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Summary

The paper combines IMM and JPDA for tracking of multiple possibly maneuvering targets in

case of clutter and possibly missed measurements while avoiding sensitivity to track

coalescence. The effectiveness of the filter is illustrated through Monte Carlo simulations.
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1 Introduction

We consider the problem of tracking multiple maneuvering targets in clutter with a proper combi-

nation of two well known approaches in target tracking: IMM and JPDA. Since each of these two

solve complementary tracking problems one might expect that it should be useful to combine these

two approaches. In literature the problem of combining IMM (Blom & Bar-Shalom, 1988) and

JPDA (Bar-Shalom and Fortmann, 1988) has been studied by Bar-Shalom et al. (1992), DeFeo

et al. (1997) and Chen and Tugnait (2001). Bar-Shalom et al. (1992) developed an IMMJPDA-

Coupled filter for situations where the measurements of two targets are unresolved during periods

of close encounter. In Blom & Bloem (2000) it has been shown that these IMMJPDA-Coupled

filter equations are rather heuristic. Chen and Tugnait (2001) developed an IMMJPDA-Uncoupled

fixed-lag smoothing algorithm with IMMJPDA uncoupled tracking as a special case. They also

showed that the IMMJPDA of De Feo et al. (1997) does not account for ”interactions” between

the target modes. All in all, in spite of the significant headway which has been made regarding the

combination of IMM and JPDA, there is a lack of insight in the proper choices to be made when

combining IMM and JPDA for multiple maneuvering target tracking.

In order to improve this situation, the paper studies the problem of combining IMM and JPDA

following an approach that is based on recent new insight gained regarding the derivation of a track

coalescence avoiding JPDA version (Blom & Bloem, 2000). The basis for this development is to

embed the multi target tracking problem with possibly false and missing measurements into one

of filtering for a linear descriptor system with random coefficients. In this paper this embedding

approach is extended towards the development of various IMMJPDA filters, and it is shown how

these compare with known IMMJPDA filters.

The paper is organized as follows. Section 2 develops the stochastic model for the tracking prob-

lem considered. Section 3 presents exact filter equations. Section 4 develops IMMJPDA filter

equations. Section 5 develops the track coalescence avoiding IMMJPDA filter equations. Section

6 shows the effectiveness of the approach through Monte Carlo simulation results.
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2 Stochastic modeling

This section describes the target model and the measurement model.

2.1 Target model

ConsiderM targets and assume that the state of thei-th target is modeled as a jump linear system:

xi
t+1 = ai(θi

t+1)x
i
t + bi(θi

t+1)w
i
t, i = 1, ...,M, (1)

wherexi
t is the n-vectorial state of thei-th target,θi

t is the mode of thei-th target and as-

sumes values from{1, .., N}, ai(θi
t) and bi(θi

t) are (n × n)-matrices andwi
t is a sequence of

i.i.d. standard Gaussian variables of dimensionn with wi
t , wj

t independent for alli �= j andwi
t

,xi
0, x

j
0 independent for alli �= j. Let xt

�
= Col{x1

t , ..., x
M
t }, θt

�
= Col{θ1

t , ..., θ
M
t }, A(θt)

�
=

Diag{a1(θ1
t ), ..., a

M (θM
t )}, B(θt)

�
= Diag{b1(θ1

t ), ..., b
M (θM

t )}, andwt
�
= Col{w1

t , ..., w
M
t }.

Then we can model the state of ourM targets as follows:

xt+1 = A(θt+1)xt +B(θt+1)wt (2)

2.2 Measurement model

A set of measurements consists of measurements originating from targets and measurements orig-

inating from clutter. Firstly the measurements originating from targets are treated. Subsequently

the clutter measurements are randomly inserted between the target measurements.

A Measurements originating from targets

We assume that a potential measurement associated with statexi
t (which we will denote byzi

t) is

modeled as a jump linear system:

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t , i = 1, ...,M (3)

wherezi
t is anm-vector,hi(θi

t) is an (m×n)-matrix andgi(θi
t) is an (m×m)-matrix, andvi

t is a se-

quence of i.i.d. standard Gaussian variables of dimensionm with vi
t andvj

t independent for alli �=
j. Moreovervi

t is independent ofxj
0 andwj

t for all i,j. Next withzt
�
= Col{z1

t , ..., z
M
t },H(θt)

�
=

Diag{h1(θ1
t ), ..., h

M (θM
t )}, G(θt)

�
= Diag{g1(θ1

t ), ..., g
M (θM

t )}, andvt
�
= Col{v1

t , ..., v
M
t }, we
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obtain:

zt = H(θt)xt +G(θt)vt (4)

We next introduce a model that takes into account that not all targets have to be detected at moment

t, which implies that not all potential measurementszi
t have to be available as true measurements

at momentt. To this end, letP i
d be the detection probability of targeti and letφi,t ∈{0,1}

be the detection indicator for targeti, which assumes the value one with probabilityP i
d > 0,

independently ofφj,t, j �= i. This approach yields the following detection indicator vectorφt of

sizeM :

φt
�
= Col{φ1,t, ..., φM,t}.

Thus, the number of detected targets isDt
�
=

∑M
i=1 φi,t. Furthermore, we assume that{φt} is a

sequence of i.i.d. vectors.

In order to link the detection indicator vector with the measurement model, we introduce the

following operatorΦ: for an arbitrary (0,1)-valuedM ′-vectorφ′ we defineD(φ′) �
=

∑M ′
i=1 φ

′
i and

the operatorΦ producingΦ(φ′) as a(0, 1)-valued matrix of sizeD(φ′)×M ′ of which theith row

equals theith non-zero row of Diag{φ′}. Next we define, forDt > 0, a vector that contains all

measurements originating from targets at momentt in a fixed order.

z̃t
�
= Φ(φt)zt, where Φ(φt)

�
= Φ(φt) ⊗ Im,

with Im a unit-matrix of sizem, and⊗ the tensor product.

In reality, however, we do not know the order of the targets. Hence, we introduce the stochastic

Dt ×Dt permutation matrixχt, which is conditionally independent of{φt}. We also assume that

{χt} is a sequence of independent matrices. Hence, forDt > 0,

˜̃zt
�
= χ

t
z̃t, where χ

t

�
= χt ⊗ Im,

is a vector that contains all measurements originating from targets at momentt in a random order.

B Measurements originating from clutter

Let the random variableFt be the number of false measurements at momentt. We assume thatFt

has Poisson distribution:

pFt(F ) = (λV )F

F ! exp(−λV ), F = 0, 1, 2, . ..

= 0, else

whereλ is the spatial density of false measurements (i.e. the average number per unit volume) and

V is the volume of the validation region. Thus,λV is the expected number of false measurements

in the validation gate. We assume that the false measurements are uniformly distributed in the
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validation region, which means that a column-vectorv∗t of Ft i.i.d. false measurements has the

following density:

pv∗
t |Ft

(v∗|F ) = V −F

whereV is the volume of the validation region. Furthermore we assume that the process{v∗t } is a

sequence of independent vectors, which are independent of{xt}, {wt}, {vt} and{φt}.

C Random insertion of clutter measurements

Let the random variableLt be the total number of measurements at momentt. Thus,

Lt = Dt + Ft

With ỹt
�
= Col{˜̃zt, v

∗
t }, it follows with the above defined variables that

ỹt =



χ

t
Φ(φt)zt

..............

v∗t


 , if Lt > Dt > 0 (5)

whereas the upper and lower subvector parts disappear forDt = 0 andLt = Dt respectively.

With this equation, the measurements originating from clutter still have to be randomly inserted

between the measurements originating from the detected targets. To do so, we first define target

indicator and clutter indicator processes, denoted by{ψt} and{ψ∗
t }, respectively. Let the random

variableψi,t ∈{0,1} be a target indicator at momentt for measurementi, which assumes the value

one if measurementi belongs to a detected target and zero if measurementi comes from clutter.

This approach yields the following target indicator vectorψt of sizeLt:

ψt
�
= Col{ψ1,t, ..., ψLt,t}.

Let the random variableψ∗
i,t ∈{0,1} be a clutter indicator at momentt for measurementi, which

assumes the value one if measurementi comes from clutter and zero if measurementi belongs to

an aircraft (thusψ∗
i,t = 1−ψi,t). This approach yields the following clutter indicator vectorψ∗

t of

sizeLt:

ψ∗
t

�
= Col{ψ∗

1,t, ..., ψ
∗
Lt,t}.

In order to link the target and clutter indicator vectors with the measurement model, we make use

of the operatorΦ introduced before. With this the measurement vector with clutter inserted reads

as follows:

yt =
[
Φ(ψt)T ... Φ(ψ∗

t )
T
]

ỹt if Lt > Dt > 0 (6)
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This, together with equation (2), (4) and (5), forms a complete characterization of our tracking

problem in terms of stochastic difference equations.
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3 Exact filter equations

Next we introduce an auxiliary indicator processχ̃t as follows:

χ̃t
�
= χT

t Φ(ψt) if Dt > 0.

Following the approach of Blom & Bloem (2000) equations (4), (5) and (6) can be transformed to:

χ̃
t
yt = Φ(φt)H(θt)xt + Φ(φt)G(θt)vt if Dt > 0 (7)

Notice that (7) is a linear Gaussian descriptor system (Dai, 1989) with stochastic i.i.d. coefficients

Φ(φt) and χ̃
t
. From (7), it follows that forDt > 0 all relevant associations and permutations

can be covered by(φt, χ̃t)-hypotheses. We extend this toDt = 0 by adding the combination

χ̃t = {}Lt andφt = {0}M . Hence, through defining the weights

βt(φ, χ̃, θ)
�
= Prob{φt = φ, χ̃t = χ̃, θt = θ | Yt},

whereYt denotes theσ-algebra generated by measurements yt up to and including momentt, then

the law of total probability yields:

pθt|Yt
(θ) =

∑
χ̃,φ

βt(φ, χ̃, θ) (8)

pxt,θt|Yt
(x, θ) =

∑
χ̃,φ

βt(φ, χ̃, θ)pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) (9)

Since

pxt|θt,Yt
(x | θ) = pxt,θt|Yt

(x, θ)/pθ|Yt
(θ) (10)

our problem is to characterize the right-hand terms in (9).

This has been accomplished in the following Theorem.

Theorem Let pθt|Yt−1
(θ) =

∏M
i=1 pθi

t|Yt−1
(θi) and let pxt|θt,Yt−1

(x|θ) be Gaussian with mean

x̄t(θ) = Col{x̄1
t (θ

1), ..., x̄M
t (θM )} and covariance P̄t(θ) = Diag{P̄ 1

t (θ1), ..., P̄M
t (θM )}, then
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βt(φ, χ̃, θ) satisfies for φ �= {0}M :

βt(φ, χ̃, θ) = λ(Lt−D(φ)) ·
M∏
i=1

[
f i

t (φ, χ̃, θ
i)(1 − P i

d)
(1−φi)(P i

d)
φi · pθi

t|Yt−1
(θi)

]
/ct (11)

with:

f i
t (φ, χ̃, θ

i) = [(2π)mDet{Qi
t(θ

i)}]− 1
2
φi ·

· exp{−1
2

Lt∑
k=1

(
[Φ(φ)]T∗iχ̃∗kµik

t (θi)T [Qi
t(θ

i)]−1µik
t (θi)

)
} (12.a)

where:

µik
t (θi)

�
= yk

t − hi(θi)x̄i
t(θ

i) (12.b)

Qi
t(θ

i)
�
= hi(θi)P̄ i

t (θ
i)hi(θi)T + gi(θi)gi(θi)T (12.c)

whereas [Φ(φ)]∗i and χ̃∗k are the i-th and k-th columns of Φ(φ) and χ̃, respectively. Moreover,

pxi
t|θi

t,Yt
(xi|θi), i ∈ {1, ...,M}, is a Gaussian mixture, while its overall mean x̂i

t(θ
i) and its overall

covariance P̂ i
t (θ

i) satisfy:

pθi
t|Yt

(θi) =
∑
φ,χ̃,η

ηi=θi

βt(φ, χ̃, η) (13.a)

x̂i
t(θ

i) = x̄i
t(θ

i) +W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)µik

t (θi)

)
(13.b)

P̂ i
t (θ

i) = P̄ i
t (θ

i) −W i
t (θ

i)hi(θi)P̄ i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)

)
+

+W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)µik

t (θi)µik
t (θi)T

)
W i

t (θ
i)T +

−W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)µik

t (θi)

) (
Lt∑

k′=1

βik′
t (θi)µik′

t (θi)

)T

W i
t (θ

i)T (13.c)
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with:

W i
t (θ

i) = P̄ i
t (θ

i)hi(θi)T [Qi
t(θ

i)]−1 (13.d)

βik
t (θi) =

∑
φ,χ̃,η
φ�=0

ηi=θi

Φ(φ)T
∗iχ̃∗kβt(φ, χ̃, η)]/pθi

t|Yt
(θi) (13.e)

Proof: See Blom & Bloem (2002)
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4 IMMJPDA filter

In this section the IMMJPDA filter algorithm is specified. To do so use is made of the IMM filter

algorithm and of the Theorem. One cycle of the IMMJPDA filter algorithm consists of the follow-

ing six steps.

IMMJPDA Step 1: For each target this comes down to the mixing/interaction step of the IMM

algorithm (Blom & Bar-Shalom, 1988) for alli ∈ {1, . . . ,M}: Starting with the weights

γ̂i
t−1(θ

i)
�
= pθi

t−1|Yt−1
(θi), θi ∈ {1, ..., N}

the means

x̂i
t−1(θ

i)
�
= E{xi

t−1|θi
t−1 = θi, Yt−1}, θi ∈ {1, ..., N}

and the associated covariances

P̂ i
t−1(θ

i)
�
= E{[xi

t−1 − x̂i
t−1(θ

i)][xi
t−1 − x̂i

t−1(θ
i)]T | θi

t−1 = θi, Yt−1}, θi ∈ {1, ..., N}
one evaluates the mixed initial condition for the filter matched toθi

t = θi as follows:

γ̄i
t(θ

i) =
N∑

ηi=1

Πηi,θi · γ̂i
t−1(η

i)

x̂i
t−1|θi

t
(θi) =

N∑
ηi=1

Πηi,θi · γ̂i
t−1(η

i) · x̂i
t−1(η

i)/γ̄i
t(θ

i)

P̂ i
t−1|θi

t
(θi) =

N∑
ηi=1

Πηi,θi · γ̂i
t−1(η

i) ·

·
(
P̂ i

t−1(η
i) + [x̂i

t−1(η
i) − x̂i

t−1|θi
t
(θi)][x̂i

t−1(η
i) − x̂i

t−1|θi
t
(θi)]T

)
/γ̄i

t(θ
i)

with

Πηi,θi
�
= Pr{θi

t = θi | θi
t−1 = ηi}

γ̄i
t(θ

i)
�
= pθi

t|Yt−1
(θi)

x̂i
t−1|θi

t
(θi)

�
= E{xi

t−1 | θi
t = θi, Yt−1}

P̂ i
t−1|θi

t
(θi)

�
= E{[xi

t−1 − x̂i
t−1(θ

i)][xi
t−1 − x̂i

t−1(θ
i)]T |θi

t = θi, Yt−1}
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IMMJPDA Step 2: Prediction for alli ∈ {1, . . .,M}, θi ∈ {1, . . . ,N} :

x̄i
t(θ

i) = ai(θi)x̂i
t−1|θi

t
(θi) (14.a)

P̄ i
t (θ

i) = ai(θi)P̂ i
t−1|θi

t
(θi)ai(θi)T + bi(θi)bi(θi)T (14.b)

IMMJPDA Step 3: Gating, which is based on Bar-Shalom & Li (1995).

Evaluate for eachi andθithe crosscovariance as follows:

Qi
t(θ

i) = hi(θi)P̄ i
t (θ

i)hi(θi)T + gi(θi)gi(θi)T

Subsequently identify for each target the mode for which DetQi
t(θ

i) is largest:

θ∗it = Argmax

θi

{DetQi
t(θ

i)}

and use this to define for each targeti a gateGi
t ∈ IRm as follows:

Gi
t
�
= {zi ∈ IRm; [zi − hi(θ∗it )x̄i

t(θ
∗i
t )]TQi

t(θ
∗i
t )−1[zi − hi(θ∗it )x̄i

t(θ
∗i
t )] ≤ γ}

with γ the gate size. If thej-th measurement yjt falls outside gateGi
t; i.e. yj

t /∈ Gi
t, then thej-th

component of thei-th row of [Φ(φ)T χ̃t] is assumed to equal zero. This reduces the set of possible

detection/permutation hypotheses to be evaluated at momentt for variousφ to X̃t(φ).

IMMJPDA Step 4: Evaluation of the detection / association / mode hypotheses is based on the

Theorem. For allφ ∈ {0, 1}M , χ̃ ∈ {0, 1}D(φ)×D(φ), θ ∈ {1, ..., N}M :

βt(φ, χ̃, θ) = λ(Lt−D(φ)) ∏M
i=1[f

i
t (φ, χ̃, θ

i)·
·(1 − P i

d)
(1−φi)(P i

d)
φi · γ̄i

t(θ
i)]/ct for χ̃ ∈ X̃t(φ),

= 0 else

(15.a)

with f i
t ({0}M , {}Lt , θi) = 1 and forφ �= {0}M :

f i
t (φ, χ̃, θ

i) ∼= [(2π)mDet{Qi
t(θ

i)}]− 1
2
φi

· exp{−1
2

Lt∑
k=1

[Φ(φ)T
∗iχ̃∗kµik

t (θi)T [Qi
t(θ

i)]−1µik
t (θi)]} (15.b)
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where

µik
t (θi) = yk

t − hi(θi)x̄i
t(θ

i) (15.c)

IMMJPDA Step 5: Measurement update equations are based on the Theorem. For alli ∈ {1, ...,M},

θi ∈ {1, ..., N} :

γ̂i
t(θ

i) ∼=
∑
φ,χ̃,η

ηi=θi

βt(φ, χ̃, η) (16)

and using (13b, c, d, e) as approximate equations to evaluatex̂i
t(θ

i) andP̂ i
t (θ

i).

IMMJPDA Step 6: Output equations:

x̂i
t =

N∑
θi=1

γ̂i
t(θ

i) · x̂i
t(θ

i)

P̂ i
t =

N∑
θi=1

γ̂i
t(θ

i)(P̂ i
t (θ

i) + [x̂i
t(θ

i) − x̂i
t][x̂

i
t(θ

i) − x̂i
t]

T )

Remark: It can be verified that the above IMMJPDA filter algorithm is similar to the IMMJPDA

filter algorithm of Chen & Tugnait (2001). The main new element is that the above specification

of IMMJPDA Steps 4 and 5 explicitly show the relation to the processes{χ̃t} and{φt}. In the

sequel this relation is exploited for the development of a track coalescence avoiding IMMJPDA

filter, for short IMMJPDA* filter.
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5 IMMJPDA* filter

A shortcoming of JPDA is its sensitivity to track coalescence. With their JPDA* approach, Blom

& Bloem (2000) have shown that hypothesis pruning can provide an effective track-coalescence

avoidance. The JPDA* filter equations can be obtained from the JPDA algorithm by pruning per

(φt, ψt)-hypothesis all less likelyχt-hypotheses prior to measurement updating. In order to apply

this approach to IMMJPDA the JPDA* hypothesis pruning strategy is now extended: evaluate all

(φt, ψt,θt) hypotheses and prune per(φt, ψt,θt)-hypothesis all less-likelyχt-hypotheses. To do

so, define for everyφ, ψ andθ, satisfyingD(ψ) = D(φ) ≤Min{M,Lt}, a mappinĝχt(φ, ψ,θ):

χ̂t(φ, ψ, θ)
�
= Argmax

χ

βt(φ, χT Φ(ψ), θ)

where the maximization is over all permutation matricesχ of sizeD(φ) ×D(φ).

The pruning strategy of evaluating all(φ, ψ, θ)-hypotheses and only oneχ-hypothesis per(φ, ψ, θ)-

hypothesis implies that forD(φ) > 0 we adopt the following pruned hypothesis weightsβ̂t(φ, ψ, θ):

β̂t(φ, ψ, θ)= βt(φ, χ̂(φ, ψ, θ)T Φ(ψ), θ)/ĉt
if D(φ) = D(ψ) ≤ Min{M,Lt}

= 0 else

with ĉt a normalization constant for̂βt; i.e. such that∑
φ,ψ,θ

D(ψ)=D(φ)

β̂t(φ, ψ, θ) = 1

By inserting these particular weights within IMMJPDA, we get IMMJPDA*.

One cycle of the IMMJPDA* filter algorithm consists of the following 7 steps:

IMMJPDA* Step 1: Mixing for all i ∈ {1, ...,M}, θi ∈ {1, ..., N}: Equivalent to IMMJPDA

step 1, section 5.

IMMJPDA* Step 2: Prediction for alli ∈ {1, ...,M}, θi ∈ {1, ..., N}: Equivalent to IMMJPDA

step 2, section 5.

IMMJPDA* Step 3: Gating: Equivalent to IMMJPDA step 3, section 5.

IMMJPDA* Step 4: Evaluation of the detection/evaluation hypotheses: Equivalent to IMMJPDA

step 4, section 5.

IMMJPDA* Step 5: Track-coalescence hypothesis pruning: First evaluate for every(φ, ψ,θ) such
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thatD(ψ) = D(φ) ≤ Min{M,Lt}:

χ̂t(φ, ψ, θ) = Argmax

χ

βt(φ, χT Φ(ψ), θ)

Next evaluate all̂χt(φ, ψ,θ) hypothesis weights:

β̂t(φ, ψ, θ)= βt(φ, χ̂T
t (φ, ψ, θ)Φ(ψ), θ)/ĉt if 0 < D(ψ) = D(φ) ≤ Min{M,Lt}

= βt({0}M , {}Lt , θ)/ĉt if D(ψ) = D(φ) = 0

= 0 else

whereĉt is a normalizing constant for̂βt.

IMMJPDA* Step 6: Measurement update equations for alli ∈ {1, ...,M}, θi ∈ {1, ..., N} :

γ̂i
t(θ

i) ∼=
∑
φ,ψ,η

ηi=θi

β̂t(φ, ψ, η) (17.a)

x̂i
t(θ

i) ∼= x̄i
t(θ

i) +W i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)µik

t (θi)

)
(17.b)

P̂ i
t (θ

i) ∼= P̄ i
t (θ

i) −W i
t (θ

i)hi(θi)P̄ i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)

)
+

+W i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)µik

t (θi)µik
t (θi)T

)
W i

t (θ
i)T +

−W i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)µik

t (θi)

) (
Lt∑

k′=1

β̂ik′
t (θi)µik′

t (θi)

)T

W i
t (θ

i)T (17.c)

with:

W i
t (θ

i)
�
= P̄ i

t (θ
i)hi(θi)T [Qi

t(θ
i)]−1 (17.d)

β̂ik
t (θi) =

∑
φ,ψ,η
φ,ψ �=0

ηi=θi

[Φ(φ)T
∗i[χ̂t(φ, ψ, η)T Φ(ψ)]∗kβ̂t(φ, ψ, η)]/γ̂i

t(θ
i) (17.e)

where[.]∗k is thek-th column of[.] .

IMMJPDA* Step 7: Output Equations: Equivalent to IMMJPDA step 6, section 5.
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6 Monte Carlo simulations

In this section some Monte Carlo simulation results are given for the IMMPDA, IMMJPDA and

IMMJPDA* filter algorithms. The simulations primarily aim at gaining insight into the behaviour

and performance of the filters when objects move in and out close approach situations, while

giving the filters enough time to converge after a manoeuvre has taken place. In the example

scenarios there are two targets, each modeled with two possible modes. The first mode represents

a constant velocity model and the second mode represents a constant acceleration model. Both

objects start moving towards eachother, each with constant initial velocityVinitial (i.e. the initial

relative velocityVrel, initial = 2V ). At a certain moment in time both objects start decelerating

with -0.5 m/s2 until they both have zero velocity. The moment at which the deceleration starts is

such that when the objects both have zero velocity, the distance between the two objects equals

d. After spending a significant number of scans with zero velocity, both objects start accelerating

with 0.5 m/s2 away from each other without crossing until their velocity equals the opposite of

their initial velocity. From that moment on the velocity of both objects remains constant again

(thus the final relative velocityVrel, final = Vrel, initial). Note thatd < 0 implies that the objects

have crossed each other before they have reached zero velocity. Each simulation the filters start

with perfect estimates and run for 40 scans. Examples of the trajectories ford > 0 andd < 0 are

depicted in figures 1a and 1b respectively. For each target, the underlying model of the potential
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1a. Trajectories examples ford > 0 1b. Trajectories examples ford < 0

Fig. 1 Trajectories examples for d > 0 and for d < 0

target measurements is given by (1) and (3)

xi
t+1 = ai(θi

t+1)x
i
t + bi(θi

t+1)w
i
t (1)

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t (3)
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Furthermore fori = 1, 2 and θi
t ∈ {1,2}:

ai(1) =




1 Ts 0

0 1 0

0 0 0


 , ai(2) =




1 Ts
1
2T

2
s

0 1 Ts

0 0 1




bi(1) = σi
a ·




0

0

1


 , bi(2) = σi

a ·




0

0

0




hi =
[

1 0 0
]
, gi = σi

m

Π =


 1 − Ts/τ1 Ts/τ1

Ts/τ2 1 − Ts/τ2




whereσi
a represents the standard deviation of acceleration noise andσi

m represents the standard

deviation of the measurement error. For simplicity we consider the situation of similar targets

only; i.e. σi
a = σa, σi

m = σm, P i
d = Pd. With this, the scenario parameters arePd, λ, d, Vinitial ,

Ts, σm, σa, τ1, τ2, and the gate sizeγ. We used fixed parametersσm = 30, σa = 0.5, τ1 = 500,

τ2 = 50, andγ = 25. Table 1 gives the other scenario parameter values that are being used for the

Monte Carlo simulations.

Table 1 Scenario parameter values.

IMMPDA’s λ = 0.00001 for scenarios 1 and 3

Scenario Pd λ d Vinitial Ts

1 1 0 Variable 7.5 10

2 1 0.001 Variable 7.5 10

3 0.9 0 Variable 7.5 10

4 0.9 0.001 Variable 7.5 10

During our simulations we counted tracki ”O.K.”, if

| hix̂i
T − hixi

T |≤ 9σm

and we counted tracki �= j ”Swapped”, if

| hix̂i
T − hjxj

T |≤ 9σm

Furthermore, two tracksi �= j are counted “Coalescing” at scant, if

| hix̂i
t − hj x̂j

t |≤ σm∧ | hixi
t − hjxj

t |> σm

For each of the scenarios Monte Carlo simulations containing 100 runs have been performed for

each of the tracking filters. To make the comparisons more meaningful, for all tracking mecha-

nisms the same random number streams were used. The results of the Monte Carlo simulations for
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the three scenarios are depicted as function of the distance relative toσm in two types of figures,

showing respectively:

• The percentage of Both tracks “O.K. ” (figures 2a, 3a, 4a, 5a)

• The average number of “coalescing” scans (figure 2b, 3b, 4b, 5b).
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2a. ”Both tracks O.K.” percentage 2b. Average number of ”coalescing” scans

Fig. 2 Simulation results for scenario 1
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3a. ”Both tracks O.K.” percentage 3b. Average number of ”coalescing” scans

Fig. 3 Simulation results for scenario 2
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4a. ”Both tracks O.K.” percentage 4b. Average number of ”coalescing” scans

Fig. 4 Simulation results for scenario 3
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5a. ”Both tracks O.K.” percentage 5b. Average number of ”coalescing” scans

Fig. 5 Simulation results for scenario 4

For the examples considered, the simulation results show that both IMMJPDA* and IMMJPDA

perform much better than IMMPDA. Moreover the results show that IMMJPDA* avoids track

coalescence.
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