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Problem area 
As the use of simulations for military training becomes more 

prevalent, the need for properly behaving computer generated 

forces (CGFs) increases. For each new training scenario, new 

behavior has to be defined. However, access to expert knowledge 

is costly, and newly defined behavior will be restricted to the 

particular training scenario. Machine learning techniques may 

offer a solution to these problems by automatically generating 

CGF behavior. Because traditional machine learning techniques, 

such as neural networks and evolutionary learning, produce 

opaque behavior models that are hard to understand and reuse, 

we turn to the Dynamic Scripting (DS) method. 

Description of work 
We applied DS, a machine learning technique from the world of 

video games, to the air combat domain. It was designed for 
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functional and computational requirements, such as fast and transparent learning, that are also 

applicable to military training simulations. DS takes behavior rules and combines them into 

scripts, which govern the behavior of CGFs in a simulation. Because air combat missions are 

usually flown in multiples of two, we extended DS with a team coordination method, called DS+C. 

This coordination method makes use of behavior rules, and therefore perfectly fits into the DS 

learning mechanism. Using DS+C, agents learned which actions to coordinate in order to achieve 

better results. 

 
Results and conclusions 
DS+C was tested in a 2v1 air combat simulation, and was compared to regular DS. We found that 

agents using DS+C reach a 20% higher win/loss ratio than those using regular DS. Also, agents 

using DS+C reach these higher win/loss ratios faster. Therefore, we conclude that DS+C maintains 

the transparency of the DS learning method, while improving the efficiency of the learning 

process and the effectiveness of the learned behavior. 

Applicability 
Because of its speed and ease of use, the DS+C method is very practical to implement and to 

generate behavior for CGFs with. The method has already been applied in a simple air combat 

simulation, and can easily be transferred to more complex settings (2v2 and 4v4 instead of 2v1). 

DS only has to be initialized once, with behavior rules based on domain knowledge concerning 

the tactical simulation. Because team coordination is an important trait in many domains, the 

DS+C method may also provide positive results in for example land-based or naval combat 

scenarios.

 

http://www.nlr.nl/


  
 

  

Improving Air-to-Air Combat 
Behavior Through Transparent 
Machine Learning 
  
 
 
 
A. Toubman, J.J.M. Roessingh, P. Spronck1, A. Plaat1 and 
H.J. van den Herik2  

 

1  T i lburg Un iversity  
2  Le id en Univers ity  
 

 

C u s t o m e r  
National Aerospace Laboratory NLR 
July 2014 



 
 

 

Improving Air-to-Air Combat Behavior Through Transparent Machine Learning 

 
  

 

2 | NLR-TP-2014-259   
 

This report is based on a paper submitted to the I/ITSEC 2014, Orlando, Florida, December 1-4, 2014. 

The contents of this report may be cited on condition that full credit is given to NLR and the authors. 

This publication has been refereed by the Advisory Committee AIR TRANSPORT. 

Customer National Aerospace Laboratory NLR 

Contract number ----- 

Owner NLR 

Division NLR Air Transport 

Distribution Unlimited 

Classification of title Unclassified 

Date July 2014 

 

Approved by: 

Author 

Armon Toubman 

 

 

Reviewer 

Remco Meiland 

 

 

Managing department 

Harrie Bohnen 

 

 

Date Date Date 



  

   NLR-TP-2014-259 | 3 

 

Summary 

Training simulations, especially those for tactical training, require properly behaving computer 

generated forces (CGFs) in the opponent role for an effective training experience. Traditionally, 

the behavior of such CGFs is controlled through scripts. There are two main problems with the 

use of scripts for controlling the behavior of CGFs: (1) building an effective script requires expert 

knowledge, which is costly, and (2) costs further increase with the number of ‘learning events’ in 

a scenario (e.g. a new opponent tactic). Machine learning techniques may offer a solution to 

these two problems, by automatically generating, evaluating and improving CGF behavior. In this 

paper we describe an application of the dynamic scripting technique to the generation of CGF 

behavior for training simulations. Dynamic scripting is a machine learning technique that 

searches for effective scripts by combining rules from a rule base with predefined behavior rules. 

Although dynamic scripting was initially developed for artificial intelligence (AI) in commercial 

video games, its computational and functional qualities are also desirable in military training 

simulations. Among other qualities, dynamic scripting generates behavior in a transparent 

manner. Also, dynamic scripting’s learning method is robust: a minimum level of effectiveness is 

guaranteed through the use of domain knowledge in the initial rule base. In our research, we 

investigate the application of dynamic scripting for generating behaviors of multiple cooperating 

aircraft in air-to-air combat. Coordination in multi-agent systems remains a non-trivial problem. 

We enabled explicit team coordination through communication between team members. This 

coordination method was tested in an air combat simulation experiment, and compared against a 

baseline that consisted of a similar dynamic scripting setup, without explicit coordination. In 

terms of combat performance, the team using the explicit team coordination was 20% more 

effective than the baseline. Finally, the paper will discuss the application of dynamic scripting in a 

practical setting. 
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Abbreviations 

Acronym Description 
AI Artificial Intelligence 

CAP Combat Air Patrol 

CGF Computer Generated Force 

DS(+C) Dynamic Scripting (with Coordination) 

NLR National Aerospace Laboratory NLR 
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1 Introduction 

Simulation has become a mainstay in many fields (Bair & Jackson, 2013). In the field of military 

training, simulation is an invaluable tool. Real-life exercises are expensive, dangerous and time-

consuming to set up, while simulations are relatively cheap, safe, and flexible (Fletcher, 2009; 

Laird, 2000). 

 

In military simulations, the roles of allies and opponents are often performed by computer 

generated forces (CGFs). In high-fidelity simulators, the fidelity of the behavior of these CGFs is 

crucial to the overall training experience. Traditionally, the behavior of CGFs is scripted 

(Roessingh, Merk, Huibers, Meiland, & Rijken, 2012). Production rules—rules that map conditions 

to actions—are manually crafted to suit specific (types of) CGFs. In complex domains such as air 

combat, scripts for CGFs rapidly become complex and require substantial domain expertise to 

create. 

 

Artificial Intelligence techniques may provide a solution to the problem of generating behavior 

for CGFs. Many different approaches have already been attempted. The use of cognitive models 

is one seemingly popular approach, which can be found in well-known systems such as TacAir-

Soar (Jones et al., 1999) and ACT-R (Anderson, 1996). At the National Aerospace Laboratory 

(NLR), recent work on CGF behavior has focused on optimizing cognitive models with machine 

learning techniques such as neural networks and evolutionary learning (Koopmanschap, 

Hoogendoorn, & Roessingh, 2013). However, such methods result in large, opaque behavior 

models which are hard to understand and reuse. 

 

In this paper, we return to scripts for the transparency of production rules. To ease the difficulty 

of composing scripts that should result in effective behavior based on the rules given, we apply a 

machine learning technique called dynamic scripting (DS) (Spronck, Ponsen, Sprinkhuizen-Kuyper, 

& Postma, 2006). DS was originally developed for the generation of behavior for AI characters in 

video games and was designed with certain functional and computational characteristics in mind 

that transfer well to the domain of military training. 

 

We extended DS with a method for team coordination, which we call DS+C. This extension 

enables CGFs to automatically learn to coordinate actions through communication. At the end of 

the learning process, the resultant coordination between the CGFs is understandable and 

transparent. This transparency is a direct result of the fact that DS requires premade rules to 

learn from and outputs combinations of these rules. We demonstrate both the machine learning 
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process and the DS+C extension with an air combat simulation experiment. The results of this 

experiment show that the use of DS+C leads to a 20% performance increase over the use of DS 

without team coordination. 

 

This work is targeted to practical military applications and, as such, contains new material that 

builds on previous work (Toubman, Roessingh, Spronck, Plaat, & van den Herik, 2013). 
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2 Dynamic Scripting and Related Work 

Dynamic scripting is an automated learning technique based on reinforcement learning, 

introduced by Spronck (Spronck et al., 2006). In essence, DS uses a weighted rule selection 

mechanism to select rules from a rule base and generate a script. The generated script governs 

the behavior of a simulated agent during an encounter with some opponent agent or agents. 
 

The rule base is initialized with predefined behavior rules. These rules are pieces of behavior 

based on domain knowledge. In other words, the rule base should be initialized with rules that 

typify behavior that is possibly useful to the agent in situations that this agent might encounter. 
 

The DS algorithm assigns a constant initial weight to each rule in the rule base, and begins a 

selection process. A preset number of rules are randomly selected from the rule base according 

to their weights. The selected rules form a script, which is used to control an agent during an 

encounter. The result of this encounter is fed back to the DS algorithm which calculates a fitness 

score based on this result. The calculated fitness score is used to update the weights of the rules 

that were activated during the encounter, either positively or negatively. The change in weight 

affects the likelihood of the rules to be selected for a new script. This process is repeated until 

some goal is reached. For example, in the air combat domain, such a goal might be reaching a 

point at which scripts are generated that can reliably defeat an opposing force. The DS learning 

process is illustrated in Figure 1. See (Spronck et al., 2006)  for full details on the DS algorithm. 
 

Because of the stochastic nature of the rule selection mechanism, it is important to evaluate 

samples of generated scripts. To this end, Spronck defined a measure called the turning point 

(TP), which is the encounter after which the learning agents reached a higher fitness value than 

the opposing agents for at least 10 consecutive encounters (the number 10 was picked 

arbitrarily). At the turning point, it can be said that the learning agents are consistently 

outperforming their opponents. 
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DS was intended as a method for automated generation of behavior for AI characters in 

commercial video games. In the video game industry, automated generation of AI behavior is 

rarely used because of the possibility of unwanted behavior emerging, which lowers the overall 

quality of the game and leads to negative reviews. DS was designed with several computational 

and functional requirements in mind to address this issue. These requirements are listed as 

speed (the learning algorithm should be fast), effectiveness (all behavior should be at least 

reasonably effective in some situations), robustness (results are sampled and extreme results do 

not lead to extreme weight updates), clarity (scripts are easily understood by humans), and 

variety (the selection mechanism ensures behavior will be generated in different combinations). 

The same requirements are applicable in the field of military training simulations, where the 

quality of the behavior of constructive agents is at least as important as it is in commercial video 

games.  
 

In practice, DS can be applied in both an online and offline fashion. In other words, DS can be 

used to learn initial behavior in an automated way (i.e., offline learning). Then, when the weights 

of the rules have sufficiently converged, the algorithm can be left active when the learning agents 

are set up against human trainees. When the result of such an encounter is fed back to DS, the 

weights of the rules will again be updated. This way, while the training simulations are taking 

place, the agents will still be able to learn and try different scripts against different strategies that 

the humans might be employing. Alternatively, the learning process can be stopped and the 

resulting rules and their weights can be inspected. Static scripts can then be manually extracted 

and possibly tweaked.  
 

 
Figure 1. Dynamic scripting in the context of two learning agents in an air combat simulation. 
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When DS is used to control a team of agents (by assigning each agent its own rule base and DS 

instance, i.e., decentralized control), team behavior is the result of emergence. However, it may 

be desirable and even advantageous to have the agents in a team display some form of team 

coordination. Especially in military training simulations, agents have to be able to coordinate 

movements like staying in formation and performing tactical maneuvers. 
 

In general, there are two methods of team coordination: centralized and decentralized 

coordination (van der Sterren, 2002). With centralized coordination, one agent coordinates the 

actions of multiple agents. With decentralized coordination, all agents in a team may influence 

each other’s actions by sharing information through some form of communication. 
 

For this paper, we are interested in exploring possible interactions between agents in the air 

combat domain. For that reason, we have chosen to implement decentralized coordination. With 

DS, decentralized control translates to multiple agents having their own rule base and instance of 

the learning algorithm. We achieved coordination between the agents through communication. 

Adding communication to multi-agent systems is not a trivial problem (Stone & Veloso, 2000). 

For this reason, we attempted to fit the communication scheme (and therefore also the 

coordination) into the learning mechanism of DS. 
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3 Dynamic Scripting with Team Coordination 

We implemented team coordination with DS through communication between agents resulting 

in a technique we call DS+C. By utilizing the production rules for communication by sending 

messages, and letting these messages trigger behavior in the recipients, the DS algorithm is able 

to learn which exchanges of messages result in the most effective team behavior. 
 

In general, the communication scheme consists of three parts. First, one additional action is 

added to each rule of each agent. This action is to send a message to team members containing 

the intention of that rule. For example, rules for agents in an air combat simulation might be 

described as ‘evasive’ or ‘aggressive’. 
 

The second part of the communication scheme is a new component for the agents. This 

component stores messages that are received, until the agent has processed its rules. This 

component is needed to account for any asynchronous processing between the agents. 
 

The third part is the addition of new rules to the rule bases of the agents. These rules, (i.e., the 

‘coordination rules’), are designed in such a way that the reception of messages containing 

intentions of other agents trigger some form of corresponding behavior. The complete 

communication scheme is shown in Figure 2. 
 

Using this method, we obtain agents with rule bases that contain rules that are proactive (act and 

send messages) and reactive (act on received messages) regarding team coordination. The rule 

bases can also contain variants of the rules that send messages or act on received messages. 

Because of the way the DS learning algorithm works, the rules are recombined into scripts, and 

tested in simulated encounters. This way, the agents are able to learn which exchanges of 

messages lead to the most effective behavior. 
 

The specificity of the intentions that are sent in the messages should be tailored to the 

application. If the intentions are described too narrowly, it is possible that DS will not be able to 

match up the proactive rules of one agent with the right reactive rules in another agent. 

However, if the intentions are described too widely, the chance of unrelated behavior being 

coordinated between agents increases. 
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Figure 2. Example of DS+C in action. (1) Proactive and reactive coordination rules are added to the rule 
bases. The left rule base shows two example proactive rules, the right rule base shows two example 
reactive rules. Variations on the same rules are made to give the DS algorithm more options to explore. 
(2) The DS algorithm selects rules from the rule bases to form scripts (in this case, one rule per script). (3) 
Agent A’s rule is activated by an incoming missile. A turns, and sends a message “evading” to B. This 
activates B’s rule, causing B to turn. 
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4 Case Study 

As an exploratory study, we tested the application 

of DS+C in a custom air-to-air combat simulation. In 

the simulation, a formation of two blue fighters 

(“the blues”), a lead and a wingman, had to 

eliminate a single red fighter. The red fighter flew a 

Combat Air Patrol (CAP) (see Figure 3) to defend an 

area of airspace. The mission of the blues was 

considered successful if they eliminated the red 

fighter without any losses on their own side. The 

mission of red was to eliminate all fighters it 

detected. Figure 4 shows a screenshot of the 

simulation. 
 

The behavior of the blues was governed by scripts 

generated using the DS+C method. The rules used 

by the blues are divisible into roughly three sets. 
 

The first set consists of default rules. These are rules 

that define basic behavior that is needed in every encounter, and on which the agents can fall 

back if no other rules apply. These rules are included in every script, and their weights are left 

unchanged by the DS+C process. An example of a default rule is to fly in the direction of the 

airspace that red is patrolling if no other rule applies.  
 

The second set consists of general rules for air combat. These rules define behavior such as 

tracking enemies on the radar, firing missiles at enemies and evading incoming missiles. These 

rules are based on domain knowledge, although highly simplified to illustrate the principles. Also, 

these are the rules that send the intention of the agent as a message (i.e., the proactive rules). 
 

The third set consists of the coordination rules. These are the reactive rules that activate in 

response to the reception of messages from other agents (or in our case, just the other blue 

agent). 
 

DS+C generated scripts with six rules plus the default rules. Each rule base had 31 rules that 

started with a weight of 50. Each rule was also manually assigned a priority number. In case 

multiple rules activated at the same time, this priority number would be used to determine 

 
Figure 3. The scenario used in the case 
study. The blue fighters (left) fly towards the 
red fighter (right). The red fighter is flying a 
Combat Air Patrol (CAP). 

 
Figure 4. Screenshot of the simulation. 

 
 



  

   NLR-TP-2014-259 | 15 

 

precedence. In case the priority numbers were tied, the rule with the highest weight would be 

chosen. A sample of four rules is shown in Table 1. 
 

The red fighter used three basic tactics which were implemented as three static scripts. With the 

Default tactic, red flew a basic CAP and engaged all enemies it detected, as described earlier. Red 

also used an Evading tactic with which it would try to evade the radar of the blues, and a Close 

Range tactic with which it would only fire missiles if the blues were in close range (that is, closer 

than with the Default tactic). These three basic tactics each had an alternative version in which 

red would fly its CAP in clockwise direction rather than in counter-clockwise direction, to 

introduce more variety in the encounters. Finally, to test how well the blues would be able to 

learn generalized behavior, red was given a composite tactic which consisted of the three basic 

tactics plus their alternative versions. With these mixed tactics, red randomly selected a tactic 

and would use it until it lost an encounter, at which point it would randomly select a new tactic 

to use. 
 

DS uses a fitness function to measure the performance of agents in an encounter. We measured 

the performance of the blues using the following fitness function: 
 
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �0.25 + (0.5 ∗ 𝑤𝑓𝑓𝑓𝑓𝑤)� + 0.125 ∗ 𝑓𝑠𝑓𝑓𝑠 + 0.125 ∗ 𝑤𝑓𝑓𝑟𝑟𝑤𝑟𝑓𝑓 (1) 
 

In Equation 1, winner is 1 if the blues won or 0 if they lost; speed is 1 minus the ratio of the 

duration of the encounter to the maximum allowed duration; and resources is a value between 0 

and 1 based on the number of missiles spent in the trial (stimulating the blues to eliminate red 

with as few missiles as possible). The fitness function is used to calculate the weight adjustments 

Table 1. A sample of the rules that the blues used in the experiment. 

Rule Priority 
If my teammate is alive, then fly in a ‘2-ship element’ formation 1 

If my Radar Warning Receiver detects an enemy radar, then turn approximately towards 

that radar. 

6 

If my radar is in ‘lock’ mode and I have missiles left and I am within 80 units from the 

enemy, then fire a missile. 

9 

If I receive a message that my teammate is evading the enemy’s radar, change my heading 

90 degrees plus the approximated relative bearing to the nearest enemy radar that is 

detected by my Radar Warning Receiver. 

6 
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between trials. Unfortunately there is no standard way to do this, as the calculations have to be 

tailored to the output of the fitness function. We used the following function: 
 

𝑎𝑠𝑎𝑟𝑓𝑓𝑎𝑓𝑓𝑓 = max (50 ∗ �(𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 2) − 1�,−25) (2) 
 

The constants in Equation 2 represent the balance between reward and punishment. For 

example, we set the maximum negative weight adjustment to -25, such that rules that started at 

the initial weight of 50 would still have a reasonable chance to be selected in a subsequent trial. 
 

Next, we compare the performance of DS+C to that of regular DS. In order to do so, we first 

define performance in terms of efficiency (learning speed) and effectiveness (combat results). 

We define effectiveness as the mean win/loss ratio during a learning episode. It is difficult to 

define the efficiency of the DS algorithm, because it is hard to establish precisely when stationary 

performance is reached. Both the DS algorithm and the simulated environment are stochastic by 

nature. For this reason, it is unlikely that the DS algorithm will converge to a single optimal script. 

A performance measure is needed that takes this fact into account. 
 

To deal with the inherent variations in the learning process, we define the turning point measure 

TP(x) (based on Spronck’s TP measure (Spronck et al., 2006)) as the encounter after which the 

blues have won x percent of the last 20 encounters. The window size of 20 encounters was 

chosen to allow for a sufficient number of evaluation points during a learning episode. A learning 

episode consisted of 250 encounters. The x thus represents the chance that at TP(x) a winning 

script will be generated. It now follows that an early TP(x) represents a more efficient learning 

process, while a late TP(x) represents a less efficient learning process. 
 

Two sets of experiments were run. In the first set, the blues used regular DS, while in the second 

set they used DS+C. Red used one of the seven tactics described earlier. The results of the 

experiments are described in the next section. 
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5 Results 

For each of the basic tactics used by red, results were averaged over 10 learning episodes, with 

each episode consisting of 250 trials. In the case of the mixed tactics, the results were averaged 

over 100 learning episodes for noise reduction purposes.  

 

The average TP(x) was calculated with x being 50%, 60%, 70% and 80% wins, for the performance 

of the blues against each of red’s tactics. These specific values for x were chosen because they 

represent the most interesting ranges: win/loss ratios below 50% mean a majority of losses, 

while win/loss ratios over 80% are unlikely due to the stochastic nature of DS. For the mixed 

tactics, the TPs were compared using independent two-sample t-tests. Learning curves were 

created using a rolling average of the win/loss ratio, with a window of 20 encounters. Also, a log 

of the weight changes was kept to be able to see to what extent the coordination rules were 

selected by the DS+C agents. 

 

Table 2 shows the TPs of the blues using DS and DS+C against red’s individual basic tactics and 

mixed tactics. Independent two-sample two-tailed t-tests show that against the mixed tactics at 

TP(50%), the mean TPs are achieved significantly earlier using DS+C (t = 3.85, p = 0.00016) at the 

a = 0.05 significance level. The same holds for TP(60%) (t = 3.60, p = 0.00039), TP(70%) (t = 3.60, p 

= 0.00039), and TP(80%) (t = 2.46, p = 0.015).  

 

Figure 5 shows the learning curves of the agents with DS and DS+C against red’s mixed tactics. 

After around 100 trials, both the DS and DS+C agents seem to reach a plateau. After the first 100 

encounters, DS and DS+C maintain a mean win/loss ratio of respectively 0.53 and 0.63. During 

the entire learning process, the DS+C agents clearly outperformed the DS agents, with a mean 

difference in win/loss ratio of 20.3%. 

 

We found in the simulation logs that the coordination rules were selected and activated multiple 

times. Several rules out of the 31 rules each blue had in its rule base received particularly high 

weights. The blue lead favored one rule in particular, with a mean final weight of 178.6. This rule 

stated ‘if I receive a message that my wingman is evading an enemy, turn approximately towards 

that enemy’. The blue wingman mainly favored two rules that made it perform evasive actions 

when it received a message from the lead that it was trying to avoid being detected by red, with 

mean final weights of 103.8 and 106.6. 
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The rule that was favored the most in the case without coordination was the ‘beam maneuver’ 

(flying perpendicular to an enemy’s radar to avoid detection). This rule received high weights 

from both the blue lead (386.7) and the blue wingman (323.5). Also, in all cases, the blues 

preferred firing missiles from a greater distance. 
  

Table 2. TPs of DS and DS+C against red’s basic tactics (aggregated results, 10 learning episodes per tactic) and the 
mixed tactics (averaged over 100 learning episodes). 

  TP(50%) TP(60%) TP(70%) TP(80%) 
Tactics of red DS μ σ μ σ μ σ μ σ 
Patrol DS 30 13.9 33.1 14.3 48.1 20.6 108 74.3 

 DS+C 23.4 5.3 25.8 7.2 28.1 8.4 31.2 11.1 
Patrol (Evading) DS 49.4 17.3 67.7 31 78.3 28 108.9 59.5 

 DS+C 28.1 8.1 34.8 10.4 52.4 38.6 77.9 77.9 
Patrol (Close Range) DS 22.4 3.4 24.2 5.9 29.6 12 33.1 13.7 

 DS+C 25.7 8.9 35.9 17.7 58 61.2 63.6 68.7 
Patrol (alt.) DS 42.3 33.1 62.5 42.1 90.9 43.7 114.1 64.7 

 DS+C 31.1 10.5 35.3 10.2 43.8 12.7 73.8 65.3 
Patrol (Evading, alt.) DS 131.3 76.4 137.5 74.5 156 82.7 200.9 58.2 

 DS+C 54.4 70.7 66.4 67.8 91.3 86.7 143.6 92.7 
Patrol (Close Range, alt.) DS 59.1 71 71.6 67.3 121.2 82.8 169.4 92.5 
 DS+C 45.9 17.1 90 57.9 116.4 75.6 154.2 77.5 
Mixed DS 83.8 78.1 94.5 78.9 110.5 78.4 129.9 79.1 
 DS+C 48.4 48.4 60.9 49.6 75.8 55.5 103.9 69.7 
Basic (average) DS 55.8 56.7 66.1 57.8 87.3 66.5 122.4 82 
 DS+C 34.8 31.3 48 42.7 65 61.3 90.7 80.6 

 

 
Figure 5. Rolling average (window size 20) of win/loss ratio of the blues against red’s mixed tactics, with DS and DS+C. 
Ratios are averaged over 100 learning episodes. 
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6 Discussion 

Over a large set of experiments, DS+C showed clear advantages over traditional DS for multi-

agent reinforcement learning. Throughout our experiments, the DS+C agents won more often 

than DS agents from an opponent that frequently changed its tactics. The DS+C agents also 

improved on the TPs set by the regular DS agents in encounters against both a predictable (basic 

tactics) and unpredictable (mixed tactics) agent. Coordination in multi-agent systems is an 

extensively researched topic with many open issues and learning opportunities (Stone & Veloso, 

2000). The literature shows that the addition of coordination to a multi-agent system does not 

automatically lead to increased performance (Balch & Arkin, 1994), which makes the results 

obtained with DS+C especially noteworthy. 

 

We used the newly defined TP(x) measure to compare the efficiency of DS and DS+C. Against an 

opponent with mixed tactics, the DS+C agents reached the TP(x) at 50%, 60%, 70% and 80% 

significantly earlier than the agents with regular DS did. Similar patterns can be seen in the 

results for the basic tactics. In other words, in our experiments, these ‘milestones in learning’ 

were reached earlier by DS+C. Therefore, we may provisionally conclude that DS+C agents learn 

more efficiently than DS agents. 

 

The learning curves in Figure 5 show that the DS+C achieved and maintained a higher average 

win/loss ratio throughout the learning process, against an opponent using mixed tactics. 

Therefore, we provisionally conclude that apart from being more efficient, DS+C agents are also 

more effective than DS agents, both during and after the learning process. 

 

We mainly attribute the higher performance of the DS+C agents to the higher count of rules 

leading to evasive actions in the rule bases. The blues lost an encounter if a single blue was hit by 

a missile from red.1 Therefore cautious behavior was rewarded. This can be seen in the high 

weights that several evasion rules received. This also possibly explains the earlier convergence to 

optimal scripts, since the DS+C agents had more good options available. However, the 

coordination rules were not intentionally biased towards evasive actions, and it is possible that 

more aggressive rules would have a similar effect. At the same time, the fact that the blues 

together had more missiles at their disposal than red is likely to have contributed to the 

emergence of a low-risk strategy as well. 

                                                                 
1 The possibility of partial wins—situations where red would shoot down one blue, but the surviving blue would still 
destroy red—was considered, but a correct weight update for both blues was hard to achieve due to the interactivity 
of the rules of the blues. 
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The results show a slightly different picture against the opponent using each of the basic tactics. 

As Table 2 shows, DS+C also reached the TPs earlier against the basic tactics on average, but with 

a smaller lead. Only against the Close Range tactic did DS achieve the TPs earlier. We hypothesize 

that if DS was able to rapidly find optimal behavior against this tactic of ‘red’, then the additional 

coordination rules for DS+C only hindered the convergence to successful rules, resulting in later 

TPs. 

 

Furthermore, we detected a trend in the results of both DS and DS+C having relatively late TPs 

against the alternative versions (with reversed direction) of red’s tactics. Additional experiments, 

in which the formation of the blues was mirrored, also led to later TPs. This could be considered 

an artefact in the experiments, or it could be an indication that the exact spatial configuration of 

cooperating aircraft is a relevant factor in air combat. 

 

Overall, we find that DS+C is an extension that has the ability to improve both the efficiency and 

effectiveness of DS. The results found here could be improved even further with a better 

understanding of the interactions and the effects of the rules that were used. 
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7 Conclusions and Future Work 

We have presented a method for team coordination through communication using DS, called 

DS+C. DS is a transparent machine learning method, which combines predefined rules to produce 

behavior for agents. Our DS+C extension provides team coordination using the same transparent 

learning mechanism. The main benefit of DS+C over DS that we have found was to better 

generalize learned behavior against unpredictable opponents. This way, the agents will be better 

suited for use in training simulations involving human participants who might act unpredictably 

as well.  

 

We would like to emphasize that DS was originally developed for use in commercial video games. 

Since video games and training simulations share many requirements regarding behavioral 

realism and quality control, we advise to maintain a strong link between these fields. 

 

In practical terms, we find that DS can be used in three different ways. First and foremost, it can 

be used to rapidly generate behavior for CGFs. This can be done in an offline fashion by setting 

up the learning agents against other AI enemies. Second, DS can be used to keep the behavior of 

the agents adaptive in encounters against humans. By keeping the learning mechanism active 

during the actual training sessions, the DS agents will continue to learn and adapt to the behavior 

of the human trainees. Third, DS provides a transparent test bed for research on agent behavior. 

This is demonstrated in how we used the DS algorithm to determine which exchanges of 

messages provided the most benefit to our learning agents. The same setup could be used for 

similar behavior extensions. 

 

Future work will focus on the use of only one DS instance to generate behavior for multiple 

agents. The reduced complexity might have an even greater positive impact on learning speeds. 

Furthermore, the design and application of more elaborate pre-scripted tactics using DS will be 

investigated, with the goal of adding more realistic behavior options. 
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W H A T  I S  N L R ?  
 

The  NL R  i s  a  D utc h o rg an i s at io n th at  i de n t i f i es ,  d ev e lop s  a n d a p pl i es  h i gh -t ech  know l ed g e i n  t he  

aero s pac e sec tor .  Th e NLR ’s  ac t i v i t i es  ar e  soc ia l ly  r e lev an t ,  m ar ke t-or i en ta te d ,  an d co n d uct ed  

no t- for - p ro f i t .  I n  t h i s ,  th e  NL R  s erv e s  to  bo ls te r  th e gove r nm en t ’s  i n nova t iv e  c apa b i l i t ie s ,  w h i l e  

a lso  p romot i ng  t he  i n nova t iv e  a n d com p et i t iv e  ca pa c i t ie s  o f  i t s  p ar tn er  com pa ni e s .  

 

The NLR,  renowned for i ts leading expert ise,  professional  approach and independent consultancy,  is  

staffed by c l ient-orientated personnel who are not only highly ski l led and educated,  but a lso  

continuously  strive to develop and improve their  competencies. The NLR moreover possesses an 

impressive array of  high qual ity research fac i l i t ies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NLR – Dedicated to innovation in aerospace 
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