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Enhancing hybrid state Petri nets with
the analysis power of stochastic hybrid processes

Mariken H.C. Everdij and Henk A.P. Blom

Abstract— This paper presents a power hierarchy of Petri
Nets and Stochastic Hybrid Processes. At the left-hand-side of
this power hierarchy are stochastic Petri net models at the
bottom, and high level Petri nets at the top. At the right-
hand-side of this power hierarchy are Markov chains at the
bottom, and generalized hybrid state Markov processes at the
top. The Petri net side of the power hierarchy makes it possible
to specify a stochastic system model in a compositional way.
The Markov process side of the power hierarchy exploits the
available stochastic analysis tools. Between the Petri nets on the
left and the Markov processes on the right are mathematical
one-to-one mappings, which enable taking advantage of both
the modelling power of hybrid state Petri nets and the analysis
capability of stochastic hybrid Markov processes.

I. INTRODUCTION

Petri nets, e.g. David and Alla (1994), have shown to be
useful for developing models for various practical applica-
tions. Typical features are graphical and equational repre-
sentation, natural expression of causal dependencies, con-
currency and synchronisation mechanism, and hierarchical
and modular construction. Numerous extensions to the basic
formalism have been developed, which combine different
modelling features in an integrated way. Of particular interest
are hybrid state Petri net extensions, see e.g. the collection at
(Giua, 1999), which combine discrete and continuous system
aspects and offer a powerful framework for the modelling
of a hybrid system. Their weakness, however, is that the
resulting hybrid systems lack powerful stochastic analysis
tools such as those existing for Markov processes. This paper
reveals the existence of one-to-one mappings between Petri
net classes and Markov process classes, and explains that
both formalisms benefit from each other’s strengths.

Malhotra and Trivedi (1994) and Muppala et al. (2000)
started the development of a hierarchy of various depend-
ability models based on their modelling power. At the left-
hand-side of this power hierarchy are Petri net models, with
Generalised Stochastic Petri Nets (GSPN) at the bottom,
and Deterministic and Stochastic Petri Nets (DSPN) at the
top. At the right-hand-side of this power hierarchy are
Markov chains at the bottom and Semi-Markov Processes
at the top. Bobbio et al. (1998) extended this hierarchy to
include Fluid Stochastic Petri Nets (FSPN) on the left, and
Fluid Flow models on the right. Arrows between different
formalisms indicate that one-to-one mappings exist, i.e. that
the elements of one formalism can be represented in terms of
the elements of the other formalism, such that the executions,

Both authors are with National Aerospace Laboratory NLR, P.O. Box
90502, 1006 BM Amsterdam, The Netherlands, Fax: +31 20 511 3210, Tel:
+31 20 511 3522, Email: everdij@nlr.nl, blom@nlr.nl
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Fig. 1.  Power hierarchy among various model types. An arrow from a
model to another model indicates that the second model has more modelling
power than the first model. The [M] arrows have been established in
(Malhotra and Trivedi, 1994; Muppala et al., 2000). The [D] arrow is
established in (Davis, 1984). The [B] arrow is established in (Bujorianu
and Lygeros, 2006). The [E] arrows are established in (Everdij and Blom,
2003, 2005). The [P] arrows are established in (Everdij and Blom, 2006).

i.e. their solutions as a stochastic process, are equivalent.
Such external equivalence between systems is also referred
to as a bisimulation, and the executions are said to be
bisimilar, see e.g. (Van der Schaft, 2004; Bujorianu et al.,
2005; Bujorianu and Bujorianu, 2006).

Everdij and Blom (2003) extended the power hierarchy to
include one-to-one mappings between Dynamically Coloured
Petri Nets (DCPN) at the left-hand-side and Piecewise De-
terministic Markov Processes (PDP) at the right-hand-side.
PDPs have been introduced by Davis (1984, 1993) as the
most general class of continuous-time Markov processes
which include both discrete and continuous processes, except
diffusion. Branicky (1995) identified a close relation between
PDPs and hybrid automata, which have shown to be useful
for application in problems of decidability, formal verifica-
tion and control synthesis (Alur et al., 1993; Lygeros et al.,
1998; Van Schuppen, 1998; Sipser, 1997; Tomlin et al., 1998;
Weinberg et al., 1996). Stochastic hybrid processes have
proven to be supported by powerful analysis tools (Davis,
1993; Elliott, 1982; Elliott et al., 1995; Ethier and Kurtz,
1986). Due to the existence of one-to-one mappings between
DCPN and PDP, the class of DCPN developed in Everdij
and Blom (2003, 2005) supports the modelling of hybrid
automata and PDPs for complex practical problems, similarly
as Stochastic Petri Nets support the development of a Markov
chain for complex discrete valued problems. The current
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paper presents the further extension of the power hierarchy,
see Fig. 1, by including Brownian motion both in PDP and
in DCPN, and by extending the one-to-one mappings.

Including Brownian motion in PDP at the top-right-
hand-side of Fig. 1 yields Generalised Stochastic Hybrid
Processes (GSHP) (Bujorianu and Lygeros, 2006) as an
execution of a stochastic hybrid automaton which is referred
to as Generalised Stochastic Hybrid System (GSHS). Bu-
jorianu and Lygeros (2006) showed that GSHP is a strong
Markov process. At the top-left-hand-side of the resulting
power-hierarchy (Fig. 1) are Stochastically and Dynami-
cally Coloured Petri Nets (SDCPN), which is an extension
of DCPN by incorporating Brownian motion (Everdij and
Blom, 2006). SDCPN can be mapped one-to-one to the
elements of a GSHS, in such way that the executions of
both are bisimilar, i.e. they are probabilistically equivalent.
This relation between systems, processes and mappings is
depicted in Fig. 2. The SDCPN formalism supports compo-
sitional specification of complex hybrid systems very well
(e.g. Everdij et al., 2006). GSHS supports exploitation of
automaton-based formal methods. GSHP supports exploita-
tion of powerful stochastic analysis tools. Due to the one-
to-one mappings, tools available for one formalism become
available to the other formalisms as well.

Compositional
specification

A

Automata-based
formal methods

SDCPN GSHS
. GSHP
SDCPN execution (GSHS execution)

Y

Stochastic
analysis

Fig. 2. Relationship between SDCPN, GSHS and GSHP, and their main
capability support

The organisation of this paper is as follows. Section Il
defines GSHS and GSHP. Section I11 defines SDCPN and the
related SDCPN process. Section IV shows that the SDCPN
elements can be mapped one-to-one to the GSHS elements
and vice versa, and that the processes generated by SDCPN
and by GSHS are equivalent. Section V gives an example
SDCPN. Section VI presents this SDCPN example by a
GSHS and GSHP. Section VII gives conclusions.

Il. GSHS AUTOMATON

A GSHS (Bujorianu et al., 2005; Bujorianu and Lygeros,
2006) is presented as an automaton (K, d, X, f, g, Init, A,
Q), where

« K is a countable set.
e d: K — N maps each 6 € K to a natural number.

e X:K — {Ep| 6 €K} maps each § € K to an open
subset Ey of R4, With this, the hybrid state space is
given by E £ {(0,2) |0 € K,z € Ep}.

o f:E— {R¥9|9cK} is a vector field.

e g: E — {RUDxb | g ¢ K} is a matrix field, with
beN.

o Init: B(E) — [0, 1] is an initial probability measure on
(E,B(E)), where B(E) is the Borel o-algebra on E.

e A\: E — RT is a jump rate function.

e Q: B(E) x (EUJE) — [0,1] is a GSHS transition
measure, where OF = {(0,z) | § € K,z € 9Fy}, in
which OE, is the boundary of Ey. For any (6,x) €
EUOE, Q(-;6,x) is a probability measure.

The execution of a GSHS is defined as a stochastic process,
i.e. a GSHP, which takes values in the hybrid state space
and consists of two components: a discrete valued component
{6;}, and a continuous valued component {x;}. From an
initial state value onwards, which is generated by Init,
the GSHP follows a trajectory which is generated by a
stochastic differential equation defined by drift coefficient
f and diffusion coefficient g. A jump in the GSHP state
occurs either when a doubly stochastic Poisson point process
generates a point with rate A or when the GSHP state hits
the boundary OF. The GSHS transition measure Q generates
the value of the GSHP state after the jump.

Formally, this is defined as follows (Bujorianu et al.,
2005): A stochastic process {{:} = {6, 2.} is called a
GSHS execution if there exists a sequence of stopping times
0=179 <71 <T7g--- suchthatforeach k € N: £, = (6o, zo)
is an E-valued random variable extracted according to the
probability measure Init; For ¢ € [, Tk+1), 6 = 6, and
x; = x¥, where for t > 75, oF is a solution of the stochastic
differential equation dxz¥ = f(0,, ,2F)dt + g(0,,,zF)dw,
with initial condition xﬁk = z., and where {w;} is b-
dimensional standard Brownian motion; 7411 = 7% + o,
where o}, is chosen according to a survivor function which
is given by F(t) = I+ exp(— [y A(8,2%)ds). Here, T is
the indicator function and 7* is the first time > 7, when
{xF} hits the boundary Oy, ; The probability distribution
of &, ., i.e. the hybrid state right after the jump, is governed
by the law Q(-; (0, ,x+,,,—)). Under standard assumptions
(on the diffusion coefficients, non-Zeno executions, transition
measure, etc., Bujorianu and Lygeros (2006)), any GSHS is
a strong Markov Process and it has the cadlag property (i.e.
it is right continuous with left hand limits).

I11. SDCPN

Everdij and Blom (2006) defined a Stochastically and
Dynamically Coloured Petri Net (SDCPN) by a collection
(P, T, A, N,S,C, I, V, W, G, D, F), together will some
SDCPN transition firing rules, where:

P is a set of places.

7 is a set of transitions which consists of a set 7 of guard
transitions, a set 7p of delay transitions, and a set 7;
of immediate transitions.

A is a finite set of arcs, which consists of a set Ao of
ordinary arcs, a set Ag of enabling arcs, and a set A,
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of inhibitor arcs.

N is a node function which maps each arc to an ordered
pair of one transition and one place.

S is a set of colour types for the tokens occurring in the
net (a colour is the value of an object or process in Petri
net terminology).

C is a colour type function which maps each place to a
colour type in S.

Z is an initial marking which defines the set of tokens
initially present, i.e., it specifies in which places they
initially reside, and the colours they initially have.

V is a set of place specific token colour functions which
describe the drift coefficient of a stochastic differential
equation for the colour of a token while it resides in a
specific place. This drift coefficient is locally Lipschitz
continuous.

W is a set of place specific token colour matrix functions
which describe the diffusion coefficient of a stochastic
differential equation for the colour of a token while it
resides in a specific place. This diffusion coefficient is
locally Lipschitz continuous.

G is a set of boolean-valued transition guards associating
each transition in 74 with a guard function which is
evaluated when the transition has a token in each of its
input places. The guard function must evaluate to True
before the transition is allowed to fire (i.e. remove and
produce tokens). Its evaluation depends on the colours
of the input tokens of the transition.

D is a set of transition delays associating each transition in
7Tp with a delay function which is evaluated when the
transition has a token in each of its input places. The
delay function determines for how long the transition
must wait before it is allowed to fire (i.e. remove and
produce tokens). The firing rate depends on the colours
of the input tokens of the transition.

F is a set of firing measures describing the quantity and
colours of the tokens produced by the transitions at their
firing. Their evaluation depends on the colours of the
input tokens of the transition.

Below, the graphical representation of the elements in P,
T and A are given. The node function N describes how
these components are connected, so that together they define
a Petri net graph.

Q Place
Guard transition

[D] Delay transition

—> Ordinary arc
——e Enabling arc

|I| Immediate transition —o [Inhibitor arc

Fig. 3. Graphical notation for places, transitions and arcs in an SDCPN

Each token in an SDCPN place has a colour which
takes values in a domain specified by C. The colour value
of a token evolves through time according to a stochastic
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differential equation that is governed by the token colour
function and by the token colour matrix function of the
specific place where the token resides.

The SDCPN transition firing rules are as follows: A
transition can fire if it is enabled, which is if two conditions
are both satisfied. The first condition is that the transition
must be pre-enabled, i.e. have at least one token per ordinary
arc and one token per enabling arc in each of its input
places and have no token in the input places to which
it is connected by an inhibitor arc. The second condition
differs per type of transition. For immediate transitions the
second condition is automatically satisfied if the transition
is pre-enabled. For guard transitions the second condition
is specified by the set of transition guards G and for delay
transitions it is specified by the set of transition delays D. An
enabled transition fires, i.e. removes tokens from the input
places by which it is connected through an ordinary arc;
subsequently, the transition produces a token for some or
all of its output places. The firing function F specifies the
colours of the produced tokens and the places for which
they are produced. The evaluation of G, D and F may
be dependent on the colours of the input tokens of the
corresponding transition. The following additional rules (and
their applicable combinations) apply in case of simultaneous
enablings:

Ro  The firing of an immediate transition has priority
over the firing of a guard or a delay transition.

Ry If one transition becomes enabled by two or more
sets of input tokens at exactly the same time, and
the firing of any one set will not disable one or
more other sets, then it will fire these sets of tokens
independently, at the same time.

Ry If one transition becomes enabled by two or more
sets of input tokens at exactly the same time, and
the firing of any one set disables the other sets, then
the set that is fired is selected randomly, with the
same probability for each set.

Rs  If two or more transitions become enabled at ex-
actly the same time and the firing of any one
transition will not disable the other transitions, then
they will fire at the same time.

Ry If two or more transitions become enabled at ex-
actly the same time and the firing of any one
transition disables some other transitions, then each
combination of transitions that can fire indepen-
dently without leaving enabled transitions gets the
same probability if firing.

The marking of the SDCPN is given by the numbers of
tokens in the places and the associated colour values of these
tokens. The marking is unique except possibly when one
or more transitions fire (particularly, immediate transitions
fire without delay hence a sequence of immediate transitions
firing will generate a sequence of markings at the same time
instant). The SDCPN marking at each time instant can be
mapped to a unique SDCPN-generated stochastic process,
as follows: at times when no transitions fire, the SDCPN-
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generated process state is equal to the SDCPN marking. If at
time ¢ one or more transitions fire, then the set of applicable
markings is collected in M, = {M; | M} is a marking at
time ¢}, and the SDCPN-generated process state at time ¢ is
defined by {M} | M} € M, and no transitions are enabled
in M}}. In other words, the process state is defined to be
the marking that occurs after all transitions that fire at time ¢
have been fired. With this, the SDCPN-generated stochastic
process is unique, and it is continuous from the right with
left-hand limits (cadlag).

IV. EXECUTIONS OF SDCPN AND GSHS ARE BISIMILAR

An important property of SDCPN is that there exists a
Generalised Stochastic Hybrid System (GSHS) which is a
bisimulation. This is shown in (Everdij and Blom, 2006) as
formulated in the two theorems below.

Theorem 1:
For an execution of an arbitrary Generalised Stochastic
Hybrid System with a finite domain K there exists an
equivalent process which is the execution of a Stochastically
and Dynamically Coloured Petri Net (P, 7, A, N, S, C, I,
V, W, G, D, F) satisfying R, through Ry.

Theorem 2:
For an execution of a Stochastically and Dynamically
Coloured Petri Net (P, 7, A, N, S,C,Z, V, W, G, D, F)
satisfying Ry through R4 there exists an equivalent process
which is the execution of a Generalised Stochastic Hybrid
System if the following conditions are satisfied:

D;  There are no explosions, i.e. the time at which a
token colour equals +oc or —oo approaches infinity
whenever the time until the first guard transition
enabling moment approaches infinity.

Dy After a transition firing (or after a sequence of
firings that occur at the same time instant) at
least one place must contain a different number of
tokens, or the colour of at least one token must
have jumped.

D3 In a finite time interval, each transition is expected
to fire a finite number of times and for ¢ — oo, the
number of tokens remains finite.

D, In the initial marking, no immediate transition is
enabled.

Theorems 1 and 2 imply that the executions of SDCPN
and GSHS are bisimilar (Bujorianu and Bujorianu, 2006).
The implications of this bisimilarity result are great: On the
one side, analysis tools designed for GSHP and properties
of GSHP become available for Petri nets. Examples of these
properties are convergence in discretisation, existence of
limits, existence of event probabilities, strong Markov prop-
erties, reachability analysis. See e.g. (Davis, 1993; Elliott,
1982; Elliott et al., 1995; Ethier and Kurtz, 1986). On the
other side, numerous Petri net features such as those listed
in the introduction to this paper, become available when
modelling GSHP. This is illustrated in the following sections.

NLR Air Transport Safety Institute
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V. SDCPN EXAMPLE

To illustrate the advantages of SDCPN when modelling a
complex system, consider a simplified model of the evolution
of an aircraft in one sector of airspace.

Assume the deviation of this aircraft from its intended path
depends on the operationality of two of its aircraft systems:
the engine system, and the navigation system. Each of these
aircraft systems can be in one of two modes: Working
(functioning properly) or Not working (operating in some
failure mode). Both systems switch between their modes
independently and with exponentially distributed sojourn
times, with rates 3 (engine repaired), §, (engine fails), 5
(navigation repaired) and &g (navigation fails), respectively.
The operationality of these systems has the following effect
on the aircraft path: if both systems are Working, the aircraft
evolves in Nominal mode and the position y; and velocity
s¢ of the aircraft are determined by the vector solution of
dCEt = vl(l't)dt + Wldwt, where Ty = (yt,st)'. If either
one, or both, of the systems is Not working, the aircraft
evolves in Non-nominal mode and the position and velocity
of the aircraft are determined by the vector solution of dx; =
Vs, (x4)dt + Wadw,. The factors W, and W, are determined
by wind fluctuations. Initially, the aircraft has position g
and velocity sg, while both its systems are Working. The
evaluation of this process may be stopped when the aircraft
has Landed, i.e. its vertical position and velocity are equal
to zero.

Fig. 4 shows the SDCPN graph for this example, where,

o P; denotes aircraft evolution Nominal, i.e. evolution is
according to V; and Wj.

o P, denotes aircraft evolution Non-nominal, i.e. evolu-
tion is according to V, and Ws.

e P; and P, denote engine system Not working and
Working, respectively.

e P; and Py denote navigation system Not working and
Working, respectively.

o P denotes the aircraft has landed.

e Ty, and T4, denote a transition of aircraft evolution
from Nominal to Non-nominal, due to engine system or
navigation system Not working, respectively.

o T5 denotes a transition of aircraft evolution from Non-
nominal to Nominal, due to engine system and naviga-
tion system both Working again.

o T3 through Ty denote transitions between Working and
Not working of the engine and navigation systems.

o T and Ty denote transitions of the aircraft landing.

The graph in Fig. 4 completely defines SDCPN ele-
ments P, 7, A and N, where 7¢ = {77, 15}, Tp =
{T37T4,T5,T6} and 7} = {Tla,le,TQ}. The other SDCPN
elements are specified below:

S: Two colour types are defined; S = {R%, R%}.

C: C(P) = C(P) = C(P;) = RS, ie. tokens in P,
P, and P; have colours in R®; the colour components
model the 3-dimensional position and 3-dimensional
velocity of the aircraft. C(Ps) = C(Py) = C(FP5) =
C(Ps) =RY £ 0.
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Fig. 4. SDCPN graph for the air traffic example

T: Place P initially has a token with colour z¢ = (yo, s0)’,
with yo € R?x (0, 00) and so € R3\Col{0,0,0}. Places
Py, and Ps initially each have a token without colour.

V, W: The token colour functions for places Py, P, and P
are determined by (V;,W,), (V5, W), and (V,, W;),
respectively, where (V;, W,) = (0,0). For places Ps —
Ps there is no token colour function.

G: Transitions T and Tg have a guard that is defined by
OGr, = 0Gr, = R? x {0} x R? x {0}.

D: The jump rates for transitions 75, Ty, 15 and Ty are
o1, (+) = 83, 01, () = 04, 61,(-) = d5 and o, (+) = .

JF: Each transition has a unique output place, to which it
fires a token with a colour (if applicable) equal to the
colour of the token removed.

V1. MAPPING OF SDCPN EXAMPLE TO GSHP

In this section, the SDCPN for the aircraft evolution
example is transformed into a GSHP, the existence of which
is stated in Theorem 2.

The first step is to construct the state space for the
GSHP discrete process {f;}. This is done by identifying
the SDCPN reachability graph. Nodes in the reachability
graph provide the number of tokens in each of the SDCPN
places. Arrows connect these nodes as they represent tokens
moving by transitions firing. The SDCPN of Fig. 4 has
seven places hence the reachability graph for this example
has elements that are vectors of length 7. These nodes,
excluding the nodes that enable immediate transitions, form
the GSHP discrete state space. The reachability graph is
shown in Fig. 5, with nodes that form the GSHP dis-
crete state space in Bold typeface, i.e. K = {V1,...,Vs},

with V4 = (1,0,0,1,0,1,0), V» = (0,1,1,0,0,1,0),
Vs = (0,1,1,0,1,0,0, Vi = (0,1,0,1,1,0,0),
Vs = (0,0,0,1,0,1,1), Vs = (0,0,1,0,0,1,1), V7 =

(0,0,1,0,1,0,1), V5 =(0,0,0,1,1,0,1).

Since initially there is a token in places Py, P, and P,
the initial mode 6, equals 6y = (1,0,0, 1,0, 1,0). The GSHP
initial continuous state value equals the vector containing the
initial colours of all initial tokens. Since the initial colour of

(1,0,1,0,0,1,0) (0,1,0,1,0,1,0) (1,0,0,1,1,0,0)
>'1a Tsf '} Tl{
VANV
(0,1,1,00,1,0) (0,1,0,1,1,0,0)
I
%

(0,1,1,0,1,0,0)
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j\\ //’L

(001,0,10,1)

—Ty—>

Ty

Fig. 5. Reachability graph for the SDCPN of Fig. 4. The nodes in bold
type face correspond with the elements of the GSHP discrete state space.

the token in Place P, equals zg, and the tokens in places
P, and Pg have no colour, the GSHP initial continuous state
value equals x.

The GSHP drift coefficient f is given by f(6,-) = V1(+)
for 6 = Vi, f(0,:) = Va(:) for 8 € {V,,V3,V4}, and
f(6,-) = 0 otherwise. For the diffusion coefficient, ¢(0,-) =
Wy for 6 = Vi, g(0,) = W, for 0 € {V,,V5,V,4}, and
g(0,-) = 0 otherwise.

In GSHP, if the continuous process x; hits the boundary
of its state space, a forced jump occurs. In the SDCPN
equivalent, a forced jump occurs if the colour of a token
enters the colour boundary of a guard transition that has
this token in its input place. Therefore, the state space
for the GSHP continuous state process is determined from
the transitions guards that, under token distribution 6, are
enabled.

The rate of GSHP jumps generated by the Poisson point
process is determined from the enabling rates corresponding
with the set of delay transitions in 7p that, under token
distribution 6, are pre-enabled. At each time in this example,
always two delay transitions are pre-enabled: either T3 or Ty
and either T or Tg. Hence the GSHP jump rate is equal to
> i—jx 0, () if T and T}, are pre-enabled.

The GSHS transition measure that determines the size of
the jumps is determined by the reachability graph, the sets D,
G and F and the rules Rp—Ry. In Table I, Q(0',2";0,2) = p
denotes that if (6,x) is the value of the GSHP before the
hybrid jump, then, with probability p, (6, z') is the value of
the GSHP immediately after the jump.

VII. CONCLUSIONS

In order to combine the compositional specification power
of Petri nets with the analysis power of Markov processes,
Malhotra and Trivedi (1994) and Muppala et al. (2000)
developed a power hierarchy of dependability models. In
(Everdij and Blom, 2003, 2005), the power hierarchy was
extended with Dynamically Coloured Petri Nets (DCPN)
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TABLE |
EXAMPLE GSHS COMPONENT THAT DETERMINES SIZE OF JUMP

For z ¢ OEv,: Q(Va,z;Vi,z) = tMSTAL(Se’ Q(Vy,z;V1,x) = 54(2"56
For z € (9EV1: Q(V5,.’l?; Vl,(E) =1
Forz ¢ OEy,: Q(V3,x;Va,x) = 53§T65(;’ QVhi,z; Vo, x) = 63(1366
For x € OFy,: Q(Vs,x;Va,x) =1
For o ¢ 0Bv,: Q(Va,a; Vs, ) = 5%, Q(Va, a5 Vs, @) = 505
For xz € 8EV3: Q(V7,.’E; Vg,m) =1
Forz ¢ OEy,: Q(V3,x;Va,x) = &37465’ QVi,z; Va,x) = 64(:%5
Forz € O0FBy,: Q(Vs,x;Va,x) =1
For all x: Q(Ve, 3 Vs, ) = 52—, Q(Va, x5 Vs, @) = 520
For all x: Q(Vr, a3 Ve, @) = 525, Q(Vs, 25 Ve, @) = 528
For all «: Q(Vs,z; V7, z) = &;;Tsag,* Q(Vs,x; V7, x) = 5367555
For all x: Q(Vr, Vs, ) = 50—, Q(Vs, 25 Vi, @) = 520

and Piecewise Deterministic Markov Processes (PDP). This
paper explained further extensions of this power hierarchy:
(1) Incorporating Brownian motion in the PDP definition,
yielding Generalised Stochastic Hybrid Processes (GSHP);
(2) Incorporating Brownian motion in the DCPN definition,
yielding Stochastically and Dynamically Coloured Petri Nets
(SDCPN); and (3) Showing one-to-one mappings between
these formalisms, yielding bisimilar executions. The paper
also explained that the bisimilar executions mean that the
strengths of the hybrid state Petri nets and stochastic hybrid
processes are inherited by each formalism, as has been
depicted in Fig. 2 and explained in Section Ill. As may
be clear from the example in Sections V and VI, the
GSHP model does not show the structure of the SDCPN.
Because of this, the SDCPN model of Section V is simpler
to comprehend and to verify against its aircraft evolution
operational description than the GSHP example of Section
VI. However, by a bisimulation the SDCPN model yields a
GSHP model which has full support in stochastic process
theory.

It is noted that in (Everdij et al., 2006), the SDCPN
specification power is further enhanced for large scale sys-
tems through the development of high-level interconnection
arcs. The advantages of these enhancements are that a
hierarchical modelling approach is available that separates
local modelling issues from global modelling issues, and
in addition, the number of arcs and transitions necessary to
interconnect low-level Petri nets is considerably reduced. The
complementary advantages of SDCPN, GSHS and GSHP
perspectives tend to increase with the complexity of the
considered operation. Due to the bisimulation mappings, the
complementary advantages can be exploited: first specify a
model in terms of SDCPN, using the compositional specifi-
cation features, then map this to GSHS (which is supported
by formal verification tools) and to GSHP, and then use the
stochastic analysis tools of GSHP.
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