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Summary

The paper combines IMM and JPDA for tracking of multiple possibly maneuvering targets in
case of clutter and possibly missed measurements while avoiding sensitivity to track

coalescence. The effectiveness of the filter is illustrated through Monte Carlo simulations.
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1 Introduction

We consider the problem of tracking multiple maneuvering targets in clutter with a proper combi-
nation of two well known approaches in target tracking: IMM and JPDA. Since each of these two
solve complementary tracking problems one might expect that it should be useful to combine these
two approaches. In literature the problem of combining IMM (Blom & Bar-Shalom, 1988) and
JPDA (Bar-Shalom and Fortmann, 1988) has been studied by Bar-Shalom et al. (1992), DeFeo
et al. (1997) and Chen and Tugnait (2001). Bar-Shalom et al. (1992) developed an IMMJPDA-
Coupled filter for situations where the measurements of two targets are unresolved during periods
of close encounter. In Blom & Bloem (2000) it has been shown that these IMMJPDA-Coupled
filter equations are rather heuristic. Chen and Tugnait (2001) developed an IMMJPDA-Uncoupled
fixed-lag smoothing algorithm with IMMJPDA uncoupled tracking as a special case. They also
showed that the IMMJPDA of De Feo et al. (1997) does not account for "interactions” between
the target modes. All in all, in spite of the significant headway which has been made regarding the
combination of IMM and JPDA, there is a lack of insight in the proper choices to be made when
combining IMM and JPDA for multiple maneuvering target tracking.

In order to improve this situation, the paper studies the problem of combining IMM and JPDA
following an approach that is based on recent new insight gained regarding the derivation of a track
coalescence avoiding JPDA version (Blom & Bloem, 2000). The basis for this development is to
embed the multi target tracking problem with possibly false and missing measurements into one
of filtering for a linear descriptor system with random coefficients. In this paper this embedding
approach is extended towards the development of various IMMJPDA filters, and it is shown how
these compare with known IMMJPDA filters.

The paper is organized as follows. Section 2 develops the stochastic model for the tracking prob-
lem considered. Section 3 presents exact filter equations. Section 4 develops IMMJPDA filter
equations. Section 5 develops the track coalescence avoiding IMMJPDA filter equations. Section
6 shows the effectiveness of the approach through Monte Carlo simulation results.
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2 Stochastic modeling
This section describes the target model and the measurement model.

2.1 Target mode
ConsiderM targets and assume that the state ofittietarget is modeled as a jump linear system:

iy = @' (O 1)7) + 0 (Ohwp,  i=1,.., M, @)

where z! is the n-vectorial state of the-th target,6: is the mode of the-th target and as-
sumes values from1,.., N}, a'(6?) andb‘(#;) are (n x n)-matrices andv! is a sequence of
i.i.d. standard Gaussian variables of dimensionith w! , w/ independent for all # j andw!

.z, ) independent for all # j. Letu; 2 Col{z},...,zM}, 6, 2 Col{#},...,0M, A(6y) 2
Diag{a'(8}), ..., a™ (6M)}, B(6,) = Diag{b'(8)), ...,b™ (6M)}, andw;, = Col{w!, ..., wM}.

Then we can model the state of Qufr targets as follows:
Ti41 = A(Or1)2e + B(Or41)wy (2)

2.2 Measurement model

A set of measurements consists of measurements originating from targets and measurements orig-
inating from clutter. Firstly the measurements originating from targets are treated. Subsequently
the clutter measurements are randomly inserted between the target measurements.

A Measurementsoriginating from targets
We assume that a potential measurement associated withe$tatehich we will denote by}) is
modeled as a jump linear system:

i = hiO)al + gt (0 i=1,.., M 3)

wherez! is anm-vector,h?(6!) is an (n xn)-matrix andg’ (%) is an (n x m)-matrix, andv; is a se-
quence of i.i.d. standard Gaussian variables of dimensiaith v} andv{ independent for all £
4. Moreover! is independent of:? andw? for all i,j. Next with z; 2 Col{z}, ..., zM}, H(6;) 2
Diag{h!(0}), ..., k™ (0M)}, G(6,) £ Diag{g' (6}), ..., g™ (6})}, andw, 2 Col{v},...,vM}, we
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obtain:
zZt = H(Gt)xt + G(Ht)vt (4)

We next introduce a model that takes into account that not all targets have to be detected at moment
t, which implies that not all potential measuremerjtiave to be available as true measurements

at momentt. To this end, letP] be the detection probability of targétand letg;, €{0,1}

be the detection indicator for targgtwhich assumes the value one with probabillr%( > 0,
independently of;;, 7 # 4. This approach yields the following detection indicator vegtpof

size M:

¢ 2 Col{é1,t, ... Prre}-

Thus, the number of detected targetﬂﬁé Zf‘il ¢i . Furthermore, we assume that; } is a
sequence of i.i.d. vectors.

In order to link the detection indicator vector with the measurement model, we introduce the
following operator®: for an arbitrary (0,1)-valued/’-vector¢’ we defineD(¢’) 2 f‘i’l ¢} and

the operato® producing®(¢’) as a(0, 1)-valued matrix of sizeD(¢’) x M’ of which theith row
equals theth non-zero row of Diafp’}. Next we define, foD; > 0, a vector that contains all
measurements originating from targets at momemia fixed order.

52 D(¢¢)ze, where O(py) = D(¢r) @ Iy,

with 7,,, @ unit-matrix of sizen, and® the tensor product.
In reality, however, we do not know the order of the targets. Hence, we introduce the stochastic
D, x D, permutation matrix, which is conditionally independent ¢&, }. We also assume that

{x:+} is a sequence of independent matrices. Hencd)far 0,

~ A ~ A
Zt = X, %, Where x, = x; @ L,

is a vector that contains all measurements originating from targets at momentandom order.

B Measurementsoriginating from clutter
Let the random variabl&; be the number of false measurements at moméfie assume thaft;
has Poisson distribution:
_ ONF _
pr(F) =Yp—exp(—=AV), F=0,1,2,..

=0, else
where) is the spatial density of false measurements (i.e. the average number per unit volume) and
V is the volume of the validation region. Thud/ is the expected number of false measurements
in the validation gate. We assume that the false measurements are uniformly distributed in the
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validation region, which means that a column-veatprof F; i.i.d. false measurements has the
following density:

Porip, (V| F) = v

whereV is the volume of the validation region. Furthermore we assume that the pfagéds a
sequence of independent vectors, which are independént bf{w, }, {v:} and{¢,}.

C Random insertion of clutter measurements
Let the random variablé; be the total number of measurements at momenhus,

Lt:Dt+Ft

With y, 2 Col{Z;, v}, it follows with the above defined variables that

Vi = | i, ,ith>Dt>0 (5)

whereas the upper and lower subvector parts disappedyfor 0 and L, = D, respectively.

With this equation, the measurements originating from clutter still have to be randomly inserted
between the measurements originating from the detected targets. To do so, we first define target
indicator and clutter indicator processes, denotekhy and{v} }, respectively. Let the random
variabley; ; €{0,1} be a target indicator at mometrfor measuremerit which assumes the value

one if measuremeritbelongs to a detected target and zero if measureimeses from clutter.

This approach yields the following target indicator veatgiof size L;:

Yy 2 Col{br g, oo, p, i}

Let the random variabl&r;‘,t €{0,1} be a clutter indicator at mometfor measurement which
assumes the value one if measuremaames from clutter and zero if measuremebélongs to
an aircraft (thus);, = 1 —1;,¢). This approach yields the following clutter indicator veatgrof
sizeL;:

* A * *
wt == COI{wl,t"'Wth,t}'
In order to link the target and clutter indicator vectors with the measurement model, we make use

of the operato® introduced before. With this the measurement vector with clutter inserted reads
as follows:

y, = | @) i @)Y, if Ly > Dy >0 (6)
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This, together with equation (2), (4) and (5), forms a complete characterization of our tracking
problem in terms of stochastic difference equations.
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3 Exact filter equations

Next we introduce an auxiliary indicator procegsas follows:

JURRVAN .
Xt = X; ©(¢y) if Dy > 0.

Following the approach of Blom & Bloem (2000) equations (4), (5) and (6) can be transformed to:

Xtyt = @(Q%)H(Ht).%t + @(gbt)G(Ht)vt if D; >0 (7)

Notice that (7) is a linear Gaussian descriptor system (Dai, 1989) with stochastic i.i.d. coefficients

®(¢¢) andy,. From (7), it follows that forD, > 0 all relevant associations and permutations
can be covered by, x;)-hypotheses. We extend this 1o, = 0 by adding the combination
Yt = {}t andg; = {0}M. Hence, through defining the weights

By(6, %,0) 2 Prob{gy = 6, %1 = X, 00 = 0| Vi1,

whereY; denotes the-algebra generated by measuremenigp/to and including moment then
the law of total probability yields:

oy, (0) = > Bi(6, X, 0) (8)
%0
P uvi(,0) = ) - Be(d, X, 0)Pa101.60,5:,v: (@ | 0,0, X) 9)
%
Since
Payf0rvi (@ | 0) = Day 0,)y: (2.0) /o)y, (0) (10)

our problem is to characterize the right-hand terms in (9).
This has been accomplished in the following Theorem.

Theorem  Let py,y,_, (0) =TTy pgipy,_, (07) and 1€t p,,jg, v, _, (2]6) be Gaussian with mean
74(0) = Col{z}(0"), ...,z (#™)} and covariance P;(#) = Diag{ P} (6'), ..., PM (6M)}, then
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Bi(4, X, 0) satisfies for ¢ # {0}M:
(11)

M
Bi(6.%,6) = APV [£(0, %691 = PP - pyyy, , (69)] /e

—_

with:
fi(6,%,0") = [(27)"Det{Q}(6")}]
Ly
exp{—5 Y (1906t @)1 ik @))} (122)
k=1
where:
2k 0%z (07) (12.b)
éh(@ VB (01 (") + g'(6")g°(0")T (12.)

Qt(9’)

whereas [®(¢)].; and . are the i-th and k-th columns of ®(¢) and x, respectively. Moreover.
M}, isaGaussian mixture, whileitsoverall mean 2% (6%) and its overall

covariance P (¢7) satisfy:

Pegm(ei) = Z Bi(é, X m) (13.a)
#(0") = z3(0") + W (0") (Z ﬂlk 0" ) ) (13.b)
PZ(QZ) _ ptz(gz) Wt (01 hz 01 Pz 01 <Z z/c 91 )

JrWt 91 (Z ﬁzk 91 (01) )Wg(ez)T+
T
(13.¢)

_Wt 92 (Z ﬁzk 91 ) (Z ﬁzk 91 z z)) W;(QZ)T
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with:

WZ(G") P/ (0 )hz(m) [Qi(M)]
Z (o )Z*kﬁt ¢, X:n)/poi \Yt( )
b,X:m

70
777':07'

Proof: See Blom & Bloem (2002)

(13.d)
(13.e)
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4 IMMJPDA filter

In this section the IMMJPDA filter algorithm is specified. To do so use is made of the IMM filter
algorithm and of the Theorem. One cycle of the IMMJPDA filter algorithm consists of the follow-
ing six steps.

IMMJPDA Sep 1: For each target this comes down to the mixing/interaction step of the IMM
algorithm (Blom & Bar-Shalom, 1988) for all € {1, . . . ,M}: Starting with the weights

s gy £ i i
Yi-1(0°) :Peg_l\ytfl(ﬁ ), 0'e€{l,.,N}
the means

i iy & i i i i
Ti_1(0") = E{zi_410;_1 = 0" Y1}, 0" €{l,..,N}
and the associated covariances
i iy & i i i i i
L (0" = B{[xfy — &, (0)][x)_, — 21 (0)]" |6, =6 Y1}, 60 €{1,..,N}

one evaluates the mixed initial condition for the filter matcheéf te- 6° as follows:
N
= 2 MWyt - 41 (')
#1106 Znn oAt () - 25 () 3(07)
t1|01 ZHZGZ ’Ytl )
-(}_1<ni>+[xt_1<n'> #1011 (') — &)y (6D ) /1(67)

with

A i i pi i
i i = Pri0;=0"10;_,=n"}
_irmiy O i
7:(0") = poiy,_, (0°)
A iy D i i i
Ty_qpi(0°) = E{wy_q | 0; = 0", Y1}

i iy & i NN Si i i _ pi
Pi_1jg (0%) = B[ty — &1 (0)][2f1 — 211 (07)]710; = 0", Yia }
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IMMJPDA Sep 2: Prediction for ali € {1, .. .M}, 0° € {1,... N}:

z1(0") = a'(0")a} 4 (9") (14.a)
P(0") = a'(0) P} (0)a'(0) + b (00 (6)" (14.b)

IMMJPDA Sep 3. Gating, which is based on Bar-Shalom & Li (1995).
Evaluate for eachandd’the crosscovariance as follows:
Qy(6") = h'(6") P/ ()1 (") + 4'(6")g" (6")"
Subsequently identify for each target the mode for which@gt?) is largest:
07" = Argmax {DetQi(6")}

91
and use this to define for each targetgateGi € IR™ as follows:

Gy = {2 € R™ [ — W (0;)3 (0,7 Qi6) T [ — h'(6;)7(67)] < 7}

with ~ the gate size. If thg-th measurement)yfalls outside gat&; i.e. y/ ¢ G, then thej-th
component of thé-th row of [®(¢)? §,] is assumed to equal zero. This reduces the set of possible
detection/permutation hypotheses to be evaluated at marf@miariouse to X;(¢).

IMMJPDA Sep 4. Evaluation of the detection / association / mode hypotheses is based on the
Theorem. For alb € {0,1}M, x € {0,1}P@*DP@) g ¢ {1,.., N}M:

Bi(p,x.0) = ANEPONTL, [ (6, %, 67):
(1= P)=90 (P9 . 5107 Je;  for ¥ € Xi(¢), (15.a)
=0 else

with £2({0}M, {}F¢,6") =1 and forg # {0}M:

Fi(e, %, 01) = [(2m)™Det{ Qi (67)}] 2%
Ly
exp{—g S_(B(O)Tou (O IQIO ) (15.0)
k=1
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where

uit(0%) = yi — h'(6")7,(6") (15.c)

IMMJPDA Sep 5: Measurement update equations are based on the Theorem.#or{dll ..., M},
9t e {1,..,N}:

7O = > Bild.xm) (16)
XM
nt=0%

and using (13b, c, d, e) as approximate equations to evatigte and P/ (67).

IMMJPDA Sep 6: Output equations:

~1
.’I?t—

™=

7:(0%) - 23(0°)
ei

=1

PE=3 " 300 (P07 + [#,(07) — &3])[a;(6) — &)T)
i=1

>
S
Il

Remark It can be verified that the above IMMJPDA filter algorithm is similar to the IMMJPDA
filter algorithm of Chen & Tugnait (2001). The main new element is that the above specification
of IMMJPDA Steps 4 and 5 explicitly show the relation to the procegse$ and{¢;}. In the
sequel this relation is exploited for the development of a track coalescence avoiding IMMJPDA
filter, for short IMMJPDA filter.
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5 IMMJPDA* filter

A shortcoming of JPDA is its sensitivity to track coalescence. With their JPDA* approach, Blom
& Bloem (2000) have shown that hypothesis pruning can provide an effective track-coalescence
avoidance. The JPDA* filter equations can be obtained from the JPDA algorithm by pruning per
(o1, ¢ )-hypothesis all less likely,-hypotheses prior to measurement updating. In order to apply
this approach to IMMJPDA the JPDA* hypothesis pruning strategy is now extended: evaluate all
(¢, ¢1,0¢) hypotheses and prune pes;, 1,0, )-hypothesis all less-likely,-hypotheses. To do

so, define for every, v andd, satisfyingD(y)) = D(¢) <Min{M, L.}, a mappingx.(¢, 1,0):

2(6,,0) £ Argmax B,(¢, X @ (1)), 0)

X
where the maximization is over all permutation matrigesf size D(¢) x D(¢).

The pruning strategy of evaluating &, 1, 6)-hypotheses and only onehypothesis pefo, v, 0)-
hypothesis implies that fdb(¢) > 0 we adopt the following pruned hypothesis weighisp, 1, 6):
Bi(,,0) = Bu(¢, (.1, 0)T @ (1)), 0) /¢,
if D(¢) = D(¢) < Min{M, L}
=0 else

with ¢; a normalization constant fqﬁ‘t; i.e. such that

Z /ét(gb, d}a 9) =1
1,0
D()=D(¢)

By inserting these particular weights within IMMJPDA, we get IMMJPDA*,
One cycle of the IMMJPDA* filter algorithm consists of the following 7 steps:

IMMJPDA* Sep 1: Mixing for all i € {1,...,M}, 6° € {1,...,N}: Equivalent to IMMJPDA
step 1, section 5.

IMMJPDA* Sep 2: Prediction for alli € {1,..., M}, 6° € {1,..., N}: Equivalent to IMMJPDA
step 2, section 5.

IMMJPDA* Sep 3: Gating: Equivalent to IMMJIPDA step 3, section 5.

IMMJPDA* Sep 4: Evaluation of the detection/evaluation hypotheses: Equivalent to IMMJPDA
step 4, section 5.

IMMJPDA* Step 5: Track-coalescence hypothesis pruning: First evaluate for €¢ery,d) such
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thatD(y) = D(¢) < Min{M, L}

)A(t(gba %Z% 9) = Argmax 5t(¢a XT<I)(1]Z))’ 9)

X
Next evaluate alk:(¢, v,0) hypothesis weights:

Bu(¢, 0, 0) = B¢, %7 (6,0, 0)@(¢),0) /¢, i 0 < D(yp) = D(¢) < Min{M, L}
= B ({0}M, {}*,0) /¢ if D(¢) =D(¢) =0
=0 else

whereé, is a normalizing constant fgf,.

IMMJPDA* Step 6: Measurement update equations foradt {1,..., M}, 0 € {1,..., N} :

50 = > B, m) (17.a)
éybym.
nt=01

ZH(6Y) = ZHOY) + Wi(8Y) (Z B (%) ) (17.b)

Ptz<92) ~ ptz(gz) Wt (ez)hz 91 Pz 92 (Z ﬁZk 91 >

+W(6") (Z B0 (ei)T> W) +
T

Wt 91 (Z ﬂzk 91 > (Z sz 01 z 1)> WZ(Q@)T (17C)

with:
Wtw)éﬁzw >h1(9’> (@16 7! (17.d)
Bk 0" = Z ) L%t (D, 0, )T ()] arBe (0, 0, )] /52(67) (17.e)
[oR 7]
b,
nt 9

where|[.].x is thek-th column off.] .

IMMJPDA* Sep 7: Output Equations: Equivalent to IMMJPDA step 6, section 5.
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6 Monte Carlo simulations

In this section some Monte Carlo simulation results are given for the IMMPDA, IMMJPDA and
IMMJPDA filter algorithms. The simulations primarily aim at gaining insight into the behaviour

and performance of the filters when objects move in and out close approach situations, while
giving the filters enough time to converge after a manoeuvre has taken place. In the example
scenarios there are two targets, each modeled with two possible modes. The first mode represents
a constant velocity model and the second mode represents a constant acceleration model. Both
objects start moving towards eachother, each with constant initial velggjty (i.e. the initial

relative velocityVie| initial = 2V). At a certain moment in time both objects start decelerating
with -0.5 m/¢ until they both have zero velocity. The moment at which the deceleration starts is
such that when the objects both have zero velocity, the distance between the two objects equals
d. After spending a significant number of scans with zero velocity, both objects start accelerating
with 0.5 m/¢ away from each other without crossing until their velocity equals the opposite of
their initial velocity. From that moment on the velocity of both objects remains constant again
(thus the final relative velocit¥re| final = Viel, initial)- Note thatd < 0 implies that the objects

have crossed each other before they have reached zero velocity. Each simulation the filters start
with perfect estimates and run for 40 scans. Examples of the trajectoriésférandd < 0 are
depicted in figures 1a and 1b respectively. For each target, the underlying model of the potential

Trajectories fod > 0 Trajectories fod < 0

1000 1000
500¢ ] 500t

c c
S S
D 0 d>0 G 0 d<o0
o o
(o8 (o8

-500f ; -500f

-100 : : : -100 ‘ ‘ ‘
0 100 200 300 400 0 100 200 300 400
time time
la. Trajectories examples fdr> 0 1b. Trajectories examples fdr< 0
Fig. 1 Trajectories examples ford > 0 and ford < 0
target measurements is given by (1) and (3)
Tipr = @' (Opq)7y + 0" (00 wy 1)

G o= W0t +g' () (3)
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Furthermore foi = 1,2 and 67 € {1,2}:

1 T, 0 1 T, 3717
al(l)y=10 1 0|, d2=|0 1 T,
0 0 0 0 0 1
0 0
b(1)=o:-10 |, b(2)=0l-10
1 0
hi:[l 0 0], g = ot

1-Tg/m Ts/m1
TS/TQ 1—T3/T2

wherec? represents the standard deviation of acceleration noise ‘grépresents the standard
deviation of the measurement error. For simplicity we consider the situation of similar targets
only; i.e. o}, = 04, 0}, = om, Pj = Py. With this, the scenario parameters &g A, d, Vinitial,

Ts, om, 04, T1, T2, and the gate size. We used fixed parametess, = 30, o, = 0.5, 71 = 500,

9 = 50, andy = 25. Table 1 gives the other scenario parameter values that are being used for the
Monte Carlo simulations.

Table 1 Scenario parameter values.

IMMPDA's \ = 0.00001 for scenarios 1 and 3

Scenario| Py | A d Vinitial | Ts
1 1 |0 Variable | 7.5 10
2 1 | 0.001| Variable| 7.5 10
3 090 Variable | 7.5 10
4 0.9 | 0.001| Variable | 7.5 10

During our simulations we counted trackO.K.”, if
| izl — hizh |< 9oy,
and we counted track# j "Swapped”, if
| ik — W a, |< 9o,
Furthermore, two tracks# j are counted “Coalescing” at scanf
| Bidl — W@l |< o | il — Wal |> o,
For each of the scenarios Monte Carlo simulations containing 100 runs have been performed for

each of the tracking filters. To make the comparisons more meaningful, for all tracking mecha-
nisms the same random number streams were used. The results of the Monte Carlo simulations for
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the three scenarios are depicted as function of the distance relatiygitotwo types of figures,
showing respectively:

e The percentage of Both tracks “O.K. ” (figures 2a, 3a, 4a, 5a)

e The average number of “coalescing” scans (figure 2b, 3b, 4b, 5b).

Both Tracks O.K. mean time in coalescence
1005 30— ‘ : ‘
o
o5t OIMMPDA
80 ol ° .
) g 20f .
< 60 5 o] .
) 5 197
8 Qo
g 40 1S o ' e
o
\ 2 10y . 0% © o
20 | 5t
B © d o
© IMMPDA o ° 4
0 O an @ Q P G
-10 -5 0 5 10
dic
2a. "Both tracks O.K.” percentage 2b. Average number of "coalescing” scans

Fig. 2 Simulation results for scenario 1

Both Tracks O.K mean time in coalescence
- 30— : : :
10 : ‘ ‘
IMMJPDA* o
%o il 25¢ GMMPDA
80 \ 1 1) e} -0
Q c . N
g \ Q i I 3 20t B
=] 5 [\ n o}
g 60 \ ol )\ v ! 5 :
S IMMJIPDA I P = 15¢ :
[3) | | ? [}
@ ® ! ! d 2 © K
S 40 | \ | g ) 60
- be BRI R o 2 10f o RootN g
o ® [
20 |y
00 & 0. o
0 o dMMPDA o 0 ,.%600,
-10 -5 0 5 10
dio
m
3a. "Both tracks O.K.” percentage 3b. Average number of "coalescing” scans

Fig. 3 Simulation results for scenario 2
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mean time in coalescence
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4a. "Both tracks O.K.” percentage

Fig. 4 Simulation results for scenario 3

4b. Average number of "coalescing” scans
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Fig. 5 Simulation results for scenario 4
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For the examples considered, the simulation results show that both IMMJPDA* and IMMJPDA
perform much better than IMMPDA. Moreover the results show that IMMJPDA* avoids track

coalescence.
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