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A Real-Time Visualization System for 
Computational Fluid Dynamics 

By S h u n  DOI,* Toshifumi TAKE1, t  Yukinori AKIBA,I  Kazuhiro MURAMATSU,*+ 
Nideki M A T S U M O T 0 , S  L a u r e n s  C. J. van  RIJNlI and Bert  C. SCHULTHEISSII 

ABSTRACT 
We have developed a real-time visualization system for CFD (Computational Fluid Dynamics) in 
a network computing environment. This system, named RVSLIB (Real-time Visualization and 

Steering Library), makes it possible to visualize the results of a CFD simulation on a client simultaneously 
while it is being computed on a server (tracking). The GUI (Graphical User Interface) of the RVSLIB 
system also enables the user to specify parameters of the calculation and visualization graphically. The  
system generates pixel image data on the server, and compresses the data by JPEG (Joint Photographic 
Experts Group). Therefore, the amount of data transferred from the server to the client is relatively 
small. High performance visualization is achieved by effectively vectorizing the visualization module on a 
supercomputer. T h e  system is built on standard X Window Systems, OSF/Motif#, and socket-based 
communications, and therefore has high portability. 

KEYWORDS Real-time visualization. Tracking, Steering. Computational Fluid Dynamics (CFD), Network 
computing environment. Pixel image data, Image data compression 

1. INTRODUCTION 

T h e  speedup of computers and the spread of 
network computing environments, have resulted in 
increased demands for systems that visualize 
numerical results on a user client simultaneously 
while it is being computed on a computational 
server. 

A system satisfying this requirement is, for 
example, Visual3 developed at MIT[I] .  Visual3 
generates graphical objects as  polygonal data on the 
server (mapping process), and sends the data to the 
client. Rendering of the data is performed by the 
client on a graphics workstation such as  IRIS# Se- 
ries, using a general-purpose graphics library such as  
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tApplication Software Division 
IManufacturing Industries System Development Division 
SNEC lnformatec Systems, Ltd. 
IlNational Aerospace Laboratory NLR of the Nether- 

lands 
Current  address: Japan Atomic Energy Research 

Institute 
#X Window System is a trademark of X Consortium. 

Inc. and OSF/Motif is a trademark of Open Software 
Foundation. Inc., respectively. IRIS and OpenGL are 
registered trademarks of Silicon Graphics, Inc. 

OpenGLk. Since the rendering process can be 
performed by an existing graphics library, this 
approach has the merit of easy implementation of 
the system. However, the disadvantage of this 
approach is that the amount of polygonal data 
transferred to the client increases when a computa- 
tional grid becomes large; the amount of data to be 
transferred becomes a bottleneck for the process 
speed. Also, the portability is low due to the 
dependency on the graphics library. 

On the other hand, systems which carry out the 
rendering process on parallel computers have been 
reported a t  NASA Langley and MIT [2,3]. However, 
these systems have not been equipped with a GUI 
(Graphical User Interface) by which users are able 
to change visualization parameters while looking a t  
output images. 

In this context, me have developed a real-time 
visualization system for CFD (Computational Fluid 
Dynamics), named RVSLIB (Real-time Visualization 
and Steering Library), based on NaS/RVS (Navier- 
Stokes Real-time Visualization System) [4,5]. This 
system has been designed to have the following 
characteristics. 

1. Mapping and rendering are both performed by 
the server; pixel image data is directly generated 
by the server. Moreover, we attain high perfor- 
mance in the pixel image generation process on 
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vector computers by paying attention to the 
vectorization of visualization operations. 

2. The system is not based on any graphics library, 
and attains high portability. 

3. A library style is adopted, enabling users to easily 
incorporate the system into their CFD codes. 

4. Pixel data generated by the server is compressed 
using JPEG (Joint Photographic Experts Group), 
and the compressed data is sent to the client. On 
the client, the data is expanded and displayed in 
X Window System. This data compression further 
decreases the amount of data transferred over 
the network. 

5. VBI (Visualization Based Input) functionality is 
supported. VBI makes it possible to control 
visualization parameters graphically. 

6. In order to realize a quick system response for 
VBI, an additional simplified rendering process is 
implemented on the client. 

7. Compressed pixel data can be saved on a hard 
disk, and can be replayed as  off-line visualization. 

This paper describes the configuration and the 
characteristics of RVSLIB. Section2 describes the 
characteristics of three different strategies on 
distributing the visualization operations to the server 
and the client. In Section3, system overview and its 
basic requirements are described. Section4 describes 
the system configuration, the action modes and the 
visualization module. In Section 5, the library style is 
described. Section6 describes the GUI. Some 
concluding remarks are presented in Section 7. 

2. DISTRIBUTION OF VISUALIZATION OP- 
ERATIONS TO SERVER AND CLIENT 

In RVSLIB, the CFD computation and visu- 
alization operations are performed on the server. 
This section will discuss the merits of this strategy. 

In general, real-time visualization for 3D time- 
dependent CFD computation has the following 
characteristics: 

1. The access frequencies to computational results 
are low. 
. In time: Only one image (or less) will be 

generated per time step. 
. In space: For 2D contour and vector images, 

the grid points used in visualization are re- 
stricted to a small portion of the original 3D 
grid space. 

2. The  portion of the grid referred to by visualiza- 
tion operations changes dynamically. 

Example: Tracer visualization. 
3. For CFD visualization, polygon-based rendering is 

not always efficient. 
Example: Contour visualization. 

Graphics workstations equipped with dedicated 
hardware for high-speed drawing are widely used 
for standard post-processing. In such post- 
processing, the following characteristics are ob- 
served. 

. A number of different images are generated 
from a single data set. Therefore, the data 
transfer between the computation and visuali- 
tion platforms will not be a bottleneck. 

. High-speed drawing of polygons is especially 
suited to visualization of CAD obiects. 

From these fundamental differences between 
real-time visualization and post-processing, it is clear 
that using graphics workstations is not necessarily 
an efficient way to realize a real-time visualization 
system. In the following, we will discuss the 
characteristics of three different strategies on 
visualization task assignment. 

Here, two different platforms are considered; the  
server and the client. We classify the whole com- 
putational process into three sub-processes: CFD 
computation, mapping operation, and rendering 
operation. Here, the "mapping operation" indicates 
the generation of graphical objects such as  polygons 
and vectors from the computational results (physical 
values defined on grid points). Outputs of the 
mapping operation are graphics commands including 
graphical objects. The "rendering operation" 
includes projection, lighting, hidden surface oper- 
ation, etc. The  output of the rendering operation is 
pixel image data. Now there are three strategies for 

the distribution of the CFD computation, mapping 
and rendering operations. 

Strategy A 
CFD computation is assigned to the server, while 

the mapping and rendering operations are assigned 
to the client. Data to be transferred from the server 
to the client are computational results. 
Strategy B 

CFD computation and mapping operation are 
assigned to the server, while rendering operation is 
assigned to the client. Transferred data are graphics 
commands which are mainly composed of graphical 
objects. 
Strategy C 



CFD computation, mapping and rendering 
operations are assigned to the server, while the 
client is used only for displaying pixel data. Trans- 
ferred data are pixel images. 

Merits and demerits of the individual strategies are 
summarized as  follows. 

Strategy A 
A merit of this strategy is that the server can 

be dedicated to CFD computation (the most 
time-consuming part). However, it is necessary to 
reduce the  amount of data to be transferred from 
the server to the client by, for example, limiting 
grid points which are candidates for visualization, 
since the computational results are huge in size. In 
case of tracer visualization, this visualization needs 
to be assigned to the server as an exception, since 
the data portion referred to by tracer computation 
changes dynamically as the computation goes on. 
Since the volume rendering essentially requires all 
computational results, this visualization operation 
also needs to be performed on the  server. These 
observations imply that it is practically necessary to 
distribute the mapping operations both to the server 
and to the client, which may make the interface 
complicated. Another drawback is that the perfor- 
mance of the client may become a bottleneck in the 
mapping operation process (which implies inefficient 
use of the client). 

Strategy B 
In this case, the interface between the  server and 

the client is clear and simple, since all mapping 
operations will be performed on the server. The 
mapping operation will not become a bottleneck if 
the operation is well vectorized on the server. A 
merit is that this strategy will effectively use the 
graphics hardware on the client. A possibly serious 
problem in this strategy may he that, as  pointed out 
above, polygon-based rendering is not always suited 
for CFD visualization; it may result in too much 
polygon data to be transferred to the client. 

Strategy C 
This strategy retains high portability, since the 

system does not depend on specific graphics 
hardware. The  amount of transferred data depends 
only on the resolution on the screen (the number of 
pixels and bits in color table), and does not depend 
on the amount of computational results. Also, the 
amount of transferred data is small compared to 
Strategy B. Since all mapping and rendering 
operations must be done by software, we  need to 
introduce high-speed computation algorithms which 
are suited for server's architecture. 

Table I summarizes the above consideration, 

3. SYSTEM OVERVIEW AND BASIC RE- 
QUIREMENTS 

3.1 System Overview 
The basic concept of RVSLIB may be described 

as  follows. RVSLIB enables users to visualize the 
results of their CFD simulation programs on a 

Table I Distribution of CFD computation, mapping and rendering operations 

Strategy A B C 

Server CFD computation, Part 01 
mapping operation (tracer, 
volume rendering) 

Client Graphics operation, Render- 
ing operation 

Data transfer Computational results 

Merits Server can be dedicated to 
CFD 

Demerits CPU load of mapping and 
rendering operations. 
Distribution of mapping and 
rendering operations. 
Data transfer amount. 

CFD computation, Mapping 
operation 

Rendering operation 

Graphical commands 

Efficient use of graphics 
hardware 

Vectoiizatian of mapping 
operations. 
Amount of graphical ob- 
jects. 

CFD computation, Mapping 
operation, Rendering  opera^ 

tion 

(Pixel output) 

Pixel image data 

Portability 

Algorithms for mapping and 
rendering operations. 



workstation (or PC) simultaneously while it is being 
computed on a High Performance Computing 
Server (HPCS) in a network computing environ- 
ment. Also, users can easily show a movie of the 
simulation off-line, by compressing and conserving 
the image data during the simulation run. This 
animation can be used as  an alternative to the 
conventional analog video. The  basic requirements 
of RVSLIB are described in the following sub- 
section. 

3.2 Basic Requirements 

Ease  of use 
It is required that RVSLIB can be accessed by 

user's code. A library style format, where users will 
perform some functional calls, is hence a preferable 
interface. The  library style makes it possible to 
realize the real-time visualization by only calling a 
few subroutines. In RVSLIB, the following three 
routines are considered to be the basic subroutines. 

Initialization routine: This routine initializes 
RVSLIB parameters when the RVSLIB module 
is started up. 
Main routine: This routine generates pixel 
image data and displays it. It will be called a t  
every time step in the time marching calcula- 
tion. 
Finalization routine: This routine terminates the 
RVSLIB module. 

In addition to these routines, several other 
routines are being prepared for data transfer. 

Portabil i ty 
Users may intend to use their desktop computers 

as  the client. Their computers are not always 
equipped with specific graphics hardware or a 
graphics library. Therefore, the client system has to 
satisfy the following requirements. 

The  system does not need a specific graphics 
library. 

. The  system should be constructed using 
FORTRAN77, C, and standard UNIX* environ- 
ment products (X Window System, OSF/Motif, 

and sockets), so that it can be implemented 
easily on different hardware platforms. 

The  same requirements are applicable to the 
server system. 

Performance 
The  CPU load for visualization operations and the 

communication load between the server and the 
client have to be small compared to the calculation 
load for the CFD code. T o  achieve this objective, a 
vectorized algorithm for generating image data has 
been developed for RVSLIB. 

Real t ime 
' Users may want to use real-time visualization for 
the following objectives: 

. Interactive and graphical debugging of a 
program which is still in the development 
phase. 
Users can easily check the validity of parame- 
ters for CFD calculation after the calculation 
has been started. 
During production runs, the trial-and-error time 
for the optimization of parameters can be 
reduced by changing these parameters in the 
middle of the calculation. 

User friendliness 
It shall be possible to easily and interactively 

change visualization parameters, which prescribe 
visualization conditions, by using a GUI. Therefore, 
it is needed that users can determine visualization 
parameters by trial-and-error after the  calculation is 
interrupted. For this purpose, the system supports 
three modes depending on the s ta tus  of the CFD 
computation and the visualization operations. 

Real-time mode: T h e  calculation and the 
visualization are carried out simultaneously. 
Halt solver mode: In order to adjust visualization 
parameters, the calculation will be interrupted, 
and only the visualization module will be carried 
on. 
Halt visualizer mode: If users no longer need 
real-time visualization, the visualization module 
will be interrupted, and only the CFD calcu- 
lation will be carried on. 

*UNIX is a registered trademark in the United States Genera'ity 
and other countries, licensed exclusively through X/Open Users' programs are generally aimed a t  the 
Company Limited. analysis of various fields (fluid, heat, structure, 



electromagnetic field and their coupling problems, 
etc.). The  programs may also adopt various data 
formats. Although RVSLIB has been developed 
mainly for CFD, it is applicable to other fields. 

Adjustment t o  a network computing environ- 
ment  

Effective use of resources is an indispensable 
condition for applications that run in a distributed 
computing environment. It is necessary that RVSLIB 
should not become a bottleneck on the network, of 
which the bandwidth may be narrow. RVSLIB 
minimizes the communication overhead of data 
transfer by using the image data compression 
technique. 

Facility t o  realize animation 
Animations of calculated results have been made 

by means of an  analog video so  far. Since a 
frame-by-frame recording of the video is generally a 
time-consuming task, an alternative to reduce this 
task is desired. The  spread of high performance 
image data compression techniques, such as  Motion 
JPEG and MPEG (Moving Picture Experts Group), 
has made it possible to play back a movie easily on 
a workstation or PC. In the near future, speedup of 
CPU will make this digital image processing much 
faster and cheaper. In such an  environment, 
animation using the compressed digital image data 
will replace the conventional analog video systems. 
In RVSLIB, transferred data can be stored in files 
and be reused for an off-line digital video. 

4. SYSTEM CONFIGURATION 

4.1 General Configuration 
The  general configuration of RVSLIB is shown in 

Fig. 1. This system is composed of the library and 
User-Interface (UIF) modules. The  library module is 
called from the users' CFD code, and runs on the 
server. The UIF module runs on the client connect- 
ed to the server via TCP/IP (Transmission Control 
Protocol/Internet Protocol). Although a high 
performance vector supercomputer is desirable as  
server, any UNIX server can be used. On the client 
workstation, received image data is expanded (if 
compressed on the server) and drawn using X- 
calls. 

T h e  library module carries out the visualization 
operations, and communicates with the UIF module 
using socket communication. The  module controls 
the CFD calculation and the visualization operations. 
Image data generation by the library module will be 

performed a t  every time integration step. The UIF 
module, which is activated by the library module, 
displays the GUI. The  GUI is built using standard 
X Window System and OSF/Motif, and controls 
CFD and visualization parameters. 

In Fig. 2, the visualization module configuration is 
shown. The  visualization module is activated by 
library module calls from the CFD program. This 
module generates individual pixel image data for 
solid objects, contours, vectors. particle tracers, 
volume rendering as  well as  any combination of 
these. Individual image generation is performed with 
reference to computational results, color table, 
view-port, light source, etc. Users can change the 
pixel image size, depending on their resolution 
requirements (the system default is 512 X 512). 

Pixel image generation is performed basically in 
the following three steps. 

S tep  1 
Individual image generation is performed if  the 

corresponding switches are "on." T h e  outputs are 
pixel image (RGB) data and Z-buffer (depth) data. 
S tep  2 

Hidden surface operation is performed with 
reference to Z-buffer data, and a single-image plane 
is generated from the multiple image planes 
generated in Step 1. 
S tep  3 

If specified, data compression will be performed. 
The image data will then be sent to the client via 
socket communication. 

The  visualization module attains high portability, 
since it is written in FORTRAN77 and C. 

4.2 System Action 
RVSLIB has the following three action modes 

Real-time mode 
The  CFD calculation and visualization are carried 

out simultaneously. It is possible to visualize the 
results of user's CFD simulation simultaneously as  it 
is being computed (tracking). The library module 
sends the pixel image data to the UIF module using 
socket communication, and controls the CFD 
calculation and the visualization operations. Users 
can change the parameters of the calculation and 
visualization in the middle of the calculation (steer- 
ing). 
Halt  solver mode 

Calculation is interrupted, and only visualization is 
carried out. This mode will be used for investigating 
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Fig. 1 General configuration of RVSLIB 

the CFD calculation results for one time step in 
detail. 
Halt  visualizer mode 

Visualization will be interrupted, and only the 
CFD calculation will be carried on. This mode will 
be used if there is no need for real-time visualiza- 
tion. 

- 
Object Pixel image - 

5. LIBRARY STYLE 

RVSLIB has adopted a library style format so 
that users can easily call this real-time visualization 

Client 
Pixel image 

2-buffer 

Pixel image 
2-buffer 

- 
- 

Pixel image 
2-buffer 

functionality from their code. There are three 
control routines, namely initialization, main and 
finalization routines. Figure3 shows how these 
routines should be called. 

Tracer - 
Volume 

RVS-INIT 
Initialization of the library and UIF modules: 

opening menu and graphics windows, setting of 
intrinsic valuables to standard values, and initializa- 
tion of socket communication. This routine will be 
called just before a CFD iterative calculation. This 
routine has the following arguments. 

rendering 
- 

2-buffer 

Pixel image 
2-buffer - 

Pixel image 

Fig. 2 Visualization module configuration. 

- 
- 
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CFD calculation Iteration 

CFD calculation 

RVS_MAIN(INPUT~DATA~LISTS,NWORK.WORK,IERRl 

(a) Before library calls. (b) After library calls 

Fig. 3 Positions of library routine calls. 

NS (input): The  number of scalar data 
types 

NV (input): The  number of vector data 
types 

LABEL (input): Physical names of scalar and 
vector data types 

IERR (output): Error indicator 
RVS-MAIN 

Visualization of calculation results and control of 
the visualization operations. This routine will be 
called just after the calculation of a time step. In 
the halt solver mode, the server CPU will be 
assigned only for this routine. In the halt visualizer 
mode, this routine processes nothing. 

. INPUT-DATA-LISTS (input): Computational 
results and some related infor- 
mation corresponding to grid 
points and boundary. 

NWORK (input): The  size of the work area. 
WORK (work): Work area, required in partic- 

ular for vectorization. This 
area is also used to store per- 
manent parameters used in 
direct image generation. 

IERR (output): Error indicator. 
RVS-TERM 

Termination of the library and UIF modules: 
closing menu and graphics windows, and finalization 
of socket communication. This routine is called just 
after the CFD iteration loop. 

IERR (output): Error indicator. 
RVS-LOAD 

Input of visualization parameters from files. 

RVS-SAVE 
Output of visualization parameters to files 

In addition to these control routines, there are 
some user-supplied routines for additional informa- 
tion transfer between the library and the users' 
code. There are four user-supplied routines in 
RVSLIB. 

RVS-USER-INIT 
Activation of the UIF and pixel image data relay 

modules. 
RVS-USER-OBJECT 

Supply of the object data. 
RVS-USER-TRACER 

Supply of the position data of cut-off plane on a 
boundary-fitted coordinate grid system for tracer 
display. 
RVS-USER-TIME 

Supply of the time interval. 

To use RVSLIB, users should do the following. 
First, the users should make a library call to 
RVS-INIT, RVS-MAIN and R V S T E R M  in their 
program. Second, the users should program the 
user-supplied routines depending on their need. 
Then they can compile their program, and link the 
generated objects and the library. 

6. GRAPHICAL USER INTERFACE 

RVSLIB has a GUI based on OSF/Motif for use 
on X terminals and workstations that support 



X Window System. By using the GUI, users can 
visualize the results of a CFD simulation while it is 
being computed. They may change the parameters 
of visualization during the calculation by filling out 
parameter popup forms. 

Figure 4 shows a windows image displayed by 
RVSLIB. A shot in an incompressible flow simu- 
lation around a cylinder is shown in the drawing 
area. Figure5 shows the hierarchical structure of 
the GUI menus. 

A brief explanation of the GUI operation will be 
given 

1. Specifications of common visualization parameters 
Users can specify color mode, color table, back- 
ground color, view-port information, and light 
source as  common visualization parameters. 

2. Setup of visualization tools 
Users can set up rendering, tracer, contour, 
object, and vector tools by specifying parameters 
in popup forms. 

3. Visualization based interaction 
Users can manipulate the graphical objects in the 
drawing area by pointing (e.g. with the mouse) at 
the graphics output. In this way, graphical 
objects can be rotated, translated, and resized. 
Some visualization parameters can also he 
specified in the same way. 

4. Parameter file 
Users can save visualization parameters in files 

with the help of the GUI. These parameter files 
are used to replay the  settings of the visualizer. 
The  behavior of the visualization process can be 
controlled automatically as a parameter file 
function. 

Main menu 

File 

-- Edit 
- Application 

Execution 
System r i le  
System mode 

View 
Color mode 
Color table 
Background 
Viewport 
Light 

View 

Tracer Setup 

Contour setup 
Object setup 
Vector setup 

Store images Vis. based input 
------- Help 

Fig. 5 Hierarchical structure of GUI menu 

Fig. 4 Example of real-time visualization and windows image 
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5. Stor ing image  d a t a  in files 
U s e r s  c a n  s tore  displayed images in files 

7. C O N C L U S I O N  

T h i s  paper  h a s  introduced RVSLIB (Real-time 
Visualization a n d  S tee r ing  Library) developed by 
NEC a n d  NLR (National Aerospace Laboratory N L R  
of t h e  Netherlands).  T h i s  sys tem m a k e s  it possible 
to  visualize t h e  results of CFD simulation simulta- 
neously while it is being computed  (tracking),  a n d  t o  
control t h e  pa ramete r s  of calculation a n d  visualiza- 
tion in t h e  middle of t h e  calculation f rom a client 
workstation (steering). RVSLIB c a n  b e  used by 
simply incorporating s o m e  subrout ine calls in to  
user 's code.  

Wi th  t h e  a d v e n t  of low-cost a n d  high perfor- 
m a n c e  vector  supercomputers ,  it becomes  possible 

for  individual users  t o  utilize a n  enormous  c o m p u t e r  
capability in full for his or her o w n  purposes. In 
s u c h  a "personal" supercomputing environment ,  
real-time visualization and s teer ing of on-going 
calculation will b e  a natural w a y  of carrying out  
numerical simulations. Design and development  of 
R V S L I B  h a s  been s tar ted from this  qui te  natural  
desire of users. T h i s  sys tem is expec ted  t o  provide 
user-friendly environment  for  C F D  researchers  if it 
i s  used  wi th  NEC SX-4 supercomputers .  

A C K N O W L E D G M E N T S  

Professor Kunio Kuwahara  of t h e  Inst i tu te  of 
S p a c e  a n d  Astronautical Science pointed o u t  t h e  
importance of a real-time visualization environment  
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