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STOCHASTIC FATIGUE ANALYSIS OF AN F-16 FORWARD
ENGINE MOUNT SUPPORT FITTING

F.P. Grooteman, H.H. Ottens and H.J. ten Hoeve
National Aerospace Laboratory NLR, Amsterdam, The Netherlands, grooten@nlr.nl

Fatigue analysis, to determine the lifetime of a component or complete
aircraft structure, normally is based on deterministic models, in which the
parameters are constants. In order to compensate for neglecting the natural
variability of the parameters and other uncertainties a safety factor is
applied. Another way of dealing with the variability of the parameters is by
means of a stochastic analysis, adding an extra dimension to the
deterministic analysis, by introducing a range of values that can occur with
their chance of occurrence.

In the paper, the different steps of which a stochastic analysis consists are
described. Furthermore, the stochastic concept will be applied to a realistic
component: the forward engine mount support fitting of an F-16. This engine
mount is a critical component with a small inspection interval, which is
difficult to inspect. The stochastic nature of the various parameters of the
crack growth model are examined using real life data and their stochastic
importance is determined by means of a sensitivity analysis. This reveals the
model parameters for which the variability should be taken into account and
which therefore should be modelled as stochastic variables. These results are
used in a stochastic Damage Tolerance analysis, revealing the very
conservative nature of such an analysis due to the unknown initial flaw size.
Finally, a stochastic crack growth approach is presented, dealing with this
unknown initial flaw size in a stochastic way.

INTRODUCTION

Airworthiness regulations require that an aircraft manufacturer proves that the aircraft can be
operated safely. This implies that safety critical components are replaced or repaired before they
are damaged so much that safe operation of the aircraft can no longer be guaranteed. Different
philosophies can be followed to prove that a component is safe. Which philosophy will be
followed depends for example on the possibility to inspect a component. Sometimes customers
prescribe the philosophy to be used to prove aircraft safety. Two philosophies form the basis for
the approaches chosen by most manufactures: safe life and damage tolerance. Two additional
philosophies are mentioned often: fail safe and durability. The latter however is used for not-
safety-critical components.

The safe life philosophy is based on the concept that significant damage will not develop during
the service life of a component. If a crack is initiated, or is already present, it will not grow fast
enough to produce a significant reduction in strength. The life for which this is true is calculated
and then checked by a suitable test program. The safe life of a component is obtained by
factoring the life found by an appropriate safety factor. When the service life equals the safe life
the component is replaced whether damage is evident or not. The result of a safe life calculation
is a single number specifying the life of the component in e.g. flights or hours. The major
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drawback of this approach is that components are taken out of service when it is likely that they
still have a substantial remaining life.

With the damage tolerance philosophy it is recognised that damage exists and develops during
the service life of a component. It says that a structure is designed to have an adequate life free
from significant fatigue damage, but continued operation is permitted beyond the life at which
such damage may develop. Safety is incorporated into this approach by the requirement that the
damage is detected by routine inspection before it results in a dangerous reduction of the static
strength. Two requirements are necessary for this approach to be successful: 1. One should be
able to define a minimum crack size which will not go undetected at a routine inspection and 2.
One should be able to predict the growth of such a crack during the time until the next
inspection. On top of this it is assumed that cracks grow from flaws which are present in the
material or from manufacturing faults. The result of a damage tolerance analysis is a curve
presenting the crack length as function of the number of cycles.

Both approaches can be used for components which cannot be inspected, although the safe life
approach is most suited. Such components need to be replaced when the critical life is reached.
The critical life can be calculated via the safe life approach or the damage tolerance approach.
In the latter case the component needs to be replaced when the first inspection is reached.

Apart from these design philosophies there are two addition philosophies often used. The first
was introduced in the sixties and is called fail safe. The second is of a more recent date and is
called: durability. The term fail safe is related to life prediction methods in two way’s. First, it is
used for a design philosophy developed in the early sixties which was the predecessor of the
damage tolerance philosophy. It is similar to the damage tolerance philosophy except for the
notion of an initial damage. Secondly the term fail safe is used to address structural
redundancies like: alternate load path and crack stoppers.

The philosophies described are based on safety requirements. In case of a damage tolerant
design, inspection intervals are defined so that a safe operation is ensured. Close to the end of
the life of a component safe operation is only ensured with sufficient inspection. Inspection
intervals as determined with the damage tolerance philosophy can become so short that it is
cheaper to replace than to inspect. The economic life of a component is addressed by durability.

The above analyses are based on a so-called deterministic analysis. This means that the
variability of the parameters used in the model is not taken into account, which introduces an
uncertainty in the results of the model. In order to compensate for neglecting the variability of
the parameters a safety factor is introduced.

Another way of dealing with the variability of the parameters is by means of a stochastic
analysis, adding an extra dimension to the deterministic analysis, by introducing a range of
values that can occur with their chance of occurrence. The different steps of a stochastic
analysis are:

*  Choice of random variables and their distribution functions

*  Choice of failure function (here, component life)

* Solution of the stochastic problem (here, stochastic crack growth problem)

There exist several numerical techniques to solve the stochastic problem, all with their own
limitations. The most simple and well known method is the Monte Carlo method, which will be
applied here also. Other more advanced methods, which have been implemented at NLR also
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(Ref. 1), are FORM, SORM and Importance Sampling methods, which require less
computational effort than the Monte Carlo method.

This paper presents the results of a damage tolerance analysis of the forward engine mount
support fitting of an F-16, determined deterministically and by means of a stochastic analysis.
This engine mount is a critical component with a small inspection interval, which is difficult to
inspect. Figure 1 gives a drawing of this component and its location in the aircraft. For the
stochastic analysis the stochastic nature of the various parameters of the model are examined
and their importance is determined by a sensitivity analysis. These results are used in a
stochastic damage tolerance analysis. The damage tolerance method results in very conservative
component lives due to the assumed initial flaw size.

From fracture surface investigations it is known that for virgin undamaged materials a
considerable time is spent to initiate a crack. After initiation the crack will grow till failure. The
ratio between crack initiation life and crack growth life depends on the geometry and loading.
Material property data used in safe life analysis is often obtained from tests on narrow
specimens. Such specimens fail shortly after a crack initiates. This implies that for a safe life
analysis the crack growth part of the life is ignored. The damage tolerance philosophy on the
other hand starts with a crack of minimal detectable size therefore ignoring the crack initiation
life. This notion encouraged some manufactures to combine the advantages of both approaches.
They use the safe life approach (with the proper material property data) to determine the crack
initiation life and from that the initial inspection. The damage tolerance approach is used to
determine subsequent inspection intervals.

In the last section an approach will be presented dealing with both the initiation and crack
growth life simultaneously in a stochastic way.

DETERMINISTIC DAMAGE TOLERANCE ANALYSIS

The purpose of the damage tolerance analysis is to ensure safety. The analysis predicts the
service life from an assumed worst case initial flaw size to the critical crack size. The inspection
interval is half of the predicted service life, i.e. safety factor of two. The assumed worst case
initial flaw size is the crack size that can be detected with the inspection procedure with a
probability of 90%. A typical value is 0.05", but smaller values can be assumed in case of more
advanced inspection methods.

The crack growth model consists of a damage accumulation model, describing the growth of the
crack caused by the stress field. This relation depends on the crack growth rate, which is
determined by a crack growth law, representing a relationship between the stress intensity range
and the crack growth rate. The stress intensity is given by a separate expression depending on
the type of crack and geometry of the component. Furthermore, the crack growth can be
retarded or accelerated by previous load cycles, which is modelled by a so-called retardation
model. Finally, some criteria determining failure of the component are incorporated.

The crack growth law used here to calculated the crack growth rate is the Forman equation:

da _ C Ag™

dn  (1-R) K.-AK M
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where,
C,m = material parameters
K. = fracture toughness (material parameter)
R = stress ratio Omin/Omax
AK = stress intensity factor range K.y - Kuin

Plasticity induced retardation is modelled here by means of the generalised Willenborg
retardation model.

The above equation depends on the mode one stress intensity factor, K;, which is the most
important parameter in the analysis. Its value is determined for a through crack in a single edge
notched plate (Ref. 2), which is the assumed initial flaw for this component.

The crack growth analysis will end when failure has occurred. This will be the case if:
» the crack length is larger than the critical crack length a.;

» the stress intensity factor is higher than the critical stress intensity factor K.

» the net section stress is higher than the yield limit

The stress state is plane stress, due to the small thickness.

The load spectrum used is typical for a fighter aircraft and consisted of 438 missions subdivided
in eleven mission types of which 334 were unique and covered 500 flight hours.

The model parameters used, material type Al 2124, are:

C = 6.48E-8 inch*ksi*sqrt(inch)/(cycle*(ksi*sqrt(inch))™)

m = 3.711

K. = 44, ksi*sqrt(in.)

AKy = 1.5 ksi*sqrt(in.)  (AK threshold)

W = 2.65 inch (plate width)

Rso = 23 (overload shut-off ratio, from retardation model)
Oy = 63. ksi (tensile yield strength)

From the fracture toughness the critical crack length is calculated yielding:
a;, = 0.344 inch

The initial crack length (flaw size) assumed in the damage tolerance analysis was:
a = 0.1 inch

The deterministic damage tolerance life computed with the above model for the applied load
spectrum now yields:
T = 1216 flight hours

The inspection interval becomes T/2:
Ty = 608 flight hours

PROBABILITY OF FAILURE

The stochastic method used here is the Monte Carlo (MC) method. The MC method is
extensively used, due to its simplicity and accuracy. The basic idea behind this method is to
calculate randomly values of the failure function (called simulations), by the use of random
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values for its variables, based on their known probability density function (PDF). This will
result in a number of values for the damage tolerance life of the component from which the
probability of failure can be calculated by means of:

number of failures
P;= (2)

total number of simulations

The probability of failure is defined here as the chance that the life of the component (T) is less
than 608 flight hours. This means that the structure has failed before the next inspection:

For every MC simulation a complete damage tolerance analysis is performed with varying
values for the random variables (model parameters).

P, =P(T <608)

RANDOM VARIABLES

The choice which model parameter to treat as a random variable and which not (deterministic
variable) depends on the variability of the parameter and its influence on the variability in the
damage tolerance life of the component. All the independent parameters of the crack growth
model are:

Crack growth law: C,m, K,
Damage accumulation model.: a
Retardation model: Rso, AKy, Oy
Stress intensity factor: W,o

All the other parameters are functions of the above ones, e.g. the critical crack length a. or
stress intensity factor K. Treating one of the independent parameters of the dependent one as
random variables causes the dependent variable to be random too.

First the selected distribution functions for the various random variables will be discussed. After
that the sensitivity of the solution for the variation in these variables will be examined, to
determine which model parameters should be treated stochastically and which not.

In order to obtain the distribution function for a random variable sufficient data must be
available. An extensive amount of damage tolerance material data can be found in reference 3.
In this reference da/dn values are given at specific AK and R levels for different orientations
obtained in various experiments. Furthermore, tables are given with values for K. and oy
obtained in various experiments.

Variables C and m

In theory, from the da/dn versus AK data distribution functions can be found for the material
parameters C and m (Eq. 1). However, it is not known which part of the variability in da/dn is
caused by the random behaviour of C respectively m. Therefore, the random behaviour of C and
m has been examined assuming that all the variability in da/dn was caused by C respectively m,
or in other words, the other was held constant (deterministic). In figure 2 the calculated values
for C have been plotted on log-normal probability paper, forming approximately a straight line.
This is a good indication that the data set can indeed be described by this distribution function.
Therefore, the distribution function of C can be described by:
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C(Mc, Oc) ~ LN(0.648E-7, 0.240E-7)
The coefficient of variation becomes:
Cov = Oc/l.lc =37%

Similarly, the distribution function of m can be described by means of a normal distribution
function:

m(Un,O) ~ N(3.711, 0.226)
The coefficient of variation is:

Cov=0/Hn="06.1%

Both distribution functions describe the same variability. Using both distribution functions with
the determined values will overestimate the variability in da/dn. Using only one will
overestimate the variability in C respectively m. As can be seen by the coefficient of variation,
the variability in C is higher than the variability in m, which is also known from literature. In
literature (Ref. 4) a correlation has been found between C and m. For the material type under
view, Al 2124, no correlation relation could be found. Therefore, C and m are considered
uncorrelated. In order to describe the variability in da/dn the above distribution functions for C
and m have been used, with the same mean but a lower coefficient of variation, i.e.: 25 %
respectively 3 %:

C(Uc, O¢) ~ LN(0.648E-7, 0.162E-7)

m(Up,0m) ~ N(3.711,0.111)

Variable K,
Values for the plane stress fracture toughness can also be obtained from reference 3. The
distribution function for the plane stress fracture toughness can be approximated by a normal
distribution function:

Ke(Hke,Oxe) ~ N(44., 4.4)
The coefficient of variation is:

Cov = OKC/UKC =10%

Variable o

The stress spectrum used is based on measured stress spectrums and consisted of 438 missions
of which 334 were unique and covered 500 flight hours. The variability in mission types is
accounted for by the large number of missions. However, the order in which the various
missions are flown in reality can differ from the order in the stress spectrum. In order to account
for this last variation, the 438 missions are randomly ordered resulting in a new stress spectrum
for each MC simulation. It will be shown that this influence may be neglected concerning the
variability of the damage tolerance life.

Because the Dutch use consists of using all fighter planes for all mission types, one can argue
that this load sequence is a reasonable representation of the real load sequence over a period of
500 flight hours and that sufficient variability is included in it.

For shorter periods of time, e.g. 50 flight hours, this however does not hold anymore. The
variability in load sequence between different aircraft will then increase for decreasing periods
and has to be taken into account.

Here, it is assumed that the load sequence of all aircraft can be described by the reference
spectrum, due to the long period.
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Variable oy,

Values for the tensile yield stress can again be obtained from reference 3. The distribution

function for the yield stress is best approximated by a three-parameter Weibull distribution:
Oy(a, b, Xo) ~ W3(6.383, 18, 45.52)

Variable Rso

Insufficient data has been found on the overload shut-off ratio. It will be shown that the
influence of the variability of this parameter on the variability of the damage tolerance life may
not be neglected. However, due to the lack of data no distribution function can be determined.
Because many material parameters are represented by the normal distribution function, also for
Rso the normal distribution function is selected. The mean will be the deterministic value of 2.3.
The only unknown remaining is the variation. Selecting a coefficient of variation of 10 %,
which is the order of variation for many random variables, the standard deviation becomes 0.23.

Rs0(Mrso» Orso) ~ N(2.3, 0.23)

Variables AK;, and W

Insufficient data has been found for the threshold stress intensity range AKy,, below which no
crack growth does occur. Variability in dimensions due to the manufacturing process are also
unknown, but can be estimated from the allowed tolerances. However, it will be shown that the
influence of the variability of these two variables on the variability in the damage tolerance life
can be neglected. Therefore, these variables can be treated as deterministic.

Variable a,

The initial crack size in a damage tolerance analysis is determined by the method of inspection.
It represents the crack size that can be detected with the inspection procedure with a probability
of 90%, this to ensure safety which is the purpose of Damage Tolerance Analysis (DTA). This
crack length is a fixed value for a specific inspection method and therefore deterministic.
However, a better approach would be to take into account all crack sizes with their probability
of not detection, expressed by one minus the Probability Of Detection (POD) curve. In this
way the fact that also smaller cracks than the 90% one can be found with the inspection method,
although with a lower probability, is included in the analysis. Both initial crack sizes, fixed
value and POD distribution, will be used in a stochastic DTA.

From reference 5 a POD curve has been selected, which had a probability of detection of 90%
for a 0.1 inch crack length, which is the initial crack length in the deterministic analysis. The
selected POD distribution is a log-normal distribution:

POD(l,, 0,) ~ LN(0.0695, 0.0166)

The best approach of course would be to take into account the real distribution of crack sizes.
However, since these are unknown another approach will be outlined in the last section, where
this crack size distribution is determined from failure data and taken into account stochastically
in the crack growth analysis.

SENSITIVITY ANALYSIS

The influence of the variability of the various parameters on the damage tolerance life is
investigated by treating one parameter at the time as a random variable, while keeping the other
parameters deterministic. Altering the variability of the random variable will give an indication
whether the variability of this parameter on the variability of the DT life is important or not, and
thus whether this should be taken into account or not.
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The distribution functions determined in the former section are used for the various parameters.
For the plate width W and threshold stress intensity range AKy, a normal distribution function
with a coefficient of variation of 10% has been used to demonstrate that both parameters can be
treated deterministically, since insufficient information was available to determine their real
distribution functions.

The results of the sensitivity analysis are depicted in figure 3. In this figure the DT life in flight
hours is put against the chance that the life is less than a specific value. For every model
parameter the cumulative distribution curve has been plotted. For some random variables the
curves are steep, representing the small variability in the DT life caused by the variability of the
parameter. Therefore, the steeper the curve the more the situation can be represented as
deterministic; if the parameter would be deterministic the curve would be a straight vertical line
in the figure. The vertical dashed line represents the deterministic inspection interval of 608
flight hours.

From this figure it can be concluded that the fatigue analysis is not very sensitive to variations
in the threshold stress intensity range AKy, the plate width W, the tensile yield strength o,, and
the mission sequence 0, which can therefore be treated as deterministic variables.

The fatigue analysis is sensitive to variations in the material parameter C, the plain stress
fracture toughness K., the initial crack size ay (POD) and the overload shut-off ratio Rso. The
fatigue analysis is even very sensitive for variations in the material parameter m. In reality, i.e.
using the real initial crack size distribution, the variability in crack size would cause the largest
part of the variability of the life of the component.

These parameters are treated as stochastic variables. The variability caused by all these
parameters simultaneously is also depicted in figure 3.

STOCHASTIC DAMAGE TOLERANCE ANALYSIS

The stochastic damage tolerance analysis is the same as the deterministic analysis, with the
exception that now the variability in the model parameters C, m, K., Rso and a, are taken into
account by means of their determined distribution functions:

C(Uc,0c)  ~LN(0.648E-7,0.162E-7)

m(Um,0n)  ~N(3.711,0.1113)

Ko(Mke,Oke) ~N(44.,4.4)

RsO(MrsosOrso)  ~ N(2.3, 0.23)

As explained ay is taken deterministic (0.1 inch) as well as stochastic (1-POD), therefore two
separate analyses have been performed.

Figures 4 and 5 show the crack growth curves for the 1000 simulations for the deterministic,
respectively, stochastic initial crack length. The critical crack has become also a random
variable, because of the stochastic nature of K., and will depend on the current value of K, in
the simulation. This can be seen in the figures at the difference in end crack length of the
different crack growth curves.

Figure 6a shows the cumulative probability density function for the critical crack length. The
data points plotted on normal probability paper, figure 6b, show apart from the tails a straight
line. The critical crack length a., thus can be described by a normal distribution:

Acr(Macrs Oacr) ~ N(0.3424, 0.05331)
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The critical crack does not depend on the initial crack length, therefore the a., distribution will
be the same for both DT analysis.

Figure 7a shows the cumulative probability density functions for the DT life for both the
deterministic respectively stochastic initial crack size. This figure furthermore shows that the
mean DT life is larger in case of the stochastic ay. The vertical dashed line in the figure again
represents the deterministic determined inspection interval of 608 flight hours.
The small fluctuations in the curves of figure 7a are caused by the fact that all the missions are
different with respect to mission length and harmfulness and there is a high chance that the
analysis will end on a heavy cycle. The small fluctuations are thus not due to the limited number
of simulations, which also can be concluded from the fact that the fluctuations do not disappear
for higher probabilities, which are very well approximated by the number of simulations used.
The DT life result for the deterministic a, also has been plotted on log-normal probability
format in figure 7b. The result is a straight line, apart from the tails. A similar result has been
obtained for the stochastic case. Therefore, the DT life T can be described by the log-normal
distribution:

T(Mr, O1) ~ LN(1440,810) (Deterministic ag) (3a)

T(Ur, O1) ~ LN(2679,1666) (Stochastic a) (3b)

The probability of failure P;is defined here as the chance that the DT life T of the aircraft is less
than the specified inspection interval ti,,,. This means that the crack has grown to the critical
crack length before the next inspection.

Pf = P(T < tinsp) (4)

This probability of failure for both analyses (deterministic a, and stochastic a,) can be read from
figure 7a or calculated by equation 3 for any specific inspection interval. For an inspection
interval of 608 flight hours this results in a probability of failure of 8.3% for the deterministic a,
and 1.0% for the stochastic ay, which is unrealistically high.

It should be emphasised that the reader should keep in mind that the presented results are based
on the assumption that the initial crack size is assumed to be present in the component at the
start of the interval, this to ensure safety. In general, the real initial crack size will be much
smaller. Furthermore, the time for the crack to grow to the assumed initial size (initiation time)
is large compared to the time for the crack to grow from the initial size to failure. Therefore, for
the largest part of the total life (initiation + growth to failure) of the component no crack will be
found. This approach thus is very conservative.

In the next section an approach will be presented in which the realistic initial crack size
distribution is determined from failure data and can be used in the stochastic crack growth
analyses.

IMPROVED STOCHASTIC LIFE APPROACH

The advantages of a stochastic approach depend on the design philosophy adopted. We will
discuss the different design philosophies and what will be the benefit of taking a parameter
stochastic rather than deterministic.

The safe life approach
In the safe life approach the life to failure is determined for a large series of coupons or
components. This leads to a distribution function of life to failure. This function is used to



-12-
NLR-TP-2001-275

determine the life that more than 99.9% of the components will survive. This is then called the
‘safe life’. The component must be replaced as soon as the safe life is reached.

It is clear that stochastics is used to determine the safe life from the experimental results. For the
application of the safe life approach no stochastics is used.

The damage tolerance approach

In the damage tolerance approach an initial damage is assumed, the damage growth starting
from the initial damage to a critical damage is calculated. The time it takes the crack to grow
from initial to critical damage is used to specify inspection intervals. In this approach the
stochastics can be brought in for different parameters as shown in this paper.

In the damage tolerance approach the size of the initial damage is determined by the inspection
capabilities. As a typical 90/95 value 0.05” intial crack size is used often. Instead of a
conservative value the real probability of detection (POD) of the inspection method can be used
to reduce the conservatism, as shown in this paper also.

Equivalent Initial Flaw Size (EIFS)

The damage tolerance approach has an inherent strange assumption in it that leads to very
conservative results. The initial damage size is based on the POD of the inspection method. In
other words the inspection method determines the initial crack size and not the damage that
actually may be expected in the structural component. This observation has lead to the concept
of ‘equivalent initial flaw size’, EIFS. The critical crack length and life of the component are
used to determine the crack size at time zero by means of a backwards crack growth calculation.
This approach leads to an equivalent initial flaw size, which is not the true flaw size as the name
already indicates, due to the fact that the crack growth model used is not valid in the small crack
size region anymore. Performing this backwards crack growth calculation for many crack
length/life combinations results in an EIFS distribution.

The only way the EIFS concept can be used is by assuming that the EIFS distribution has a
more general validity, not only for a particular component but for several or all components.
This, however, is not proven yet and it is doubtful whether it is really true.

Improved stochastic approach

The idea of starting from a failure distribution function and calculating backwards the crack
growth, can be used in another way (see figure 8). The backward calculation is not proceeded
till the time zero as in the EIFS approach, but till a reference crack length (A determined by
the inspection method used or a value which is regarded as sufficiently small without reducing
the strength and safe operation of the component (i.e. small cracks are often present in
structures). From the resulting distribution function at this reference crack size, which is a
function of time, the initial inspection time (Tj,) is derived based on a certain percentage of
time (e.g. 1%), since cracks of these sizes are present in the structure. In this way the crack
initiation phase is accounted for in a natural way.

This is illustrated in figure 8, by the distribution function labelled PDF-T. The distribution
function of crack lengths at this time (figure 8, label PDF-Aref) is now used in an upward crack
growth analysis including a repeat inspection scheme, depicted by the crosses in figure 8 for one
crack growth curve. The inspections are simulated by the POD function valid for the
component. Depending on the repeat inspection scheme and POD function, the crack will be
found or not.

Once a crack has been found in the numerical simulation of the crack growth, the component is
repaired or replaced and the new component will have again an initiation period (Tj,;) in which
a new crack will initiate. From this time again a crack growth analysis can be performed.
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The crack growth calculation stops when the component has failed or when the economic life
time of the component has been reached, depicted by Teconomic in the figure.

Performing many of such crack growth simulations finally results in a certain Probability Of
Failure (POF). This POF can be obtained for different repeat inspection schemes till a required
level of POF is obtained. In this way an optimal inspection scheme can be determined.

The backward and upward crack growth calculations are done deterministically, because all the
variability is already included in the failure distribution. In this way the upward crack growth
calculation leads to the same failure distribution as originally started with, which is a
prerequisite.

In order to perform such an analysis, the failure distribution of the component has to be known.
This failure distribution function can be determined from experimental data by means of a
Weibull analysis. If only a very limited number of failure data is available, a conservative
lower bound of the real failure distribution can be determined by means of a Weibays or
Weibest analysis, based on non-failure data, which can be updated during the service lifetime
of the component with field data.

In a Weibull analysis a Weibull distribution function is used to describe the failure mode. The
two-parameter Weibull distribution function (cumulative density function) yields:

N
Fit)=1-¢ ™" (5)

where:
t = time to failure in cycles
[3 = measure of the speed of the failure mechanism (shape parameter)
N = measure of the characteristic life (scale parameter)

The unknown values of the parameters 3 and n are determined from a set of available data
points, which may consist of failed and unfailed sample times. Various methods exist to fit these
two parameters, of which the method of maximum likelihood is used in general. This method is
based on a so-called likelihood function, describing the probability of obtaining the observed
data. The two parameters 3 and ] are now found by maximizing the likelihood function. Once 3
has been obtained, 1 can be determined from:

EZ

= (6)
U
U

where:
n = Number of failed samples
N = Total number of samples

This last equation can also be used to estimate 1 in case no failure points exist. Then, for 3 a
value is assumed, based on historical failure data or engineering judgment (B normally lies
normally in the range of 2 to 6). For the number of failures (n) different values can be selected.
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Set to one a so-called Weibays method is obtained, where it is assumed that the first failure is
assumed to be imminent resulting in a 63% lower confidence bound on the true Weibull. A less
conservative approach is selecting n=0.693 resulting in a 50% lower confidence bound on the
true Weibull, a so-called Weibest method is obtained.

CONCLUSIONS

In this paper, the different steps of which a stochastic analysis consists are demonstrated on a
forward engine mount support fitting of an F-16. This engine mount is a critical component with
a small inspection interval, which is difficult to inspect. The stochastic nature of the various
parameters of the crack growth model is examined using real life data and their stochastic
importance is determined by means of a sensitivity analysis. This reveals the model parameters,
the material parameters C and m, the fracture toughness K., the initial crack size a, and the
overload shut-off ratio Rso, for which the variability should be taken into account and which
therefore should be modelled as stochastic variables. These results have been used in a
stochastic Damage Tolerance analysis, revealing the very conservative nature of such an
analysis due to the unknown initial flaw size distribution.

An improved stochastic approach has been presented in which the realistic initial crack size
distribution is determined from failure data and which includes the initiation as well as the crack
growth life.
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Figure 1. F-16 forward engine mount support fitting

99.99 - 4 |
99.9 L
99| i
B 2 —
9%5F N L
90 ¢
8 L
S -
2 -
5 50 £ o —
S roc
[<] r 2 I
o - ©
'g |-
10 &
5t n |
r 2 ]
1 [ |-
0.1f B
001 | _4 L \ 1
1078 1077 107®

Figure 2. Material parameter C data points on log-normal probability paper
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Figure 4. Damage tolerance crack growth curves for 1000 MC simulations; ap = 0.1 inch
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