHERE clause. Let us assume that this expression is
< elnel et Aet >. Then, the sdlected expression at level 3is < el A ed A eft >. Since
we have not stored any of the tid lists at level 3, we compute the following intersection again:

-14 -
NLR-TP-97423

Laza1= Loz L1t inwhich Lo3 = L3N L}, and storethelist L231. Inthiscase, extra storage
space is only required for one list of tids, namely those tids that satisfy the expression whose
extensionswill befurther explored. On the other hand, thisstrategy requires one extraintersection
between 2 tid listsat each level of the search process. Whenever theintersection of tid listsappears
to be cheaper than temporary storing all the generated lists of tids at each level, the intersection of
tid listsis preferred. Otherwise, the storage of tid listsis preferred. O

Case 1b: simulated annealing Thisalgorithm randomly chooses an expression, selects an exten-
sion of this expression and decides immediately whether this extension will be chosen for further
exploration or not. If an extension is selected, this procedure is repeated. In Figure 3, a search
process of a simulated annealing is depicted. Since a simulated annealing algorithm immediately
determineswhether an expression will be chosen or not, it issufficient to storeonly onelist of tids,
namely thetid list of tuples satisfying the expression whose extensions are currently explored. O

Case 2. In this case, we assume that a hill climber and a simulated annealing agorithm are
equipped with the neighbour operation. As has been shown, the tid list of tuples satisfying an
extension of an expression e can be computed by using the tid list of tuples satisfying e. In case
of areduction of ¢, thetid list of tuples satisfying e can not be used in computing the tid list of
tuples satisfying the reduction.

Wenotethat aneighbour operator in combinationwith ahill climber a gorithm offersthe possibility
to leave an earlier chosen path and to explore a new one. Suppose that the application of the
reduction operator to < e} A €3 A €]t > yieldsthe expression < e} A e]* >. Then, in Figure 2,
this concerns a path that starts at €3 at level 1.

Fig. 3 Search process of simulated annealing

In a simulated annealing agorithm as well as in a hill climber agorithm, it is possible that an
earlier visited expression will be visited again, or one of its extension will be visited. By storing
lists of tids of expressions that are computed earlier in the search process, the number of lists
of tids that should be intersected further on in the search process may be reduced. Consider the
following expression e =< e1 Aex Aea A ... Aej A ... A e, >, and suppose that the reduction

-15-
NLR-TP-97423

¢ =< erNeaNezN...Nej_1Nejr1 /... Ne, > isselected for further exploration. If ¢’ wasvisited
earlier and the corresponding tids satisfying ¢’ has been stored, this can be reused in processing
querieswith ¢’ intheir WHERE clause. If, for example, not e’ bute” =< e1 AexAegA...Aej_1 >
was visited earlier, then thelist of tids satisfying ¢’ can be used in computing thetid list satisfying
¢ (Leo),namely Loy = Len N Ljpq N o0 Ly,

It should be clear, the more of the computed tid lists during the search process are stored, the
better the chances are that the number of liststhat should be intersected can be reduced. However,
since the available amount of storage space will be limited, it will be not possible to store all
computed tid lists during the search process. A possibleheuristicisto delete listsof tids of tuples
that satisfy expressionsthat are not a subexpression of the expression that will be further explored.
The rationale behind this heuristic is that if neighbours of an expression e become shorter, the
tid lists of tuples that satisfy subexpressions of e can be used in computing queries having these
neighbour expressionsin their WHERE clause. If neighbours of e become longer, the tid lists of
tuplesthat satisfy e can be used in computing queries having these neighbour expressionsin their
WHERE clause.

Another heuristicto discard tid listsif the availabl e storage space islimited, is based on the length
of tid lists. Tid listswithreatively few number of tidsor alarge number of tidsin comparison with
the cardinality of the database can be discarded. The rationalebehind thisheuristicisbased onthe
fact that the quality of an expression is based on the number of tuples satisfying the expression.
An expression to which only afew tuples satisfy will bein general not interesting, and, therefore,
it will have alow quality. The same holds for expressions that yield almost the whole database.
.

Case 3: A genetic algorithm starts with an initial population, i.e,, a number of expressions
in our terminology. It evaluates all expressions of the population and sel ects some of the expres-
sions on which the mutation or the crossover operation is applied, yielding a new popul ation. For
each expression in anew generation holds; the expression isthe sameas in the previous generation
or the expression is modified due to a crossover or a mutation.

It should be clear to storethelist of tidssatisfying expressionsof the present generation. A number
of these expressions will remain the same in the next generation. So, we can reuse these tid lists
in processing queries that have expressionsin their WHERE clause which remain the samein two
consecutive generation.

-16-
NLR-TP-97423

The optimization techniques discussed in Section 4.2 with regard to generalization and speciaiza
tion can be applied whenever expressions undergo a mutation. To speed up queries which regard
to expressions that are due to a cross-over, no general guidelines can be given. One can store tid
liststhat satisfy to subexpressionsof an expression that appear in apresent generation. Then, these
tid listsmay be used in the same way asin Case 2. To control the storage space, the guidelines of
Case 2 can beused. O

We have analysed the role of a physical schema, the operators, and the algorithms in the op-
timization of queries generated by different search strategies. We have suggested to store a
relation according to the binary storage model or to alocate a sorted index to each attribute. We
have argued that the processing of queries may be accelerated by storing proper lists of tids. The
amount of extra storage space required to store tid lists depends on the algorithm and opera-
tors used, e.g., hardly extra storage space is required for a simulated annealing algorithm that is
equipped with an extension operator. In the case of alimited amount of storage space, we have
introduced two heuristicsto control the storage space.

In the next section, we discuss aframework of an optimization modulein which above mentioned
techniques are embedded.

-17 -

NLR-TP-97423
set of queries search strategy
Dispatcher
query query query
o Genetic Simulated
Hill Climber . e .
Algorithm Annealing
Code generator
code
Translator
results T database requests

DBMS

U

Fig. 4 Diagram of the optimization framework

5 Framework

We present aframework of an optimization modulefor query optimizationto support datamining.
Furthermore, we show how theframework can berelated to current database management systems.

The optimization module is depicted in Figure 4. The module receives as input a set of queries
and the search strategy that generates the queries. A dispatcher passesthe queriesto an optimizing
submodule depending on the search strategy. The optimizing submodule generates a piece of
intermediate code for each query ¢. Thismodule checks whether stored lists of tids can be usedin
computingtheresultsof ¢, and determineswhich partsof theresultsshould be stored. Furthermore,
it also invokes heuristicsto discard lists of tidswhenever there is a shortage of storage space.

The intermediate code is passed to a tranglator that translates the code in a language that is
understood by the underlying database management system (doms), and the query is passed to the
dbms. The query optimizer of the doms generate an efficient query execution plan. The result
produced by the dbmsis passed to the optimizing module, which passesit on itsturn to the search

strategy.

Let usillustrate the working of the optimization module by means of an example. Consider the

)
=

-18-
NLR-TP-97423

earlier mentioned insurance database in Section 2. The database is stored according the binary
storage model, and consists of, among others, the binary relations age, gender, and accident.
Suppose that a simulated annealing search strategy passes the queries: count the tuples satisfying
the expression e; =< agec [19, 24] A gender = ‘female’ > and count the tuples satisfying the
expression e; =< agec [19, 24] A gender = ‘femal€’ A accident = ‘true’ >. Then, the dispatcher
passes these queries to the submodule simulated annealing. This submodule checks whether it
can accel erate the processing of these queries by earlier stored intermediate results, and generates
apiece of code. Since no results are stored yet, the submodule simulated annealing generates the
following intermediate code for the first query:

(1) L1 = age.select(19, 24);

(2) Lo = gender.select(‘mal€’);

(3) L¢, = intersect(L1, Lo);

(4) pass(count(L.,));

(5) store(L.,);

Sincethelist L., hasbeen stored and it can be used in processing the second query, the submodule
simulated annealing generates the following code:

(6) L3 = accident.select(‘true’);

(7) Le, = intersect(Ls, L.,);

(8) pass(count(L.,));

(9) store(L.,);

We note that the statements (1), (2), and (6) can be donein parallel. Once /.3 has been computed,
statements (4) and (8) can be donein parald too.

Depending on the underlying database management system, the tranglator translates the interme-
diate codein alanguagethat isunderstood by the database management system, e.g., SQL queries.
These queries are offered to the doms, which selects an efficient execution plan for them. In this
way, we combine the optimizing techniques used by an optimizer and techniques based on reuse
of information.

)
)=

-19-
NLR-TP-97423

6 Conclusonsé& further research

Many data mining problems can be characterized as the search for specific expressions among an
enormous number of expressions, making an exhaustive search infeasible. The evaluation of each
expression leads to a number of queries to the database to be mined. Although efficient search
strategies attempt to minimizethe number of queriesto be evaluated, still many queries haveto be
evaluated to find the specified expression(s). Inefficient evaluation of these queries will have its
impact on the performance of awhole data mining system, making such a system less valuable.

Since queries generated in afuture step in a search process are dependent of queries generated at
the present step, exploiting the dependencies between queries in a data mining session promises a
considerable speed-up of thediscovery process. Inthispaper, we have argued how such aspeed-up
can be achieved for the cost of some extra storage for five cases. Generaizing from these cases,
we propose an optimization framework in which the “browsing optimization” seamlesdly fitsin
the traditional query optimizing strategy.

A topicfor the near futureistheimplementation of theframework and the connection of themodule
to commercia database systemsaswell asto experimental database management systems.

-20-
NLR-TP-97423

References

10.

11.

Agrawal, R., Ghosh, S, Imielinski, T., lyer, B., Swami, A., AnInterval Classifier for Database
Mining Applications, Proc. of the 18th VLDB Conf., 1992, pp. 560-573.

Agrawal, R., Srikant, R., Fast Algorithms for Mining Association Rules, Proc. Int. VLDB
Conf. 1994, pp 487-499.

Agrawal, R., Srikant, R., Mining Sequential Patterns, Proc. 11th Int. Conf. on Data Engineer-
ing, 1995 pp. 3-14.

Augier, S., Venturini, G., Kodratoff, Y., Learning First Order Logic Rules with a Genetic
Algorithm, Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining, pp. 21-26.
Grimmet, G.R., Stirzaker, D.R., Probability and Random Processes, Oxford Science Publica-
tions, Oxford University Press, New York, USA.

Han, J., Cai, Y., Cerone, N., Knowledge Discovery in Databases: An Attribute-Oriented
Approach, Proc. of the 18th VLDB Conf., 1992, pp. 547-559.

Holsheimer, M., Kersten, M.L., Architectura Support for Data Mining, Proc. AAAI-94
Workshop on Knowledge Discovery, pp. 217-228.

Houtsma, M., Swami, A., Set-Oriented Mining for Association Rulesin Relational Databases,
Proc. 11th Int. Conf. on Data Engineering, 1995, pp. 25-33.

Srikant, R., Agrawal, R., Mining Quantitative Association Rules in Large Relational Tables,
Proc. ACM SIGMOD '96 Int. Conf. on Management of Data.

Ullman, J., Principles of Database and Knowledge-Base Systems, Vol.2: The New Technolo-
gies, Computer Science Press, New York, USA, 1989.

Wrobel, S., Wettschereck, D., Verkamo, I., Siebes, A., Mannila, H., Kwakkel, F., Kloesgen,
W., User Interactivity in Very Large Scale Data Mining, to appear.

