
J.M. Burgerscentrum

NICE

Nederlands Initiatief voor
CFD in Engineering

met behulp van HPCN

Coarse-grain parallelization of a multi-block
Navier-Stokes solver on a shared memory
parallel vector computer

P. Wijnandts and M.E.S. Vogels

NLR-TP-98380

Coarse-grain parallelization of a multi-block
Navier-Stokes solver on a shared memory
parallel vector computer

P. Wijnandts and M.E.S. Vogels

The work described in this report is partially supported by the Dutch Foundation
HPCN in the project NICE under contract number 96009.

This report is based on a presentation held on the Vector and Parallel processing '98
Conference, Porto, Portugal, June 21-23, 1998.

Division: Informatics
Issued: September 1998
Classification of title: unclassified

NLR-TP-98380

- 3 -
NLR-TP-98380

Summary

The coarse-grain, or block-loop parallelization of the multi-block Navier-Stokes flow solver EN-

SOLV on a NEC SX-4, a shared memory parallel vector computer, is discussed. The performance

of the parallel code was tested by running the code on ten benchmark cases, provided by the

ENSOLV user group. The performance is measured in terms of speed-up, memory usage and

execution cost. The results of the benchmark cases are presented. The results are compared to

those of the low-level DO-loop parallelization implemented earlier. The conclusion based on the

comparison of the results, is that for all benchmark cases, except the single block, the block-loop

parallelization gives better performance in terms of speed-up. Although block-loop parallelization

requires more memory, it gives overall less execution cost.

- 4 -
NLR-TP-98380

Contents

1 Introduction 5

2 The Parallel ENSOLV System 7

2.1 Block-loop parallelization of ENSOLV 7

2.2 Integration of parallel ENSOLV 8

2.2.1 Task estimation 8

2.2.2 Task allocation 8

2.2.3 Speed-up estimation 8

3 Settings for evaluation of parallel ENSOLV 9

3.1 Characteristics of the benchmark cases 9

3.2 Maximal attainable speed-ups 9

4 Results 11

4.1 Speed-up results 11

4.2 Memory usage 11

4.3 Execution cost 12

5 Conclusions and future work 14

6 References 15

4 Figures

Appendices 17

A Tables 17

(14 Tables)

(21 pages in total)

- 5 -
NLR-TP-98380

1 Introduction

The multi-block Navier-Stokes flow solver ENSOLV Ref. 2, Ref. 4, computes the solution of the

steady 3D Euler and/or thin-layer Navier-Stokes equations in an arbitrary flow domain. The Euler

and Navier-Stokes equations are given by five partial differential equations for the conservation

of mass, 3D momentum and energy, extended by the perfect gas law. To solve the equations,

an iterative procedure which resembles time integration is used. A number of techniques are

employed to accelerate the convergence:

1. A multigrid scheme, which performs relaxations on different grid levels, is used as solu-

tion procedure. This accelerates the convergence on the finest grid level. As relaxation

procedure, the explicit Runge-Kutta time stepping scheme is used;

2. The evaluation of the time step, needed for the Runge-Kutta scheme, is performed locally;

3. Implicit residual averaging with varying coefficients and enthalpy damping are used.

The solver is based on multi-block structured grids. Multigrid is applied around multi-block, i.e.

on each grid level a loop on the blocks is performed. The Runge-Kutta scheme is applied on a

block-by-block basis. This means that a relaxation of all blocks consists of taking one complete

Runge-Kutta time step for each block successively, keeping the flow states in the other blocks

fixed. The flow solver ENSOLV is currently operational at NLR and industry.

Within the NICE1 program, ENSOLV is being parallelized in order to reduce execution cost.

Parallelization takes place on a 16-processor NEC SX-4 Ref. 9, a shared memory parallel vector

computer, with a peak performance of 2 GFlop/s per processor. In Ref. 5, ten representative

benchmark cases were defined by the ENSOLV user group, which constitute the benchmark for

evaluating the parallelized version of the ENSOLV code. The performance of the parallel code is

measured in terms of speed-up, memory usage and execution cost. At NLR, execution cost are

expressed in a single number, so-called System Resource Units (SRU’s). In the SRU’s, the sum of

all CPU-times, the amount of memory used and the time the memory is occupied, are accounted

for; the formula reflects the cost price of the system elements Ref. 1. Note that the sum of all

CPU-times is always larger when parallelization is applied. If the parallelized code will result in a

reductionin real time, by the same factor as theincreasein memory usage, the SRU’s should stay

constant. A detailed explanation of the SRU formula, as used for the calculations of the SRU’s

reported in this document, can be found in Ref. 13.

The Data Parallelismstrategy for parallelizing ENSOLV was chosen Ref. 8. With this strat-

egy, parallelism is obtained by splitting up the DO-loop’s. Splitting up the DO-loop’s is specif-

1Netherlands Initiative for Computational Fluid Dynamics in Engineering with HPCN

- 6 -
NLR-TP-98380

ically suited for shared memory computers, such as the shared memory parallel vector machine

NEC SX-4, present at NLR.

There are different levels of DO-loop parallelization, two of which are:

1. Low-level DO-loop parallelization, parallelization of DO-loops in individual routines. A

possible problem is the fine parallel grain size; the work per loop might not be enough to

overcome the parallel overhead. Also, the parallelization has to be implemented on many

loops in order to achieve an acceptable parallelization percentage;

2. Block-loop parallelization, parallelization of the DO-loop’s over the blocks in the domain.

This can be considered as high-level DO-loop parallelization. It results in the largest possi-

ble grain size. A possible problem is load imbalance. The ENSOLV code uses a multigrid

algorithm, which is implemented around the multi-block algorithm. The operations of the

multigrid algorithm are relaxation, restriction and prolongation. The routines performing

these operations all contain block-loops. Therefore, this parallelization strategy is applica-

ble.

Earlier, ENSOLV has been parallelized using the low-level DO-loop parallelization strategy. This

parallelization is described in Ref. 11. The parallelization resulted in poor performance in terms

of speed-up and execution cost, for most benchmark cases. For benchmark cases with a relatively

high number of multigrid levels, combined with many small blocks in the grid, the poor perfor-

mance was attributed to the large parallel overhead caused by the very fine grain size. It was

decided that block-loop parallelization would be implemented. In Chapter 2, the block-loop paral-

lelization of ENSOLV will be described briefly. Also, the system into which the resulting parallel

code, along with tools for task estimation, task allocation and speed-up estimation, was integrated,

will be described. In Chapter 3, the benchmark cases will be described and remarks are made

about the expected performance of the parallel code for these benchmark cases. In Chapter 4, the

results of testing the block-loop parallel ENSOLV code on the benchmark cases are presented and

discussed. In Chapter 5, the final conclusions are given.

- 7 -
NLR-TP-98380

2 The Parallel ENSOLV System

In this section, the block-loop parallelization of ENSOLV is described briefly. A more extensive

description of the parallelization can be found in Ref. 13. The resulting parallel code was inte-

grated into a system including tools for task estimation, task allocation and speed-up estimation.

2.1 Block-loop parallelization of ENSOLV

Implementing block-loop parallelization, in stead of low-level DO-loop parallelization, has some

consequences that need to be examined:

1. To eliminate the dependency between time integration in the blocks, the Gauss-Seidel algo-

rithm is replaced with the Jacobi algorithm. This means that when updating the flow state

of one block, the flow states from the prior Runge-Kutta time step in the adjacent blocks

are used, in stead of the most recent flow states. Implementing a different solution pro-

cedure will generally change both convergence and stability, but should result in the same

final solution. However, in order to allow a fast evaluation of the block-loop parallelization

of ENSOLV, a simplified implementation of the Jacobi algorithm was used, resulting in a

slightly different final solution (in particular near block interfaces) Ref. 3. Results of the

serial ENSOLV code using this implementation of the Jacobi algorithm, can be found in

Tables 5-14;

2. A significant increase in memory usage is unavoidable; computing the blocks in parallel

means that each processor needs its own scratch arrays. For all benchmark cases, except the

single block benchmark case 02, the memory size is approximately doubled when run on

eight processors;

3. Since blocks differ in the number of grid points, the model used, boundary conditions ap-

plied etc., a load balancing problem may occur. Implementing a load balancing, or task

allocation tool will improve the load balance (Section 2.2.2);

4. The maximum speed-up that can be obtained, is limited to the number of blocks used, if

the number of blocks is less than the number of processors. Also, if a case has one large

block and many small blocks, the maximum speed-up is limited by the work load of the

large block.

The block-loops were parallelized by splitting these single loops in double loops; the outer loop

over the processors and the inner loop over the blocks assigned to that processor by the task

allocation tool (Section 2.2). The outer loops were parallelized by inserting*odir directives, rec-

ognizable only to the NEC Fortran compiler and therefore leading to a portable code. No message

passing code is necessary, since the parallelization takes place on a shared memory computer. The

NEC SX-4 preprocessor now generates the parallel code.

- 8 -
NLR-TP-98380

2.2 Integration of parallel ENSOLV

The code was integrated into a system, including tools for task estimation, task allocation and

speed-up estimation. The current work was carried out by operating this system through a specific

working environment, ISNaS Ref. 6, where the calculations can be started by simple drag-and-

drop actions.

2.2.1 Task estimation

Initially, the work load, or the weight for each block was set equal to the number of grid points.

This is reasonable under the assumption that the work in a block is proportional only to the number

of grid points, and all blocks are active in all parallel parts of the code. With ENSOLV, this

assumption proved to be incorrect; if two blocks have the same number of grid points, but not the

same ordering of their dimensions in the grid, their work loads can be different, due to a difference

in vectorization performance.

The present task estimation tool performs (at least) one iteration of the block-loop parallel EN-

SOLV code, including timing-commands. The work load for each block is then set equal to the

time it spends in the block-loops.

2.2.2 Task allocation

In order to improve the load balance, a task allocation tool was implemented. This task allocation

tool is a stand-alone partitioning tool, based on Ozturan algorithm Ref. 7, adapted for shared

memory machines Ref. 12. The algorithm starts from an existing partitioning of the blocks. It

then re-locates blocks until a satisfying (theoretically) load balance is reached, or there is no more

improvement possible.

2.2.3 Speed-up estimation

An estimation of the maximal attainable speed-up can be made following task estimation and task

allocation. An approximation of the parallel part of the code can be obtained by adding the work

loads for all blocks. We can now calculate the maximal attainable speed-up using Amdahl:

S = (
f �maxP WP

PNP

P=1
WP

+ (1� f))�1 (1)

wheref equals the fraction representing the parallel part,NP equals the number of processors and

WP equals the work assigned to processorP .

- 9 -
NLR-TP-98380

3 Settings for evaluation of parallel ENSOLV

In this section, the characteristics of the benchmark cases are given. The tools in the parallel

ENSOLV system are used to calculate maximal attainable speed-ups.

3.1 Characteristics of the benchmark cases

For the performance tests on the NEC SX-4, a set of test problems has been defined Ref. 5. The

characteristics of these benchmark cases can be found in Table 1. In Fig. 1, the benchmark cases

are identified by configuration and number of blocks.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

bl

oc
ks

benchmark case

aerofoil

W
W

W/B/N/P

W/B

a/c

W/B/N

a/c+stores

W/B/N W/B/N/P

Fig. 1 Identification of benchmark cases by configuration and number of blocks

3.2 Maximal attainable speed-ups

In Tables 2 and 3, the task allocations calculated by the task allocation tool, discussed in Sec-

tion 2.2.2, can be found. The work loads for benchmark case 05, measured by using one iteration

only, were relatively small. This can lead to inaccuracies, e.g. when calculating the fractionf rep-

resenting the parallel part. In order to reduce inaccuracies, the calculations for benchmark case 05

were done for the full 500 iterations. In Table 4, the maximal attainable speed-up calculated with

Equation 1 can be found.

It is expected that only for benchmark case 02, a single block case, the block-loop parallelization

will lead to significantly worse speed-up, compared to low-level DO-loop parallelization. For

all other benchmark cases, block-loop parallelization is expected to lead to an improvement in

- 10 -
NLR-TP-98380

speed-up (Fig. 2).

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

sp
ee

du
p

benchmark case

requirement

estimated
low-level

Fig. 2 Speed-up results for eight processors; estimated block-loop versus measured low-level

DO-loop

- 11 -
NLR-TP-98380

4 Results

The block-loop parallelization results for all ten benchmark cases, for 1-, 4- and 8-processor runs,

are shown in Tables 5-14 in Appendix A.

In Tables 5-14, the following definitions are used:

� TheParallelization Overheadis defined as the ratio of the real time needed by the parallel

version run on 1 processor and the real time needed by the serial version;

� TheSpeed-up forN processorsis defined as the ratio of the real time of the serial version

and the real time of the parallel version run onN processors;

� TheMemory Overheadis defined as the ratio of the amount of memory needed by parallel

ENSOLV onN processors and the amount of memory needed by the serial version.

All real time results are timings of the iteration part of the solver, output to the ENSOLV output

file OUT.

In the following sections, the speed-up, memory usage and execution cost are compared to low-

level DO-loop parallelization results. Not all the results of low-level DO-loop parallelization are

listed here, the reader is referred to Ref. 11.

4.1 Speed-up results

For all benchmark cases, except the single block benchmark case 02, block-loop parallelization

shows better performance in terms of speed-up, compared to low-level DO-loop parallelization.

The remaining differences in speed-up estimations and measurements are attributed to the fact that

the task estimation tool uses only one iteration. For benchmark case 05 the full 500 iterations were

used, and the differences are minimal. The required speed-up of 4.8 for eight processors, defined

by the ENSOLV user group, is attained by seven of the ten benchmark cases (Fig. 3).

4.2 Memory usage

As expected, the memory usage increases considerably for all benchmark cases, except the single

block benchmark case 02 (Tables 5-14). Of course, the memory usage does not further increase

when the number of processors is larger than the number of blocks. Benchmark case 10 shows the

largest increase in memory usage. For all benchmark cases, the memory usage was smaller than

the maximal available memory on the NEC SX-4.

- 12 -
NLR-TP-98380

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

sp
ee

d-
up

benchmark case

requirement

estimated
low-level

measured

Fig. 3 Speed-up results for eight processors; measured block-loop versus estimated block-loop

and measured low-level DO-loop

4.3 Execution cost

The execution cost for block-loop parallelization are considerably lower for all benchmark cases,

except for the single block benchmark case 02.

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

ra
tio

benchmark case

low-level
measured

Fig. 4 Ratio of execution cost on eight processors and cost of sequential execution; measured

block-loop versus measured low-level DO-loop

- 13 -
NLR-TP-98380

For eight of the ten benchmark cases, the cost for the parallel execution of ENSOLV on eight

processors are equal to or less than the cost for serial execution of ENSOLV (Fig. 4). For the large

memory benchmark case 07, the cost of the parallel runs are considerably lower than the cost of

the serial run. This is due to the construction of the SRU formula Ref. 13.

- 14 -
NLR-TP-98380

5 Conclusions and future work

Block-loop parallelization has been used for parallelizing the multi-block Navier-Stokes flow

solver ENSOLV. The parallel code was integrated into a system, including tools for task esti-

mation, task allocation and speed-up estimation. Future users will be able to operate this system

through a specific working environment, ISNaS Ref. 6, where the calculations can be started by

simple drag-and-drop actions.

The block-loop parallelized code was tested on ten benchmark cases. The performance was mea-

sured in terms of speed-up, memory usage and execution cost, and compared to the performance

of the low-level DO-loop parallelized code implemented earlier.

All benchmark cases, except the single block benchmark case 02, show better performance in

terms of speed-up compared to low-level DO-loop parallelization. For seven of the ten benchmark

cases, the speed-up for eight processors is higher than the the user required value of 4.8.

For all benchmark cases, except the single block benchmark case 02, memory usage increases

considerably when using block-loop parallelization in stead of low-level DO-loop parallelization,

as was foreseen.

The block-loop parallelization gives better or comparable performance in terms of execution cost,

than the low-level DO-loop parallelization, for all benchmark cases, except the single block bench-

mark case 02. For six of the ten benchmark cases, the execution cost for parallel runs is lower than

or comparable to the execution cost for the sequential run.

Based on the results, it was decided not to implement a single parallelization approach, combin-

ing both previously applied parallelization strategies; low-level DO-loop parallelization for larger

blocks, block-loop parallelization for several smaller blocks.

- 15 -
NLR-TP-98380

6 References

1. Hameetman, G.: Private communications (1997)

2. Kok, J.C., Boerstoel, J.W., Kassies, A., Spekreijse, S.P.:A robust multi-block Navier-Stokes

flow solver for industrial applications, NLR Technical Publication TP 96323 L (1996)

3. Kok, J.C.: Private communications (1998)

4. Kok, J.C.:An industrially applicable solver for compressible, turbulent flows, Ph.D. thesis,

Delft University of Technology (1998)

5. Laban, M.:Parallelized ENSOLV User Requirements, NLR Technical Report TR 96353 L

(1996)

6. Loeve, W., van der Ven, H., Vogels, M.E.S., Baalbergen, E.H.:Network Middelware illus-

trated for enterprise enhanced operation, NLR Technical Report TR 97224 L (1997), in

CAPE’97 proceedings

7. Ozturan, C., deCougny, H.L., Shephard, M.S., Flaherty, J.E.:Parallel adaptive mesh refine-

ment and redistribution on distributed memory computers, Comp. Methods Appl. Mech. Eng.,

Vol. 119 (1994) 123-137

8. Potma, K., Sukul, A.R.:Preliminary ENFLOW Parallelization for the definition of a Paral-

lelization Strategy for the NEC SX-4/16, NLR Technical Report TR 96410 L (1996)

9. Schoenmaker, M.:NLR SX-4/16 Vector/Parallel Supercomputer, http://super.nlr.nl:8080/

(1998)

10. Sukul, A.R.:Preliminary Parallelization Results of ENSOLV on the NEC SX-4, NLR Techni-

cal Report TR 96725 L (1996)

11. Sukul, A.R.:Predesign of ENSOLV Parallelization on the NEC SX-4, NLR Technical Report

TR 96726 L (1996)

12. van der Ven, H.:Partitioning and parallel development of an unstructured, adaptive flow

solver on the NEC SX-4, NLR Technical Publication TP 97329 L (1997)

13. Wijnandts, P.:Evaluation of block-loop parallelization of ENSOLV on the NEC SX-4/16, NLR

Technical Report TR 97344 L (1997)

- 16 -
NLR-TP-98380

This page is intentionally left blank.

- 17 -
NLR-TP-98380

Appendices

A Tables

Table 1 Characteristics of the benchmark cases (w=wing, w/b=wing-body, w/b/n=wing-body-

nacelle, w/b/n/p=wing-body-nacelle-pylon, BL=Baldwin-Lomax, CS=Cebeci-Smith,

JK=Johnson-King)

Case ident Config. 2D/3D Blocks Mcells Mgrid Euler/TLNS Tur. Mod. Iter.

01 RAE2822 aerofoil 2D 8 0.010 3 T(j) BL 400

02 Delta w 3D 1 0.369 3 T(k) BL 200

03 AS28g w/b/n 3D 62 1.556 2 E - 500

04 Onera M6 w 3D 4 0.786 4 T(j) CS 80

05 F16 a/c 3D 57 2.084 1 E - 500

06 F16 a/c+stores 3D 86 2.084 2 E - 360

07 VTP4 w/b 3D 38 6.636 4 T(j) BL 100

08 VTP4 w/b/n 3D 105 1.455 3 T(j) JK 100

09 Model 10 w/b/n/p 3D 106 2.211 3 T(i,j,k) CS 100

10 Duprin w/b/n/p 3D 21 0.577 2 E - 100

Table 2 Task allocations for four processors, withWP equal to the work load of processorP ,

the maximum given in bold

case 01 02 03 04 05 06 07 08 09 10

W1 0.17 36.20 11.35 29.76 707.30 18.19 110.63 42.50 57.12 5.25

W2 0.16 0 11.27 29.69 715.86 17.90 110.90 42.33 57.69 4.64

W3 0.17 0 11.30 17.43 726.24 17.97 112.44 42.49 57.63 5.34

W4 0.11 0 11.44 17.41 717.94 18.21 111.62 42.29 57.48 4.36

total 0.61 36.20 45.36 94.29 2867.34 72.27 445.59 169.61 229.92 19.59

- 18 -
NLR-TP-98380

Table 3 Task allocations for eight processors, withWP equal to the work load of processorP ,

the maximum given in bold

case 01 02 03 04 05 06 07 08 09 10

W1 0.17 36.20 5.44 29.76 354.89 9.00 56.12 20.50 28.79 2.57

W2 0.16 0 5.49 29.69 383.44 9.19 55.27 20.31 29.00 2.70

W3 0.07 0 7.10 17.43 355.95 8.96 54.23 20.45 28.89 2.08

W4 0.10 0 5.47 17.41 352.33 8.99 56.11 21.13 28.75 2.21

W5 0.03 0 5.54 0 353.48 8.91 58.24 20.32 28.61 2.59

W6 0.01 0 5.46 0 351.00 9.07 54.72 20.27 28.54 2.76

W7 0.04 0 5.41 0 366.18 9.02 56.89 26.00 28.47 2.49

W8 0.03 0 5.45 0 350.07 9.13 54.01 20.63 28.87 2.19

total 0.61 36.20 45.36 94.29 2867.34 72.27 445.59 169.61 229.92 19.59

Table 4 Maximal attainable speed-ups for four and eight processors, withf the fraction repre-

senting the parallel part of the code

case 01 02 03 04 05 06 07 08 09 10

f 0.9394 0.9981 0.9908 0.9890 0.9949 0.9922 0.9932 0.9957 0.9962 0.9894

S4 3.08 1.00 3.86 3.09 3.89 3.88 3.88 3.94 3.94 3.57

S8 3.22 1.00 6.09 3.09 7.24 7.47 7.32 6.37 7.73 6.67

Table 5 Parallel performance for case 01, 400 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 118 - 1.00 237 24 - 1475

1 parallel 124 1.05 0.95 226 25 1.04 1553

4 parallel 52 - 2.27 533 40 1.67 2543

8 parallel 55 - 2.15 508 54 2.25 5266

- 19 -
NLR-TP-98380

Table 6 Parallel performance for case 02, 200 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 717 - 1.00 485 195 - 11297

1 parallel 865 1.21 0.83 436 212 1.09 12121

4 parallel 712 - 1.01 484 203 1.04 14052

8 parallel 962 - 0.75 364 212 1.09 33396

Table 7 Parallel performance for case 03, 500 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 2256 - 1.00 666 249 - 38296

1 parallel 2327 1.03 0.97 652 266 1.07 34873

4 parallel 603 - 3.74 2488 376 1.51 33385

8 parallel 456 - 4.95 3291 465 1.87 35373

Table 8 Parallel performance for case 04, 80 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 753 - 1.00 436 208 - 12170

1 parallel 760 1.01 0.99 433 208 1.00 12266

4 parallel 250 - 3.01 1307 398 1.91 11628

8 parallel 248 - 3.04 1324 406 1.95 13300

Table 9 Parallel performance for case 05, 500 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 2873 - 1.00 644 241 - 48331

1 parallel 2882 1.00 1.00 643 241 1.00 48412

4 parallel 768 - 3.74 2402 357 1.48 40759

8 parallel 405 - 7.09 4541 502 2.08 40594

- 20 -
NLR-TP-98380

Table 10 Parallel performance for case 06, 360 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 2600 - 1.00 618 282 - 45689

1 parallel 2648 1.02 0.98 608 300 1.06 40254

4 parallel 684 - 3.80 2324 434 1.54 38595

8 parallel 443 - 5.87 3584 584 2.07 39109

Table 11 Parallel performance for case 07, 100 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 4430 - 1.00 621 859 - 129283

1 parallel 4593 1.04 0.96 617 859 1.00 130170

4 parallel 1270 - 3.49 2161 1555 1.81 91093

8 parallel 717 - 6.18 3825 1944 2.26 82421

Table 12 Parallel performance for case 08, 100 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 1676 - 1.00 375 211 - 27197

1 parallel 1752 1.05 0.96 362 228 1.08 25539

4 parallel 560 - 2.99 1117 281 1.33 24390

8 parallel 325 - 5.16 1923 346 1.64 26005

- 21 -
NLR-TP-98380

Table 13 Parallel performance for case 09, 100 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 2294 - 1.00 395 285 - 40452

1 parallel 2326 1.01 0.99 389 302 1.06 35627

4 parallel 681 - 3.37 1320 357 1.25 33209

8 parallel 396 - 5.79 2269 436 1.53 33046

Table 14 Parallel performance for case 10, 100 iterations

#processors sequential execution parallel speed-up MFLOPS memory memory SRU

or (real) overhead usage overhead

parallel time (MB)

1 sequential 198 - 1.00 570 104 - 2784

1 parallel 195 0.98 1.02 571 104 1.00 2776

4 parallel 64 - 3.09 1715 183 1.76 3028

8 parallel 31 - 6.39 3487 249 2.39 3135

