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Problem area 
The actual development of satellite 
navigation systems is crucial and 
includes after the introduction of  
EGNOS (augmentation of GPS), the 
planned modernization of GPS, and 
the new designed Ueropean Galileo 
system. For safety of life 
applications of satellite navigation 
systems, in e.g. aviation, reliability 
in the sense of integrity, availability 
and continuity is essential. In order 
to test the integrity, availability and 
continuity, a test methodology is 
required. This methodology should 
meet the requirement to be able to 
perform the analysis based on a 
limited amount of data collected 
within an acceptable observation 
time. This report presents a test 
method for analyzing the integrity 
of receiver output data possibly 
contaminated with outliers. 
 
Description of work 
A practical method to analyze the 
receiver integrity output data has 
been developed. As a test case the 
method has been applied to data 

gathered during a test campaign of 
limited duration for EGNOS. With 
this method an accurate estimate of 
the integrity can be made. The 
applied theory including the outlier 
detection is presented. 
 
Results and conclusions 
From the test case presented in this 
report, it can be concluded that the 
estimation of the integrity on the 
basis of a limited number of test 
campaign data is possible indeed. 
The results of the test case show 
that the integrity did satisfy the 
requirements. These results also 
show that outliers occur indeed and 
must be taken into account in order 
to assess the integrity performance 
correctly. 
 
Applicability 
The software being developed is to 
be used to analyze measurement 
data gathered during test campaigns 
for SBAS and the future Galileo 
satellite navigation system. 
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Summary 

This report presents a practical method of analyzing the integrity of SBAS on the basis of test 
data gathered during a test campaign of limited duration. The method determines also possible 
outliers which turn out to be essential in order to obtain the correct integrity performance 
results. Dedicated software has been developed to demonstrate this test method. The applied 
theory is described and the results from test campaign data are analysed and discussed. 
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ABSTRACT  
 
For safety of life applications of satellite navigation 
systems, in e.g. aviation, reliability in the sense of 
integrity, availability and continuity is essential. In order 
to test the integrity, availability and continuity, a test 
methodology is required. This methodology should meet 
the requirement to be able to perform the analysis based 
on a limited amount of data collected within an acceptable 
observation time. This paper presents a test method for 
analyzing the integrity of receiver output data possibly 
contaminated with outliers. In the paper the analysis of 
integrity is discussed in detail. 
 
Usually one presents the test results in so-called Stanford 
diagrams visualizing the occurrence of Hazardous 
Misleading Information (HMI). Since the probability of 
HMI is very low, very often, no HMI condition occurs 
during the tests and in that case the computed HMI 
probability on this basis will then often be zero, being 
obviously incorrect. The method developed starts from 
the determination of two probability density functions: the 
fitted or measured probability density function of the 
protection level and the probability density function 
related to the position error, together forming a two 
dimensional probability density function. 
A complicating factor in analyzing the probability density 
functions is the fact that due to the low probability of 
events occurring in the tail of the probability distributions  
this analysis is sensitive to outliers. So a method 
accounting for outliers must be incorporated in the 
method.  

From the test case presented in this paper, it is concluded 
that the estimation of the integrity on the basis of a 
limited number of test campaign data is possible indeed. It 
also turns out that the analysis of outliers is absolutely 
necessary to obtain useful results. The results show that 
the integrity satisfied the ICAO requirement for the  
APV-I, APV-II and CAT-I aeronautical services during 
the actual test case.  
 
INTRODUCTION  
 
For safety of life applications of satellite navigation 
systems, in e.g. aviation, reliability in the sense of 
integrity, availability and continuity is essential. In order 
to test the performance with regard to these characteristics 
a test methodology is required. This methodology should 
meet the requirement to be able to perform the analysis 
based on a limited amount of data collected within an 
acceptable observation time. This paper describes a 
practical method of testing the integrity of SBAS on the 
basis of test data possibly contaminated with outliers. 
Matlab software has been developed to demonstrate this 
test methodology. For SBAS the protection level having a 
relationship with the position error is the basis for 
integrity (Ref. 1).  
The GNSS integrity performance requirement for the 
ICAO navigation service levels APV-I, APV-II  and 
CAT-I is 2 x 10-7 per approach. Assuming a duration of 
150 seconds per approach it turns out that an integrity 
failure may occur once per 75 x 107 seconds or once per 
23.8 years. Testing the EGNOS (European Geostationary 
Navigation Overlay Service) system by collecting data 
over 23.8 years is far from practical and still insufficient 
from a statistical point of view. So one needs to invent a 
way to do integrity tests on the basis of a limited amount 
of data to be collected within an acceptable observation 
time. The test method presented in this paper is based on 
the determination of the probability that an integrity 
failure may occur each independent measurement sample. 
Once this probability distribution is known the integrity 
risk can be computed. 
The integrity tests for SBAS are to be based on the 
determined protection levels as a function of the position 
errors (the so-called Stanford diagrams, see for example 
Ref. 2 and 3). The method is meant to gain confidence 
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that the integrity requirement is met on the basis of a test 
campaign. 
As a test case the method has been applied to data 
gathered during a test campaign of limited duration for 
EGNOS.  
 
THEORY 
 
The HMI (Hazardous Misleading Information) probability 
depends on two basic parameters: the actual position error 
and the determined protection level. Usually one presents 
the test results in the so-called Stanford diagrams 
visualizing the occurrence of Hazardous Misleading 
Information. In case the Protection Level is smaller than 
the Alarm Limit while the position error is larger than the 
Alarm Limit the position information is obviously 
misleading and is considered to be a Hazardous 
Misleading Information result. Since the probability of 
HMI is very low, it is not practical to state that the HMI 
probability is the ratio of the number of HMI results 
divided by the total number of measured samples. Very 
often, no HMI condition occurs during the tests. The 
resulting number of HMI conditions will then be zero and 
in that case the computed HMI probability on this basis 
will be zero as well, being obviously incorrect. Therefore, 
one needs to invent a correct way in obtaining a realistic 
estimate of the HMI probability also called the integrity 
risk. The method developed for this purpose starts from 
the determination of two probability density functions: the 
fitted or measured probability density function of the 
protection level and a probability density function related 
to the position error, together forming a two dimensional 
probability density function. 
Once the position error is larger than the protection level 
we interpret that situation as misleading and accordingly 
it is called Misleading Information (MI).  
It is well known that the vertical, north and east 
component of the position error do behave very similarly 
to the normal (Gaussian) probability density function. 
Since the horizontal position error is composed of two 
distributions, a normal distribution in north direction and 
a normal distribution in east direction, the horizontal 
position error must behave similarly to the Rayleigh 
probability density function. 
A complicating factor in analyzing the probability density 
functions is the fact that due to the low probability of 
events occurring in the tail of the probability distributions  
this analysis is sensitive to outliers. So a detection method 
enabling the detection of outliers must be incorporated in 
the method. It turned out that outliers are present indeed 
influencing the estimated MI and HMI probabilities 
significantly. 
 
Theory of outliers 
 
Outliers are generally described as data points that do not 
seem to fit with the bulk of the data. In this paper, the data 

is subdivided into a part related to typical system 
performance and a part related to atypical system 
performance, and the term outliers will be used for all 
data points that are (assumed to be) related to atypical 
performance. Typical performance is characterised by 
relatively small magnitude and high probability of 
occurrence whereas atypical performance is characterised 
by relatively large magnitude and (very) small probability 
of occurrence. In case the probability density of typical 
performance is modelled as a gaussian probability 
density, the outliers cause an increase in the total 
probability density relative to the normal density over the 
range of the outliers.  
To allow visual inspection of the outliers it is useful to 
plot the probability density on a logarithmic scale (see 
figure 1). The measured (in this case simulated) outliers 
are clearly visible now.  
 

 
Figure 1:  Example of outliers; symmetrical distribution 

with a mean value of zero (simulation). 
 
In this paper it will be shown that an outlier probability 
distribution for EGNOS can be described by the Laplace 
distribution. 
The equation for the Laplace probability density is: 
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Here, μ is a location parameter and λ>0 is a scale 
parameter. 
The total probability density is the superposition of the 
normal probability density and the Laplace density: 
 

LaplaceNormaltotal fff
vertical

αα +−= )1(   (2) 
 
where α is the fraction of outliers actually present in the 
probability density function. 
In case of the vertical position error a symmetrical 
probability density function is assumed having a zero 



  
NLR-TP-2008-139 

  
 6 

mean. This assumption should be valid in case data are 
collected over a long period of time. 
The outlier probability density can now very well be 
described as follows: 
 

)exp( xbaf Laplace +=α
   (3) 

 
Herein are a and b coefficients (parameters); a is the 
logarithmic Laplace density at x = 0 and b is the slope of 
the logarithmic Laplace density. 
The horizontal probability density can be described with 
the following equation: 
 

LaplaceRayleightotal fsrff
horizontal

αα +−= )1(  (4) 
 
where r===sqrt(north_error2++east_error2) is the 
horizontal position error and s is a scale parameter. 
Figure 2 shows this function. 
 

 
 

Figure 2:  Example of outliers; Rayleigh  distribution 
combined with Laplace distribution (simulation). 

 
The point where the Laplace density takes over from the 
normal probability density is to be determined prior to 
seting up equation 2. This can be done by looking at the 
ratio between the measured probability density function 
and the normal probability density function (see figure 3). 
In practice a threshold of about 4 is right to distinguish 
the Laplace density from the combined density. A higher 
value (for example 10) is required to distinguish the 
Laplace density also from the transition region. 
 
Knowing the region where the Laplace density is valid 
enables the estimation of the two parameters a and b in 
equation 3. These two parameters can very well be 
estimated by using linear regression.  
After subtraction of the just estimated Laplace density 
from the measured probability density function, the 
normal probability density can be determined. 
 

 
Figure 3:  Example of outliers; measured probability 

divided by normal probability (simulation). 
 
 
Confidence of the statistical results 
 
It is good practice to determine an indication of the 
repeatability of final statistical results. This can be done 
by computing a so-called confidence interval. 
For the normal probability distribution of a large amount 
of collected data the confidence interval is to be computed 
as follows: 
 

nIntervalconfidence
2σσ =     (5) 

 
where n is the number of independent observations. Due 
to the fact that the successive measured samples (1 Hz) 
are highly correlated, the number n is not equal to the 
number of observations. A better guess of this figure is 
n=2 (usually day and night behave differently, so we may 
assume n=2 is a minimum) for a test day of 24 hours. This 
may be to low; however one should keep in mind that the 
integrity risk is strongly affected by possible outliers and 
not by the normal probability distribution. Therefore it is 
not useful to study the value of the parameter n in 
equation 5 in much detail. So it is anyway required to 
compute the confidence interval of the Laplace density. 
This is possible using the regression analysis software 
already in use to estimate the Laplace density according 
to equation 3. The underlying theory of regression can be 
found in many text books.  
 
Dependency of σXPE on XPL 
 
Since the uncertainty in the position error increases with 
the computed protection level we need to estimate the 
probability density function in slices (bins) as a function 
of the protection level. From a theoretical point of view 
the standard deviation of the position error vary with the 



  
NLR-TP-2008-139 

  
 7 

protection level in a linear way and may even vary exactly 
in ratio with the protection level. 
Thus the following relationship holds: 
 

XPLdXPEmeasure constXPL *0 += σσ   (6) 
 
where XPL stands for VPL or HPL. 
In this equation σ0 could theoretically be zero, however, 
from many observations it follows that σ0 is definitely 
positive. Furthermore the coefficient constXPL is always 
positive as well (see for example the figures 14 and 25). It 
must be noted here that equation 6 is to be estimated 
using a weighed least squares method where the weighing 
function is identical to the amount of measurement 
samples within each slice as a function of the XPL. 
 
Simplification of the two dimensional probability 
distribution 
 
In the paper it will be shown that the coefficients a and b 
in the Laplace density described by equation 3 often vary 
almost randomly as a function of XPL (see for example 
the figures 12  and 13). Consequently it makes sense to 
replace the Laplace distribution for each slice as a 
function of XPL by one common Laplace distribution. 
This implies that all measurement data are be mapped 
onto one common reference XPL. As reference XPL we 
choose a value of XPLref = 10 m, which is an arbitrary 
choice in essence. The mapping function used here is 
described by equation 6. Especially this mapping function 
makes sense since in that case the normal probability 
density as well as the Rayleigh density function is already 
treated in a common way. As an additional result the 
outliers are now uniformly treated, according to equation 
6, in a common way too. 
 
MI and HMI probability computation 
 
To compute the MI and HMI probabilities, the following 
computational steps must be undertaken: 

• The standard deviation of the normal distribution 
(vertical) or Rayleigh distribution (horizontal) 
together with the Laplace outlier distribution 
valid for XPLref = 10 m (this 10 m is chosen 
arbitrarily) are determined as described in the 
previous subchapters. 

• From the parameters determined in the previous 
step, the probability distribution is evaluated 
over the range XPE = 0 through 200 m at XPLref 
= 10 m, where XPE stands for VPE or HPE. 

• Using equation 6 the probability distribution at 
XPLref = 10 m is mapped over the area within the 
range XPL = 0 through 100 m in slices of 0.2 m. 
Each slice is weighed with the number of 
observations collected in that slice. At this stage 

the 2 dimensional probability density function is 
known. 

• The MI probability is computed by integration of 
the 2 dimensional probability density function 
over the area where XPE > XPL. 

• The HMI probability is computed by integration 
of the 2 dimensional probability density function 
over the area where XPE > XAL and XPL < 
XAL, where XAL stands for VAL or HAL. 

 
 
 
DISCUSSION OF TEST RESULTS OF THE 
NOVATEL MILLENNIUM RECEIVER 
 
As a test case, use will be made of EGNOS data recorded 
at a measurement site at the NLR in the Netherlands with 
a Novatel Millennium receiver. The data collection on 28 
April 2006 started at 0.00 hours and ended at 24.00 hours 
UTC. 
 
Since the probability density functions are different for 
the vertical and horizontal case, the discussion is split up 
into two chapters accordingly. 
 
Integrity of SBAS related to vertical errors 
 
Figure 4 shows time series of the Vertical Position Error 
(VPE) and the Vertical Protection Level (VPL). From this 
figure it is clear that during the test the vertical position 
error was always smaller than the protection level and as a 
consequence no Misleading Information occurred. At the 
sample times of about 4.53x105 and 4.97x105 it can be 
observed that the absolute value of the position error and 
the protection level increase approximately 
simultaneously . 
 
Figure 5 shows a histogram of the Vertical Position Error. 
This histogram suggests that the VPE is approximately 
normally distributed.  The 95% percentile vertical error is 
1.90 m. 
 
Figure 6 shows a histogram of the Vertical Protection 
Level. The bulk of the protection level data is located 
around approximately 10 m. Furthermore the occurrence 
of the protection level data decreases gradually towards 
larger magnitudes. 
 
Usually one visualizes the integrity risk using the so-
called Stanford diagrams. In the figures 7a, 7b and 7c the 
Stanford diagrams of the APV-I, APV-II and CAT-I 
aeronautical services are shown. Again from these figures 
it is clear that no Misleading Information and no 
Hazardous Misleading Information did occur. 
To estimate the MI and HMI probabilities use is made of 
the probability densities discussed already in this paper. 
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Figure 4: Time series of the vertical position error and 

the vertical protection level (the maximum vertical scale 
shown in this figure is 100 m, some VPL values exceed 

this maximum by far) 
 

 
Figure 5: Histogram of the vertical position error. 

 

 
Figure 6: Histogram of the vertical protection level 

 
Figure 7a: Stanford diagram for the APV-I service. 

 
 
 

 
Figure 7b: Stanford diagram for the APV-II service. 

 
 
 

 
Figure 7c: Stanford diagram for the CAT-I service. 
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As an example a histogram plot (see figure 8) is made of 
all measured samples in a slice chosen around the value 
VPLslice = 16.2 m within the bounds VPLLowerBound = 16 m 
and VPLUpperBound = 16.4 m. This plot will be used to 
check if the normal probability distribution is adequate for 
this particular data set. 
 

 
Figure 8: Histogram plot to check if the normal 

probability distribution is adequate. 
 
 

 
Figure 9: Measured probability divided by normal 

probability. 
 
The highest value of the vertical position error VPE = 5 m 
shows a probability of around 3*10-3 being 100 times 
larger than the normal probability of 3*10-5. From this 
observation it is clear that the measured probability 
distribution is not normally distributed especially not at 
the tail. The applied normal probability distribution 
checks, the Jarque-Bera and the Lilliefors tests, yield the 
same conclusion. The outlier probabilities can be fitted by 
a Laplace distribution. To locate the range of outliers to 
be fitted, a plot of the measured probability divided by the 
normal probability is made (see figure 9). Applying a 

threshold value of 4 it is clear that all four measurement 
results having a vertical position error larger than 3.5 are 
outliers. The combination of the normal distribution and 
the Laplace distribution is shown in figure 10. 
Figure 10 clearly shows that the outliers satisfy the 
Laplace probability distribution indeed. 
 

 
Figure 10: The combination of the normal and Laplace 

distribution. 
 
The example analysis up to now is based on data 
occurring within a slice of VPLslice = 16.2±0.2 m. 
However, a two dimensional probability density function 
over the whole range of VPL and VPE is needed. There 
are three ways to achieve this: 

• The two dimensional distribution is the 
combined set of all individual slices (bins) along 
the VPL axis. From a theoretical point of view 
this is the best solution, however, an 
unpractically large amount of collected data is 
required then to get a stable result (see the 
analysis hereafter). 

• Perform the statistics on the ratio of the 
parameters VPE and VPL: the parameter 
VPE/VPL. However, the assumption made here 
is that not any bias influence is present in the 
VPL computation (in this case σo is cancelled in 
equation 6). In practice however, some bias is 
always present as will be shown in the analysis 
hereafter. 

• A linear relationship between σVPE and VPL can 
be assumed and fitted (equation 6); because of 
the addition of the two coefficients σ0 and 
constVPL in equation 6, which are to be estimated, 
a better overall fit of the whole two dimensional 
probability density is the result. 
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Two dimensional probability density function based on 
bins along VPL 
An analysis is made of probability densities based on the 
combination of the normal distribution with Laplace 
distribution within all successive slices defined along the 
VPL axis. It turns out that only in a part of these slices 
outliers are found. As a consequence the Laplace 
distribution coefficients a and b in equation 3 vary within 
a wide range and are often absent. The plots shown in this 
chapter only represent the probability distributions at the 
slices where outliers are found and thus include a Laplace 
distribution at the tail. 
As shown in figure 11, in ten slices (width of the slices is 
set to 0.2 m) outliers (deviations from the normal 
distribution) are found. The percentages of outliers 
(α÷100 in equation 2) in these particular slices are plotted 
in this figure. 
 

 
Figure 11: Percentage of outliers in each successive slice. 
 
In figure 12, the extrapolated Laplace probability towards 
VPE = 0 is plotted (coefficient a in equation 3). This 
figure shows a wide spread in the coefficient a while no 
clear trend is visible.  
Figure 13 shows the slope of the logarithmic Laplace 
probability distribution (coefficient b in equation 3). This 
figure shows a wide spread in these slopes while no clear 
trend is visible.  
In order to reduce the spread in the coefficients a and b in 
equation 3 it seems reasonable to combine all slices such 
that only one combined Laplace and normal distribution is 
to be fitted. This can be done by mapping all data into one 
reference slice using a mapping equation as for example 
equation 6. This procedure will be discussed in the 
following. 
 

 
Figure 12: Laplace probability extrapolated towards  

VPE = 0 in each successive slice. 
 

 
Figure 13: Slope of logarithmic Laplace probability 

distribution in each successive slice. 
 
Two dimensional distribution with linear dependency of 
σVPE to VPL 
The standard deviation of all available position error data 
within each slice along the VPL axis is computed and 
plotted in figure 14. A straight line (equation 6) has been 
fitted through these data up to VPL = 50 m (0 < VPL < 50 
is the range of interest for the HMI of the aeronautical 
services APV-I, APV-II and CAT-I). Figure 14 shows 
that the intercept σ0 and the slope constVPL (see equation 
6) are both positive, which is in practice almost always 
the case. Applying this linear relationship leads to a better 
fit of the two dimensional probability distribution in VPL 
and VPE direction as compared to the assumption that 
σVPE varies in ratio with the VPL. It is now possible to 
map all VPE data on a reference VPEreference = 10 m using 
equation 6. 
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Figure 14: Dependency of the standard deviation of VPE 

on VPL. 
 
In order to check if the normal probability distribution is 
adequate for this mapped data set a histogram plot (see 
figure 15) is made of all measured samples. 
 

 
Figure 15: Histogram plot to check if the normal 

probability distribution is adequate. 
 
The highest value of the vertical position error VPEmapped 
= 6.7 m shows a probability of around 5x10-6 being about 
2.5x108  times  larger  than the normal probability of 
2x10-14. From this observation it is clear that the 
probability distribution is not normally distributed 
especially not at the tail. The applied normal probability 
distribution checks, the Jarque-Bera and the Lilliefors 
tests, yield the same conclusion.  
The combination of the normal distribution and the 
Laplace distribution is shown in figure 16. This figure 
clearly shows that the outliers satisfy the Laplace 
probability density indeed. It can be concluded that a 
mixture of probability functions is required to describe the 
measured probability distribution properly 
 

 
Figure 16: The combination of the normal and Laplace 

distribution. 
 
However, a two dimensional probability density function 
over the whole range of VPL and VPE is needed. This can 
be achieved by mapping the probability density function 
of figure 16 on the slices defined already along the VPL 
axis. The integrated probability over each individual slice 
is determined by the fraction of measured samples within 
that slice relative to the total number of samples. The MI 
and HMI risks can now be computed by integrating the 
two dimensional probability density over the areas of 
interest. In the figures 17a, 17b and 17c the MI risks and 
HMI risks for the APV-I, APV-II and CAT-I aeronautical 
services are plotted. The contours having the values 1, 
0.001 and 10-10 indicate the probability density relative to 
the maximum probability density. These figures show that 
for  the  APV-I, APV-II and CAT-I services the HMI 
risks are 1.9x10-17,  7.5x10-13 and 7.9x10-10 respectively. 
These risks satisfy the ICAO requirement of 2x10-7 per 
approach (or, approximately, 1.33x10-9 per second). 
It is good practice to compute the limits for a specified 
confidence level of the final statistical results. It indicates 
how much confidence we can put on these results. The 
problem in computing the confidence interval is the fact 
that the sampled data are highly correlated in time, while 
a confidence level can be computed only over 
uncorrelated data. So we need to de-correlate the data and 
the question arises what the de-correlation time should be. 
Since in practice the Misleading Information probability 
depends almost only on outliers it is sufficient to check 
the de-correlation time of the appearance of outliers. 
Figure 18 shows a histogram of outliers (deviations from 
the normal distribution) as they show up spread over the 
day of the test. Nearly all outliers appear around 21.30 
o’clock. So the outliers show up in one burst and can be 
considered to be highly correlated over this day. Based on 
this fact it is decided to treat the outlier data as an 
uncorrelated data set here, occurring in one burst. 
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Figure 17a: MI risks and HMI risk for the APV-I service 
(the values within brackets refer to 95% confidence one 

sided upper limits). 
 

 
Figure 17b:  MI risks and HMI risk for the APV-II service 
(the values within brackets refer to 95% confidence one 

sided upper limits). 
 
 
Integrity of SBAS related to horizontal errors 
 
Figure 19 shows time series of the Horizontal Position 
Error (HPE) and the Horizontal Protection Level (HPL). 
From this figure it is clear that during this test the 
horizontal position error was always smaller than the 
protection level and as a consequence no Misleading 
Information occured. At the sample time of about 4.5x105 
it can be observed that the absolute position error and the 
protection level increase approximately simultaneously. 
Figure 20 shows a histogram of the Horizontal Position 
Error. This histogram suggests that the HPE is 
approximately Rayleigh distributed indeed.  The 95% 
percentile horizontal error is 1.47 m. 
 

 
Figure 17c: MI risks and HMI risk for the CAT-I service 
(the values within brackets refer to 95% confidence one 

sided upper limits). 
 

 
Figure 18: Histogram of outliers spread over the day of 

the test. 
 
Figure 21 shows a histogram of the Horizontal Protection 
Level. The bulk of the protection level data is located 
around approximately 7 m. Furthermore the occurrence of 
the protection level data decreases gradually towards 
larger magnitudes. 
Usually one visualizes the integrity risk using the so-
called Stanford diagrams. In figure 22 the Stanford 
diagram of the APV-II and CAT-I aeronautical services is 
shown. Again from this figure it is clear that no 
Misleading Information and no Hazardous Misleading 
Information did occur. Although the number of observed 
data points in the MI region is zero in all cases, this does 
not mean that the true MI and HMI probabilities are zero. 
To estimate these probabilities use is made of the 
probability densities discussed already in this paper. 
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Figure 19: Time series of the horizontal position error 

and the horizontal protection level (the maximum vertical 
scale shown in this figure is 100 m, some HPL values 

exceed this maximum by far) 
 

 
Figure 20: Histogram of the horizotal position error. 

 
As an example a histogram plot (see figure 23) is made of 
all measured samples in a slice chosen around the value 
HPLslice = 6.5 m within the bounds HPLLowerBound = 6.4 m 
and HPLUpperBound = 6.6 m. This plot will be used to check 
if the Rayleigh probability distribution is adequate for this 
particular data set   
The highest value of the vertical position error   HPE = 
3.5 m shows a probability of around 3*10-4 being more 
than 105 times larger than the Rayleigh probability of 
7*10-10. From this observation it is clear the measured 
probability distribution is not Rayleigh distributed 
especially not at the tail. The outlier probability 
distribution can be fitted by a Laplace distribution.  
 

 
Figure 21: Histogram of the horizontal protection level 

 
Figure 22: Stanford diagram for the APV-II and CAT-I 

service. 
 
 

 
Figure 23: Histogram plot to check if the Rayleigh 

probability distribution is adequate. 
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Figure 24 clearly shows that the outliers satisfy the 
Laplace probability distribution indeed. 
The example analysis up to now is based on data 
occurring within a slice of HPLslice = 6.5±0.1 m. However, 
a two dimensional probability density function over the 
whole range of HPL and HPE is needed. Therefore 
similarly to the vertical case we choose a linear 
relationship between σHPE and HPL 
 

 
Figure 24: The combination of the Rayleigh and Laplace 

distribution. 
 
The Rayleigh standard deviation of the position error of 
each slice along the HPL axis is computed and fitted with 
a straight line (equation 6) up to HPL = 40 m (0 < HPL < 
40 is the range of interest for the HMI of the aeronautical 
services APV-II and CAT-I). The result is shown in figure 
25. 
 

 
Figure 25: Dependency of the Rayleigh standard 

deviation of HPE on HPL. 
 
Figure 25 shows that the intercept σ0 and the slope 
constHPL (see equation 6) are both positive, which is in 
practice almost always the case. Applying this linear 

relationship leads to a better fit of the two dimensional 
probability distribution in HPL and HPE direction as 
compared to the assumption that σHPE varies in ratio with 
the HPL. It is now possible to map all HPE data on a 
reference HPEreference = 10 m using equation 6. 
In order to check if the Rayleigh probability distribution 
is adequate for this mapped data set a histogram plot (see 
figure 26) is made of all measured samples. 
 
 
 

 
Figure 26: Histogram plot to check if the Rayleigh 

probability distribution is adequate. 
 
The highest value of the horizontal position error 
HPEmapped = 4.9 m shows a probability of around 10-5 
being about 2x104 times larger than the Rayleigh 
probability of 5x10-10. From this observation it is clear 
that the measured probability distribution is not Rayleigh 
distributed especially not at the tail. The outlier 
probability distribution can be fitted by a Laplace 
distribution.  
 

 
Figure 27: The combination of the Rayleigh and Laplace 

distribution. 
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Figure 27 clearly shows that the outliers satisfy the 
Laplace probability density indeed. 
However, a two dimensional probability density function 
over the whole range of HPL and HPE is needed. This can 
be achieved by mapping the probability density function 
of figure 27 on the slices defined already along the HPL 
axis. The integrated probability over each individual slice 
is determined by the fraction of measured samples within 
that slice. The MI and HMI risks can now be computed by 
integrating the two dimensional probability density over 
the areas of interest. In the figure 28 the MI risks and 
HMI risk for the APV-II and CAT-I services are plotted. 
The contours having the values 1, 0.001 and 10-10 indicate 
the probability density relative to the maximum 
probability density. The HMI risk is 7.9x10-15. This risk 
satisfies the ICAO requirement of 2x10-7 per approach 
(or, approximately 1.33x10-9 per second). 
 

 
Figure 28: MI risks and HMI risk for the APV-II and 

CAT-I services (the values within brackets refer to 95% 
confidence one sided upper limits). 

 
 
Overview of the test results 
 
From the presented analysis it can be concluded that 
EGNOS satisfy the requirements of the  APV-I,  APV-II 
and CAT-I services as far as the Hazardous Misleading 
Information is concerned. 
The probabilities without outliers were computed by 
integrating probability distributions after subtraction of 
the Laplace distributions. The probabilities without 
outliers turn out to be rather optimistic indeed (e.g 
the.HMI risk for CAT-I is 9x10-41). So the conclusion is 
justified that the analysis of outliers is absolutely 
necessary to obtain realistic results. From this it follows 
that the duration of the data set must be such that outliers 
can be identified. 
The probability of Misleading Information turns out to be 
1.5x10-8. This means that from a theoretical point of view 
some Alarm Limit value may exist resulting into an HMI 

probability exceeding the value of 1.33x10-9 per second 
(this is approximately the ICAO requirement). So, as a 
matter of fact, there is a relatively small margin in the 
conclusion that the HMI requirement of the APV-I, APV-
II and CAT-I services is satisfied. 
Furthermore, the 95% confidence upper limit of the HMI 
probability for the CAT-I aeronautical service is 1.46*10-8 
being 11.0 times as large as the required 1.33x10-9. From 
this we may conclude that, from a statistical perspective, 
we should extend this test campaign to 121 days (121 = 
11.02) instead of the actual test of one day. Once all these 
121 test days do show, from a statistical perspective, a 
similar behaviour, the required integrity will then be 
proven within a confidence level of 95%. 
 
CONCLUSIONS 
 
A test method has been developed to analyse receiver 
output data gathered during a test campaign of limited 
duration for EGNOS and for the future Galileo system. 
The method is designed to handle outliers possibly 
present in the data set. It turns out that the analysis of 
outliers is absolutely necessary to obtain useful results.  
From the test case presented in this paper, it can be 
concluded that the estimation of the integrity, on the basis 
of a limited number of test campaign data, accurately is 
possible indeed. The results show that the integrity 
satisfied the ICAO requirement for the APV-I, APV-II 
and CAT-I aeronautical services during this test.  
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