
DOCUMENT CONTROL SHEET

ORIGINATOR'S REF.
NLR TP 96446 U

SECURITY CLASS.
Unclassified

ORIGINATOR
National Aerospace Laboratory NLR, Amsterdam, The Netherlands

TITLE
A real-time visualization system for computational fluid dynamics

PUBLISHED IN
NEC Research & Development, Vol. 37, No. 1, pp. 114-123, January 1996.

AUTHORS
S . Doi, T. Takei. Y. h i b a ,
K. Muramatsu. H. Matrumoto,
L,J,C. van Riin. B.C. Schultheiss

DESCRIPTORS
Computer networks Numerical flow visualization
Data compression Real time operation
Graphical user interface Software tools
Image processing Supercomputers
NEC computers Three dimensional flow

ABSTRACT
We have developed a real-time visualization system for CFD (Computational
Fluid Dynamics) in a network computing environment. This system, named
RVSLIB (Real-time Visualization and Steering Library), makes it possible
to visualize the results of a CFD simulation on a client simultaneously
while it is being computed on a server (tracking). The GUI (Graphical
User Interface) of the RVSLIB system also enables the user to specify
parameters of the calculation and visualization graphically. The system
generates pixel image data on the server, and compresses the data by JPEG
(Joint Photographic Experts Group). Therefore, the amount of data
transferred from the server to the client is relatively small. The system
is built on standard X Window System#, OSF/Motif#, and socket-based
conununications, and therefore has high portability.

DATE
960715

PP 14 ref 5

NLR TECHNICAL PUBLICATION

TP 96446 U

A REAL-TIME VISUALIZATION SYSTEM FOR

COMPUTATIONAL FLUID DYNAMICS

by

S. ~ o i * , T. ~akei**, Y. ~kiba***, K. Muramatsu*,

H. ~atsumoto****, L.C.J. van Rijn and B.C. Schultheiss

Published in: NEC Research & Development, Vol. 37, No. 1, pp. 114-123, January 1996.

* C&C Research Laboratories

** Application Software Division
*** Manufacturing Industries System Development Division
**** NEC Infonnatec Systems, Ltd.

Division : Informatics

Prepared : LCJV@~BCSI~ '2
Approved : R J P G ~ ,

Completed : 960715

Order number : 249.519

TYP. : MM

Contents

Abstract

1 Introduction

2 Distribution of Visualization Operations to Server and Client

3 System Overview and Basic Requirements

3.1 System Overview

3.2 Basic Requirements

4 System Configuration

4.1 General Configuration
4.2 System Action

5 Library Style

6 Graphical User Interface

7 Conclusion

Acknowledgements

References

1 Table

5 Figures

(14 pages in total)

This page is intentionally left blank.

A Real-Time Visualization System for
Computational Fluid Dynamics

By S h u n DOI,* Toshifumi TAKE1, t Yukinori AKIBA,I Kazuhiro MURAMATSU,*+
Nideki M A T S U M O T 0 , S L a u r e n s C. J. van RIJNlI and Bert C. SCHULTHEISSII

ABSTRACT
We have developed a real-time visualization system for CFD (Computational Fluid Dynamics) in
a network computing environment. This system, named RVSLIB (Real-time Visualization and

Steering Library), makes it possible to visualize the results of a CFD simulation on a client simultaneously
while it is being computed on a server (tracking). The GUI (Graphical User Interface) of the RVSLIB
system also enables the user to specify parameters of the calculation and visualization graphically. The
system generates pixel image data on the server, and compresses the data by JPEG (Joint Photographic
Experts Group). Therefore, the amount of data transferred from the server to the client is relatively
small. High performance visualization is achieved by effectively vectorizing the visualization module on a
supercomputer. T h e system is built on standard X Window Systems, OSF/Motif#, and socket-based
communications, and therefore has high portability.

KEYWORDS Real-time visualization. Tracking, Steering. Computational Fluid Dynamics (CFD), Network
computing environment. Pixel image data, Image data compression

1. INTRODUCTION

T h e speedup of computers and the spread of
network computing environments, have resulted in
increased demands for systems that visualize
numerical results on a user client simultaneously
while it is being computed on a computational
server.

A system satisfying this requirement is, for
example, Visual3 developed at MIT[I] . Visual3
generates graphical objects as polygonal data on the
server (mapping process), and sends the data to the
client. Rendering of the data is performed by the
client on a graphics workstation such as IRIS# Se-
ries, using a general-purpose graphics library such as

*C&C Research Laboratories
tApplication Software Division
IManufacturing Industries System Development Division
SNEC lnformatec Systems, Ltd.
IlNational Aerospace Laboratory NLR of the Nether-

lands
Current address: Japan Atomic Energy Research

Institute
#X Window System is a trademark of X Consortium.

Inc. and OSF/Motif is a trademark of Open Software
Foundation. Inc., respectively. IRIS and OpenGL are
registered trademarks of Silicon Graphics, Inc.

OpenGLk. Since the rendering process can be
performed by an existing graphics library, this
approach has the merit of easy implementation of
the system. However, the disadvantage of this
approach is that the amount of polygonal data
transferred to the client increases when a computa-
tional grid becomes large; the amount of data to be
transferred becomes a bottleneck for the process
speed. Also, the portability is low due to the
dependency on the graphics library.

On the other hand, systems which carry out the
rendering process on parallel computers have been
reported a t NASA Langley and MIT [2,3]. However,
these systems have not been equipped with a GUI
(Graphical User Interface) by which users are able
to change visualization parameters while looking a t
output images.

In this context, me have developed a real-time
visualization system for CFD (Computational Fluid
Dynamics), named RVSLIB (Real-time Visualization
and Steering Library), based on NaS/RVS (Navier-
Stokes Real-time Visualization System) [4,5]. This
system has been designed to have the following
characteristics.

1. Mapping and rendering are both performed by
the server; pixel image data is directly generated
by the server. Moreover, we attain high perfor-
mance in the pixel image generation process on

-6-
TF' 96446

vector computers by paying attention to the
vectorization of visualization operations.

2. The system is not based on any graphics library,
and attains high portability.

3. A library style is adopted, enabling users to easily
incorporate the system into their CFD codes.

4. Pixel data generated by the server is compressed
using JPEG (Joint Photographic Experts Group),
and the compressed data is sent to the client. On
the client, the data is expanded and displayed in
X Window System. This data compression further
decreases the amount of data transferred over
the network.

5. VBI (Visualization Based Input) functionality is
supported. VBI makes it possible to control
visualization parameters graphically.

6. In order to realize a quick system response for
VBI, an additional simplified rendering process is
implemented on the client.

7. Compressed pixel data can be saved on a hard
disk, and can be replayed as off-line visualization.

This paper describes the configuration and the
characteristics of RVSLIB. Section2 describes the
characteristics of three different strategies on
distributing the visualization operations to the server
and the client. In Section3, system overview and its
basic requirements are described. Section4 describes
the system configuration, the action modes and the
visualization module. In Section 5, the library style is
described. Section6 describes the GUI. Some
concluding remarks are presented in Section 7.

2. DISTRIBUTION OF VISUALIZATION OP-
ERATIONS TO SERVER AND CLIENT

In RVSLIB, the CFD computation and visu-
alization operations are performed on the server.
This section will discuss the merits of this strategy.

In general, real-time visualization for 3D time-
dependent CFD computation has the following
characteristics:

1. The access frequencies to computational results
are low.
. In time: Only one image (or less) will be

generated per time step.
. In space: For 2D contour and vector images,

the grid points used in visualization are re-
stricted to a small portion of the original 3D
grid space.

2. The portion of the grid referred to by visualiza-
tion operations changes dynamically.

Example: Tracer visualization.
3. For CFD visualization, polygon-based rendering is

not always efficient.
Example: Contour visualization.

Graphics workstations equipped with dedicated
hardware for high-speed drawing are widely used
for standard post-processing. In such post-
processing, the following characteristics are ob-
served.

. A number of different images are generated
from a single data set. Therefore, the data
transfer between the computation and visuali-
tion platforms will not be a bottleneck.

. High-speed drawing of polygons is especially
suited to visualization of CAD obiects.

From these fundamental differences between
real-time visualization and post-processing, it is clear
that using graphics workstations is not necessarily
an efficient way to realize a real-time visualization
system. In the following, we will discuss the
characteristics of three different strategies on
visualization task assignment.

Here, two different platforms are considered; the
server and the client. We classify the whole com-
putational process into three sub-processes: CFD
computation, mapping operation, and rendering
operation. Here, the "mapping operation" indicates
the generation of graphical objects such as polygons
and vectors from the computational results (physical
values defined on grid points). Outputs of the
mapping operation are graphics commands including
graphical objects. The "rendering operation"
includes projection, lighting, hidden surface oper-
ation, etc. The output of the rendering operation is
pixel image data. Now there are three strategies for

the distribution of the CFD computation, mapping
and rendering operations.

Strategy A
CFD computation is assigned to the server, while

the mapping and rendering operations are assigned
to the client. Data to be transferred from the server
to the client are computational results.
Strategy B

CFD computation and mapping operation are
assigned to the server, while rendering operation is
assigned to the client. Transferred data are graphics
commands which are mainly composed of graphical
objects.
Strategy C

CFD computation, mapping and rendering
operations are assigned to the server, while the
client is used only for displaying pixel data. Trans-
ferred data are pixel images.

Merits and demerits of the individual strategies are
summarized as follows.

Strategy A
A merit of this strategy is that the server can

be dedicated to CFD computation (the most
time-consuming part). However, it is necessary to
reduce the amount of data to be transferred from
the server to the client by, for example, limiting
grid points which are candidates for visualization,
since the computational results are huge in size. In
case of tracer visualization, this visualization needs
to be assigned to the server as an exception, since
the data portion referred to by tracer computation
changes dynamically as the computation goes on.
Since the volume rendering essentially requires all
computational results, this visualization operation
also needs to be performed on the server. These
observations imply that it is practically necessary to
distribute the mapping operations both to the server
and to the client, which may make the interface
complicated. Another drawback is that the perfor-
mance of the client may become a bottleneck in the
mapping operation process (which implies inefficient
use of the client).

Strategy B
In this case, the interface between the server and

the client is clear and simple, since all mapping
operations will be performed on the server. The
mapping operation will not become a bottleneck if
the operation is well vectorized on the server. A
merit is that this strategy will effectively use the
graphics hardware on the client. A possibly serious
problem in this strategy may he that, as pointed out
above, polygon-based rendering is not always suited
for CFD visualization; it may result in too much
polygon data to be transferred to the client.

Strategy C
This strategy retains high portability, since the

system does not depend on specific graphics
hardware. The amount of transferred data depends
only on the resolution on the screen (the number of
pixels and bits in color table), and does not depend
on the amount of computational results. Also, the
amount of transferred data is small compared to
Strategy B. Since all mapping and rendering
operations must be done by software, we need to
introduce high-speed computation algorithms which
are suited for server's architecture.

Table I summarizes the above consideration,

3. SYSTEM OVERVIEW AND BASIC RE-
QUIREMENTS

3.1 System Overview
The basic concept of RVSLIB may be described

as follows. RVSLIB enables users to visualize the
results of their CFD simulation programs on a

Table I Distribution of CFD computation, mapping and rendering operations

Strategy A B C

Server CFD computation, Part 01
mapping operation (tracer,
volume rendering)

Client Graphics operation, Render-
ing operation

Data transfer Computational results

Merits Server can be dedicated to
CFD

Demerits CPU load of mapping and
rendering operations.
Distribution of mapping and
rendering operations.
Data transfer amount.

CFD computation, Mapping
operation

Rendering operation

Graphical commands

Efficient use of graphics
hardware

Vectoiizatian of mapping
operations.
Amount of graphical ob-
jects.

CFD computation, Mapping
operation, Rendering opera^

tion

(Pixel output)

Pixel image data

Portability

Algorithms for mapping and
rendering operations.

workstation (or PC) simultaneously while it is being
computed on a High Performance Computing
Server (HPCS) in a network computing environ-
ment. Also, users can easily show a movie of the
simulation off-line, by compressing and conserving
the image data during the simulation run. This
animation can be used as an alternative to the
conventional analog video. The basic requirements
of RVSLIB are described in the following sub-
section.

3.2 Basic Requirements

Ease of use
It is required that RVSLIB can be accessed by

user's code. A library style format, where users will
perform some functional calls, is hence a preferable
interface. The library style makes it possible to
realize the real-time visualization by only calling a
few subroutines. In RVSLIB, the following three
routines are considered to be the basic subroutines.

Initialization routine: This routine initializes
RVSLIB parameters when the RVSLIB module
is started up.
Main routine: This routine generates pixel
image data and displays it. It will be called a t
every time step in the time marching calcula-
tion.
Finalization routine: This routine terminates the
RVSLIB module.

In addition to these routines, several other
routines are being prepared for data transfer.

Portabil i ty
Users may intend to use their desktop computers

as the client. Their computers are not always
equipped with specific graphics hardware or a
graphics library. Therefore, the client system has to
satisfy the following requirements.

The system does not need a specific graphics
library.

. The system should be constructed using
FORTRAN77, C, and standard UNIX* environ-
ment products (X Window System, OSF/Motif,

and sockets), so that it can be implemented
easily on different hardware platforms.

The same requirements are applicable to the
server system.

Performance
The CPU load for visualization operations and the

communication load between the server and the
client have to be small compared to the calculation
load for the CFD code. T o achieve this objective, a
vectorized algorithm for generating image data has
been developed for RVSLIB.

Real t ime
' Users may want to use real-time visualization for
the following objectives:

. Interactive and graphical debugging of a
program which is still in the development
phase.
Users can easily check the validity of parame-
ters for CFD calculation after the calculation
has been started.
During production runs, the trial-and-error time
for the optimization of parameters can be
reduced by changing these parameters in the
middle of the calculation.

User friendliness
It shall be possible to easily and interactively

change visualization parameters, which prescribe
visualization conditions, by using a GUI. Therefore,
it is needed that users can determine visualization
parameters by trial-and-error after the calculation is
interrupted. For this purpose, the system supports
three modes depending on the s ta tus of the CFD
computation and the visualization operations.

Real-time mode: T h e calculation and the
visualization are carried out simultaneously.
Halt solver mode: In order to adjust visualization
parameters, the calculation will be interrupted,
and only the visualization module will be carried
on.
Halt visualizer mode: If users no longer need
real-time visualization, the visualization module
will be interrupted, and only the CFD calcu-
lation will be carried on.

*UNIX is a registered trademark in the United States Genera'ity
and other countries, licensed exclusively through X/Open Users' programs are generally aimed a t the
Company Limited. analysis of various fields (fluid, heat, structure,

electromagnetic field and their coupling problems,
etc.). The programs may also adopt various data
formats. Although RVSLIB has been developed
mainly for CFD, it is applicable to other fields.

Adjustment t o a network computing environ-
ment

Effective use of resources is an indispensable
condition for applications that run in a distributed
computing environment. It is necessary that RVSLIB
should not become a bottleneck on the network, of
which the bandwidth may be narrow. RVSLIB
minimizes the communication overhead of data
transfer by using the image data compression
technique.

Facility t o realize animation
Animations of calculated results have been made

by means of an analog video so far. Since a
frame-by-frame recording of the video is generally a
time-consuming task, an alternative to reduce this
task is desired. The spread of high performance
image data compression techniques, such as Motion
JPEG and MPEG (Moving Picture Experts Group),
has made it possible to play back a movie easily on
a workstation or PC. In the near future, speedup of
CPU will make this digital image processing much
faster and cheaper. In such an environment,
animation using the compressed digital image data
will replace the conventional analog video systems.
In RVSLIB, transferred data can be stored in files
and be reused for an off-line digital video.

4. SYSTEM CONFIGURATION

4.1 General Configuration
The general configuration of RVSLIB is shown in

Fig. 1. This system is composed of the library and
User-Interface (UIF) modules. The library module is
called from the users' CFD code, and runs on the
server. The UIF module runs on the client connect-
ed to the server via TCP/IP (Transmission Control
Protocol/Internet Protocol). Although a high
performance vector supercomputer is desirable as
server, any UNIX server can be used. On the client
workstation, received image data is expanded (if
compressed on the server) and drawn using X-
calls.

T h e library module carries out the visualization
operations, and communicates with the UIF module
using socket communication. The module controls
the CFD calculation and the visualization operations.
Image data generation by the library module will be

performed a t every time integration step. The UIF
module, which is activated by the library module,
displays the GUI. The GUI is built using standard
X Window System and OSF/Motif, and controls
CFD and visualization parameters.

In Fig. 2, the visualization module configuration is
shown. The visualization module is activated by
library module calls from the CFD program. This
module generates individual pixel image data for
solid objects, contours, vectors. particle tracers,
volume rendering as well as any combination of
these. Individual image generation is performed with
reference to computational results, color table,
view-port, light source, etc. Users can change the
pixel image size, depending on their resolution
requirements (the system default is 512 X 512).

Pixel image generation is performed basically in
the following three steps.

S tep 1
Individual image generation is performed if the

corresponding switches are "on." T h e outputs are
pixel image (RGB) data and Z-buffer (depth) data.
S tep 2

Hidden surface operation is performed with
reference to Z-buffer data, and a single-image plane
is generated from the multiple image planes
generated in Step 1.
S tep 3

If specified, data compression will be performed.
The image data will then be sent to the client via
socket communication.

The visualization module attains high portability,
since it is written in FORTRAN77 and C.

4.2 System Action
RVSLIB has the following three action modes

Real-time mode
The CFD calculation and visualization are carried

out simultaneously. It is possible to visualize the
results of user's CFD simulation simultaneously as it
is being computed (tracking). The library module
sends the pixel image data to the UIF module using
socket communication, and controls the CFD
calculation and the visualization operations. Users
can change the parameters of the calculation and
visualization in the middle of the calculation (steer-
ing).
Halt solver mode

Calculation is interrupted, and only visualization is
carried out. This mode will be used for investigating

Network (LANIWAN)

I I

HPC server 2;mtml p&T image data 7 1 / Client WS

User's CFD code

CFD iteration
Client communication
Graphics control
Mapping process

Server communication
Image reception1

expansionloutput

Visualization based input
Local rendering

R V S client software

RVS.USER_OBJECT

RVS-USER-TRACER

Image 1 / Display output

R V S server software
window

panel

Fig. 1 General configuration of RVSLIB

the CFD calculation results for one time step in
detail.
Halt visualizer mode

Visualization will be interrupted, and only the
CFD calculation will be carried on. This mode will
be used if there is no need for real-time visualiza-
tion.

-
Object Pixel image -

5. LIBRARY STYLE

RVSLIB has adopted a library style format so
that users can easily call this real-time visualization

Client
Pixel image

2-buffer

Pixel image
2-buffer

-
-

Pixel image
2-buffer

functionality from their code. There are three
control routines, namely initialization, main and
finalization routines. Figure3 shows how these
routines should be called.

Tracer -
Volume

RVS-INIT
Initialization of the library and UIF modules:

opening menu and graphics windows, setting of
intrinsic valuables to standard values, and initializa-
tion of socket communication. This routine will be
called just before a CFD iterative calculation. This
routine has the following arguments.

rendering
-

2-buffer

Pixel image
2-buffer -

Pixel image

Fig. 2 Visualization module configuration.

-
-

CFC :ode CFD code

--- Data input Data input

Iteration RVS~INIT(NS,NV,LABEL,lERR)

CFD calculation Iteration

CFD calculation

RVS_MAIN(INPUT~DATA~LISTS,NWORK.WORK,IERRl

(a) Before library calls. (b) After library calls

Fig. 3 Positions of library routine calls.

NS (input): The number of scalar data
types

NV (input): The number of vector data
types

LABEL (input): Physical names of scalar and
vector data types

IERR (output): Error indicator
RVS-MAIN

Visualization of calculation results and control of
the visualization operations. This routine will be
called just after the calculation of a time step. In
the halt solver mode, the server CPU will be
assigned only for this routine. In the halt visualizer
mode, this routine processes nothing.

. INPUT-DATA-LISTS (input): Computational
results and some related infor-
mation corresponding to grid
points and boundary.

NWORK (input): The size of the work area.
WORK (work): Work area, required in partic-

ular for vectorization. This
area is also used to store per-
manent parameters used in
direct image generation.

IERR (output): Error indicator.
RVS-TERM

Termination of the library and UIF modules:
closing menu and graphics windows, and finalization
of socket communication. This routine is called just
after the CFD iteration loop.

IERR (output): Error indicator.
RVS-LOAD

Input of visualization parameters from files.

RVS-SAVE
Output of visualization parameters to files

In addition to these control routines, there are
some user-supplied routines for additional informa-
tion transfer between the library and the users'
code. There are four user-supplied routines in
RVSLIB.

RVS-USER-INIT
Activation of the UIF and pixel image data relay

modules.
RVS-USER-OBJECT

Supply of the object data.
RVS-USER-TRACER

Supply of the position data of cut-off plane on a
boundary-fitted coordinate grid system for tracer
display.
RVS-USER-TIME

Supply of the time interval.

To use RVSLIB, users should do the following.
First, the users should make a library call to
RVS-INIT, RVS-MAIN and R V S T E R M in their
program. Second, the users should program the
user-supplied routines depending on their need.
Then they can compile their program, and link the
generated objects and the library.

6. GRAPHICAL USER INTERFACE

RVSLIB has a GUI based on OSF/Motif for use
on X terminals and workstations that support

X Window System. By using the GUI, users can
visualize the results of a CFD simulation while it is
being computed. They may change the parameters
of visualization during the calculation by filling out
parameter popup forms.

Figure 4 shows a windows image displayed by
RVSLIB. A shot in an incompressible flow simu-
lation around a cylinder is shown in the drawing
area. Figure5 shows the hierarchical structure of
the GUI menus.

A brief explanation of the GUI operation will be
given

1. Specifications of common visualization parameters
Users can specify color mode, color table, back-
ground color, view-port information, and light
source as common visualization parameters.

2. Setup of visualization tools
Users can set up rendering, tracer, contour,
object, and vector tools by specifying parameters
in popup forms.

3. Visualization based interaction
Users can manipulate the graphical objects in the
drawing area by pointing (e.g. with the mouse) at
the graphics output. In this way, graphical
objects can be rotated, translated, and resized.
Some visualization parameters can also he
specified in the same way.

4. Parameter file
Users can save visualization parameters in files

with the help of the GUI. These parameter files
are used to replay the settings of the visualizer.
The behavior of the visualization process can be
controlled automatically as a parameter file
function.

Main menu

File

-- Edit
- Application

Execution
System r i le
System mode

View
Color mode
Color table
Background
Viewport
Light

View

Tracer Setup

Contour setup
Object setup
Vector setup

Store images Vis. based input
------- Help

Fig. 5 Hierarchical structure of GUI menu

Fig. 4 Example of real-time visualization and windows image

-13-

6 TF' 96446

)L

5. Stor ing image d a t a in files
U s e r s c a n s tore displayed images in files

7. C O N C L U S I O N

T h i s paper h a s introduced RVSLIB (Real-time
Visualization a n d S tee r ing Library) developed by
NEC a n d NLR (National Aerospace Laboratory N L R
of t h e Netherlands). T h i s sys tem m a k e s it possible
to visualize t h e results of CFD simulation simulta-
neously while it is being computed (tracking), a n d t o
control t h e pa ramete r s of calculation a n d visualiza-
tion in t h e middle of t h e calculation f rom a client
workstation (steering). RVSLIB c a n b e used by
simply incorporating s o m e subrout ine calls in to
user 's code.

Wi th t h e a d v e n t of low-cost a n d high perfor-
m a n c e vector supercomputers , it becomes possible

for individual users t o utilize a n enormous c o m p u t e r
capability in full for his or her o w n purposes. In
s u c h a "personal" supercomputing environment ,
real-time visualization and s teer ing of on-going
calculation will b e a natural w a y of carrying out
numerical simulations. Design and development of
R V S L I B h a s been s tar ted from this qui te natural
desire of users. T h i s sys tem is expec ted t o provide
user-friendly environment for C F D researchers if it
i s used wi th NEC SX-4 supercomputers .

A C K N O W L E D G M E N T S

Professor Kunio Kuwahara of t h e Inst i tu te of
S p a c e a n d Astronautical Science pointed o u t t h e
importance of a real-time visualization environment
for C F D computat ion, t h u s providing t h e driving
force for th is development .

REFERENCES

[I] R. Haimes, e t al., "Visual3: Interactive Unsteady
Unstructured 3D Visualization," A l A A Pap. 91~0794.
1991.

[21 R. Haimes. "pV3: A Distributed Systems for Large-
Scale Unsteady CFD Visualization." A l A A Pap.
94~0321, 1994.

[3] T . W. Crockett, "Design Consideration for Parallel
Graphics Libraries," N A S A Contractor Rep. 194935,
1994.

[4] S. Doi, et al., "A RealkTime Visualization System far
Computational Fluid Dynamics,' Proc. 26th
ISATA - Dedicated Conj. Superconput. Applications
in Automotive Indnstries, Aachen. Germany, Paper
No. 93SC042, 1993.

[51 T. Takei, et al.. "A Real~Time Visualization System
for Computational Fluid Dynamics," Proc. 7th CFD
S m p . , pp. 701-704, Tokyo, Japan, 1993. (in Japanese)

R e c d v e d October 20, 1995

Shun DO1 received his B.E. and M.E. Toshifumi TAKEI received his B.S. and
degrees in precision engineering from M.S. degrees in physics from l<yoto
Hokkaido University in 1979 and 1981, University in 1985 and 1987, respective^
respectively. He also received the Ph.D. ly. He joined NEC Corporation in 1987,
degree from the same University in and is now a member of the Scientific -
1984 for his research on parallel cam- Software Department. Application
putation techniques for finite element Software Division. He is engaged in the
analysis. He joined the C&C Systems development of computational fluid

Research Laboratories. NEC Corporation in 1984. He was a dynamics software and its real-time visualization system.
visiting scholar a t INRIA (Institut National de Recherche Mr. Takei is a member of the Information Processing
en Informatique et en Automatique, France) from 1988 to Society of Japan.
1989. conducting research on parallel numerical methods.
Currently, he is supervising the Numerical Analysis Group * * *
in Computer System Research Laboratory. C&C Research
Laboratories, NEC Corporation.

Dr. Doi is a member of SIAM, and the Information
Processing Society of Japan.

Yukinori AKIBA received his B.E. and
M.E. degrees in electric engineering from
Hokkaido University in 1984, and 1986
respectively. He joined NEC Corporation
in 1986, where he was engaged in the
research and development of CFD
software a t the C&C Information Tech-
nology Research Laboratories. He is now

Assistant Manager of the Manufacturing Industries System
Development Division, and is engaged in technical support
to industrial customers of NEC SX supercomputers.

Mr. Akiba is a member of the Information Processing
Society of Japan, the Japan Society of Fluid Dynamics,
and the Japan Society for Industrial and Applied Math-
ematics.

Kazuhiro MURAMATSU received his
B.S.. M.S. and D.S. degrees in physics
from University of Tsukuba in 1982,
1984 and 1987, respectively. He joined
NEC Corporation in 1992, and was
Assistant Manager of the Computer
System Research Laboratory. C&C
Research Laboratories until 1995. He is

now Research Scientist of the Center for Promotion of
Computational Science and Engineering, Japan Atomic
Energy Research Institute. He is engaged in the research
and development of parallel computational fluid dynamics
and its real-time visualization system.

Dr. Muramatsu is a member of the Physical Society of
Japan, the Information Processing Society of Japan, and
the Japan Society for Industrial and Applied Mathematics.

A& Hideki MATSUMOTO received his B.S.
degree in chemistry from Tohoku Uni-
versity in 1988. He joined NEC Scientif~ h ,-
ic Information System Development,
Ltd. in 1988, and now belongs to the
Scientific & Enxineering Analysis De- w partment, NEC Informatec Systems. d 'p h Ltd. He is enaarred in the develooment

Laurens C. J. van RIJN received his
ingenieurs degree in informatics from
University of Twente in 1990. He joined
the Dutch National Aerospace Labo-
ratory NLR in 1991, and is a research
engineer at the Informatics Division. He
is now Project Manager of the NLR
project that is engaged with the ie-

search and development of graphical user interfaces for
control of real-time visualization applications.

* * *

Bert C. SCHULTHEISS received his
ingenieurs degree in informatics from
University of Twente in 1991, and

.
completed the post graduate course 'the

. . design of technical information systems'
at Unlverslty of Twente in 1993 He
subsequently jolned the Dutch Nat~onal
Aerospace Laboratory NLR and is now

a research engineer at the Informatics Division. He is
engaged in the research and development of graphical
user interfaces for control of real-time visualization
applications.

- -
of computer simulation systems on UNIX and OSF/Motif
user interfaces on X Window System.

