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ABSTRACT
Within the NICE project, supported by the Dutch Foundation HPCN, the
multi-block Navier-Stokes flow solver ENSOLV is being parallelized. In
this article first results of the block-loop parallelization of ENSOLV
are presented. We discuss the performance results of this parallelization
on a 16-processor NEC SX-4, a shared memory parallel vector computer. The
results are compared to those of the low-level DO-loop parallelization
implemented earlier. The conclusion is that for the cases with higher
number of multigrid levels, the block loop parallelization gives better
speed-up, requires more memory, and gives overall less execution cost.
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Summary

Within the NICE project, supported by the Dutch Foundation HPCN, the multi-block Navier-

Stokes flow solver ENSOLV is being parallelized. In this article first results of the block-loop

parallelization of ENSOLV are presented. We discuss the performance results of this paralleliza-

tion on a 16-processor NEC SX-4, a shared memory parallel vector computer. The results are

compared to those of the low-level DO-loop parallelization implemented earlier. The conclusion

is that for the cases with higher number of multigrid levels, the block loop parallelization gives

better speed-up, requires more memory, and gives overall less execution cost.



- 4 -
NLR-TP-97592

Contents

1 Introduction 5

2 Block-loop parallelization of ENSOLV 6

3 Results and discussion 7

4 Conclusions and future work 9

5 References 10

1 Table

3 Figures

(10 pages in total)



- 5 -
NLR-TP-97592

1 Introduction

The multi-block Navier-Stokes flow solver ENSOLV is currently operational at NLR and industry.

Within the NICE project ENSOLV is being parallelized in order to reduce the turnaround time.

Initially, two strategies for adding parallelism to the code were considered. The first wasMessage

Passing, which would involve major changes to the code and is usually employed on a distributed

memory computer. The second wasData Parallelism, where parallelism is added by splitting up

the DO-loop’s. This strategy costs little effort to apply and is specifically suited for shared memory

computers such as the NEC SX-4 present at NLR. DO-loop’s can be parallelized on different

levels. Low-level DO-loop parallelization is parallelization of DO-loops in individual routines. A

possible problem is the fine parallel grain size; the work per loop might not be enough to overcome

the parallel overhead. Also, the parallelization has to be implemented on many loops. High-level

DO-loop, or block-loop parallelization is parallelization of the DO-loop’s over the blocks in the

domain. This results in the largest possible grain size.

After parallelizing the flow solver ENSOLV using the low-level DO-loop parallelization strategy

Ref. 2, it was clear that this strategy resulted in poor performance in speed-up and execution costs

for cases with a relatively high number of multigrid levels (and hence very fine grain size). It was

then decided that block-loop parallelization of ENSOLV would be tested.

For the evaluation one testcase was chosen from ten benchmark testcases described in Ref. 1.

The testcase concerns a Navier-Stokes simulation about a wing-body-nacelle configuration on 105

blocks with 1.455 million grid points and 3 multi-grid levels. Because of the complexity of the

configuration, there are several tens of small blocks of sizes 8�8�12 - 8�12�16, which causes

the poor speed-ups in low-level DO-loop parallelization strategy. It was expected that the block-

loop parallelized code would show an improvement in speed-up for this particular testcase, and,

hopefully, an improvement in the execution cost.

The performance is measured in terms of speed-up, memory usage and execution costs. At NLR,

the execution costs are expressed in a single number, in so-called System Resource Units (SRU’s).

In the SRU’s, the amount of CPU-time, memory and I/O are accounted for; the formula reflects

the cost price of the system elements [ Ref. 4].
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2 Block-loop parallelization of ENSOLV

Implementing block-loop parallelization in stead of low-level DO-loop parallelization has some

consequences that need to be examined closely. First, to eliminate the dependency between time

integration in the blocks, the Gauss-Seidel algorithm is replaced by the Jacobi algorithm. This

change has influence on the convergence speed, but not on the final solution.

Second, a significant increase in memory usage is unavoidable; computing the blocks in parallel

means that each block will need its own scratch array for storing values. Even though memory

usage and also CPU-time increases, this does not necessarily mean that the execution cost will

increase, since the memory will be occupied for a shorter time compared to the single processor

execution.

The third consequence involves load balancing. Since blocks differ in the number of grid points,

the model used, boundary conditions applied etc., a load balancing problem may occur. For the

current evaluation a task allocation, considering only the number of grid points per block, was

implemented manually.

The block-loops were parallelized by inserting*odir directives. No message passing code is

necessary, since the parallelization takes place on a shared memory computer. The NEC SX-4/16

preprocessor now generated the parallel code.
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3 Results and discussion

The results for the block-loop parallel ENSOLV code for the time integration part, performing 100

iterations are given on the Table below.

Table 1 Performance results for testcase 08

#proc sequential or execution Sp Memory MFLOPS SRU

parallel (real) time usage (Mb)

1 sequential 1676 1.00 211 375 27197

1 parallel 1696 0.99 210 370 27500

4 parallel 546 3.07 280 1144 24805

8 parallel 326 5.14 380 1917 25764

Performance The attained speed-ups for both the block-loop and the low-level DO-loop paral-

lelized code are given in Figure 1. The speed-up for the block-loop parallelized code is

considerably better, as expected, because of the larger grain size.
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Fig. 1 Speedup results

Memory overhead Due to the fact that each processor needs its own scratch array to calculate

the blocks, the memory overhead is larger (see Fig. 2).
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Fig. 2 Memory usage

SRU costsThe SRU costs proved to be invariant for the number of processors studied; the im-

provement in performance is not canceled by the deterioration in memory usage (see Fig. 3).
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Fig. 3 SRU costs
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4 Conclusions and future work

Block-loop parallelization has been used for parallelizing ENSOLV 2.00. The resulting code was

tested on one benchmark testcase with 105 blocks of varying sizes, and 3 multi-grid levels. Com-

pared to low-level DO-loop parallelization, block-loop parallelization showed great improvement

in the speed-up, a high increase in memory usage, and almost invariant SRU costs.

Next, the code will be integrated into a system, including performance estimation and task alloca-

tion. This system will be tested for all ten benchmark testcases, while at the same time, improving

the performance estimation.
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